WX /’tw '/"‘

SR, europhysics
5 conference
abstracts

20th EPS Conference on
Controlled Fusion
and Plasma Physics

Lisboa, 26-30 July 1993

Editors: J.A.Costa Cabral, M. E. Manso, F. M. Serra,
F.C. Schiller

Contributed Papers, Part IV

Published by: European Physical Society

Volume 17C
i Editor: Prof. K. Bethge, Frankfurt/M Part IV

jing Editor: G. Thomas, Genéve




EPYS europhysics

conference
abstracts

20th EPS Conference on Controlled Fusion
and Plasma Physics

LISBOA, 26-30 JULY 1993

Editors: J.A.Costa Cabral, M.E. Manso, F.M. Serra,
F.C. Schiiller

CONTRIBUTED PAPERS, PART IV

Published by : The European Physical Society VOLUME
Series Editor: Prof. K. Bethge, Frankfurt/M 17C
Managing Editor: G. Thomas, Genéve. Part IV



TOPICS 7-8

20th EPS Conference on Controlled Fusion
and Plasma Physics

LISBOA, 26-30 JULY 1993

Editors: J.A.C. Cabral, M.E. Manso, F.M. Serra, F.C. Schiiller

CONTRIBUTED PAPERS, PART IV



EUROPHYSICS CONFERENCE ABSTRACTS is published by the European Physical
Society, ¢ 1993

Reproducing rights reserved.

This volume is published under copyright of the European Physical Society. We wish to
inform the authors that the transfer of the copyright to the EPS should not prevent an
author from publishing an article in a journal quoting the original first publication or to
use the same abstract for another conference. This copyright is just to protect EPS against
using the same material in similar publications.

The Proceedings may be purchased from "Centro de Fusdo Nuclear" of "Instituto Superior
Técnico", Av. Rovisco Pais, 1096 Lisboa Codex, Portugal.




PREFACE

The 20th EPS Conference on Controlled Fusion and Plasma Physics is Organized,
on behalf of the European Physical Society (EPS), by "Sociedade Portuguesa de Fisica"
(SPF) and "Centro de Fus@io Nuclear" (CFN) of "Instituto Superior Técnico" (IST) of the
Lisbon Technical University.

The Programme, Format and Schedule of the Conference were determined by its
International Programme Committee, which also selected the Plenary and Topical Invited
Lectures.

The International Programme Committee has also made the selection of the
submitted one-page abstracts. Some of these abstracts, of outstanding quality, have been
selected, for both poster and oral presentation of the corresponding four-page papers.

In the odd years the Conference is essentially related with Controlled Fusion
Research and it has a reduced format. Therefore, the IPC has only been able to accept for
conference presentation about 435 abstracts from the almost 620 received.

The Conference Format is: 9 Review Lectures of 45 minutes, 18 Topical Lectures
of 30 minutes, 24 Oral Presentations of Contributred Papers of 20 minutes, 4 poster
sessions with about 110 posters each and a Special Evening Public Lecture.

Lisboa, June 1993 The Editors
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VLASOV-MAXWELL SIMULATIONS OF SIMULTANEOUS
STIMULATED RAMAN FORWARD AND BACKWARD SCATTERING

P. Bertrand!, A. Ghizzo!, S.J. Karttunen?, T.J.H. Pittikangas?,
R.R.E. Salomaa® and M. Shoucri*

1Université de Nancy-I, L.P.M.I.-C.N.R.S. URA 835, France
?Nuclear Engineering Laboratory, Technical Research Centre of Finland, Finland
3Department of Technical Physics, Helsinki University of Technology, Finland
4Centre Canadien de Fusion Magnétique, Tokamak de Varennes, IREQ, Canada

1. Introduction

In stimulated Raman scattering (SRS), an electromagnetic pump wave decays into
a scattered wave and a plasma wave. In long nearly uniform plasmas, the electrostatic
fields may reach large amplitudes and thus trap and accelerate electrons to high energies.
In laser fusion, even a small number of energetic electrons can cause severe preheating
and thus prevent the efficient compression of the fuel capsule. In magnetic fusion, the
beat wave process [1] or SRS [2] in the microwave region can be applied to current drive
in tokamaks. In current drive, collisionless fast electrons are beneficial.

Both in Raman forward (SRS-F) and backward scattering (SRS-F); the electron
plasma waves travel forwards but their phase velocities can differ considerably. In most
laser-plasma experiments, SRS-B dominates over SRS-F because of its larger gain. In
well-underdense high-temperature plasmas, however, the Landau damping strongly lim-
its SRS-B, which allows the growth of SRS-F [3,4]. In some cases, solely SRS-F is
excited [5]. The parameters corresponding to reactor-grade laser-plasma experiments
and to SRS current drive in fusion reactors lie in an intermediate region where both
processes can occur simultaneously [4].

The coupled mode theory predicts that in a homogeneous plasma slab, SRS-B and
SRS-F, and correspondingly the respective plasma waves, are localized in spatially dis-
tinct regions: SRS-B in the front and SRS-F in the rear part of the plasma slab [4]. The
phase velocity of the SRS-B plasma wave is lower and closer to the electron thermal
velocity than the phase velocity of the SRS-F plasma wave. The intense SRS-B plas-
mon can interact with a fairly large number of bulk electrons which get trapped into the
plasma wave. If the amplitude of the SRS-F plasma wave is so large that the trapping
regions of the two plasma waves overlap in velocity space, a large number of ultrafast
electrons may be created. The role of SRS-B is to extract bulk electrons which are
further accelerated by SRS-F. Note that the two wavepackets can be spatially separate
— the overlapping of the trapping regions has to occur only in the velocity space.

2. Vlasov—Maxwell Simulations of Simultaneous SRS-B and SRS-F

We apply a nonperiodic Eulerian Vlasov code which solves the relativistic Vlasov
and Maxwell equations for plane waves propagating in a bounded 1D electron plasma
in a fixed ion background. The noiseless Eulerian code makes possible very precise
diagnostics of the electric fields and envelopes [5].

.
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We consider a homogeneous plasma slab of length L surrounded by a void. An
electromagnetic pump wave is launched at z = 0 into the system with a frequency
wo = 2.36w, (i.e. n/ne = 0.18) and with an amplitude vo/c = 0.1, where vg is the quiver
velocity. The length of the system is [ = 188c/w,. The initial electron distribution
function is Maxwellian at T, = 10 keV. These parameters are in the optimum operating
region for simultaneous SRS-B and SRS-F [4]. The steep density gradient at the entrance
of the plasma provides an initial perturbation for the forward Raman instability. On
the other hand, a small initial sinusoidal perturbation (6n/n = 0.019) is introduced into
the plasma to set on the SRS-B instability.

T

260 0 2.5 5
Twy/c ke/w,

0

Fig. 1 Electrostatic field eE [m.cw, and k-spectrum at wyt = 300.

The frequencies and the wavenumbers are calculated from the phase matching condi-
tions and the dispersion relations. The wavenumbers of the plasma waves are krldp =
0.18 and kgip = 0.38. The linear Landau damping of the plasma wave excited by
SRS-B is strong, I'p/w, = 0.049, in contrast to the wave excited by SRS-F, which is al-
most undamped. The phase velocities (momenta) of the plasma waves are UphB = 0.45¢
(pprB = 0.50m.c) and vynr = 0.82¢ (pprr = 1.42m.c).

Figure 1 displays the electrostatic field .generated by SRS and the corresponding
wavenumber spectrum at wyt = 300. In the total electrostatic field, the two main com-
ponents corresponding to SRS-B and SRS-F are very clearly seen, because they are
spatially separated and their wavelengths differ considerably. At w,t = 300, the satura-
tion effects, wave-wave and wave-particle interactions play a role; and the electrostatic
spectrum has broadened considerably.

The phase-space plot of Fig. 2 illustrates the electron response to the electrostatic
field. The solid line corresponds to the separatrix momentum of an marginally trapped
electron. At the rear end of the plasma, the electrostatic field becomes weaker and,
therefore, the decoupled energetic electrons are streaming freely. Figure 2 shows also
two distribution functions corresponding to spatial averages over the regions 26.5 <
zwp/c < 50 and 120.5 < zw,/c < 144, respectively. In the front part, the dominant
wave-particle interaction is due to the SRS-B plasma wave. A plateau is formed in the
distribution function around YphB — 1 = 0.11, where Y,rB is the Lorentz factor at vphB.
In the centre of the plasma, the plateau appears around Yprr — 1 = 0.75, which can be
seen from the second distribution function. As the separatrices in the phase-space plot
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| show, the trapping region extends from v —1 = 0.2 to about 2.0, which agrees well with
the observed plateau.

120.5 120.5 144 144

log(f)

0 2.5 5 "o 2.5 5
7-1 7-1
Fig. 2 Phase space plot (z-p) of the electron distribution function at wyt = 250 and
space averaged electron distributions.

The important feature in the distribution functions in Fig. 2 is that the level of the
plateau is only one order of magnitude smaller in the SRS-B dominated region than in
the SRS-F region. This demonstrates that the amount of fast electrons generated by
SRS can be drastically increased, when both the backward and forward electrostatic
components are simultaneously present even though they are not spatially overlapping.
We have also run simulations where SRS-B is suppressed due to a higher temperature
or smaller initial amplitude. Then the fast electron tail is at several orders of magnitude
lower level than the tail in Fig. 2.

3. Test Particle Simulations

To understand the behaviour of an individual electron, we have studied the staged
acceleration of electrons by test particle simulations in spatially separated fields which
resemble the plasma waves generated by SRS-B and SRS-F. We have solved numerically
the equations of motion of an electron in the two-component electrostatic field E =
Yi=r,B Ei(z) cos(kiz—wit+¢;), where Gaussian envelopes E;(z) = E; exp[—(z—z0)?/w?]
are assumed. The test particles have the initial momentum p;, at z = 0, and the final
momentum p,,; at z = L is calculated.

Figure 3 shows the final momentum pout/m.c for an ensemble of test electrons having

.



IV-1248

an even distribution of initial momenta pin /mec. For each calculated electron trajectory,
the field phases have been chosen randomly. The fields are centred at L/4 and 3L/4,
where Lw,/c = 188 is the length of the simulation box, and the widths of the Gaussians
wavepackets are wB'Fw,,/c — 15. We have chosen eEp r/mewpc = 0.1 in accordance
with the field amplitudes observed in the Vlasov simulations. The cross-like structure
in the lower left corner of Fig. 3 is due to the SRS-B like wave. The structure appearing

at pin/mec > 0.7 is due to the faster SRS-F like wave.
35

3t

25

p(out)/me

p(in)/mc

Fig. 3 Momentum patterns Pout/Me€ VS Pin/mecc for 3600 test electrons.

The island of data points in the upper left-hand corner of Fig. 3 is due to the staged
acceleration by the SRS-B and SRS-F plasma waves. It is quite remarkable that the
electrons with pin/mec = 0.3 are directly accelerated to Pout [mec = 2. ..3. SRS-B
alone would produce only particles up to about pout /mec < 1. On the other hand,
even at fusion temperatures there is only a negligible amount of particles present in

the thermal distribution at pin/me.c > 0.7, which momentum is required for an

efficient

single-step acceleration by SRS-F. Thus the synergy between SRS-B and SRS-F leads

to an unanticipated amount of very fast electrons.

4. Conclusions

In conclusion, our Vlasov and test particle simulations show that simultaneous SRS-B
and SRS-F are able to produce superhot electrons in the MeV-range. The SRS-B plasma
wave preaccelerates a large number of electrons from the bulk of the distribution. These
are then further accelerated by the faster SRS-F plasma wave. An essential feature in
this two-stage process is that SRS-B and SRS-F are spatially localized and separated.
SRS-B occurs near the front region and SRS-F deeper inside the plasma slab. In reactor-
grade laser-fusion experiments, the simultaneous occurrence of SRS-B and SRS-F and

the consequent fast electrons make the prevention of SRS particularly important.

[1] BI. Cohen et al., Nucl. Fusion 28 (1988) 1519.

[2] S.J. Karttunen et al., Nucl. Fusion 31 (1991) 1079.

[3] K. Estabrook and W.L. Kruer, Phys. Fluids 26 (1983) 1892.

(4] S.J. Karttunen and R.R.E. Salomaa, Laser Part. Beams 10 (1992) 75.
[5] P. Bertrand et al., Phys. Fluids B 2 (1990) 1028.
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On modulated instability in collisional plasmas

S.V. Vladimirov~
Theor. Physik I, Ruhr-Universitdt-Bochum, D-44721 Bochum, Germany

We consider a strongly collisional plasma, where the effective collision frequency
Vet is not only much larger than the characteristic frequency Aw of the modulational
perturbations, but also is larger in the presence of significantly stronger inequality:

m
|aw| < v = #Veﬂ"- (1)

(3

Here, m.(;) is the electron (ion) mass. The characteristic frequency yéff) defines the

time of equalization of the electron and ion temperatures; thus the inequality (1)
means that for the time of modulational instability development (or for the period
of modulations) the electron and ion temperatures have time to equalize each other.
This problem arises, for instance, when investigating plasma heating by strong laser
radiation, which is relevant for inertial confinement fusion schemes [1].

We start our investigation with the hydrodynamic equations that can be obtained
from the kinetic equation with Landau collision integral [2]. We consider that, in
general, among all the characteristic frequencies of the problem, only the frequencies
of the modulated perturbations are in the hydrodynamical regime |Aw| < veg. The
other frequencies correspond to the regime of rare collisions. In calculating the latter
quantities, we use a collisionless approximation. Thus we have the following equations
for the electron (ion) v(&?) velocities:

Me i (Ot +v (D . V)v;-e’i) = —V;neiTei— Vlwl(;’i) Fenei(Ej+ [v(ed x B|;/c) £ R;,

(2)
where we assume that the ions have the charge e. The equations (2) are completed by
the continuity equations for the electrons and ions as well as the equations of thermal
balance

3ne,i(Be + V) V)T, /2 + ne Te iV - v = —V . g — 290D 1 Q. ;. (3)

In Eqs.(3) the terms containing VnT' describe the contribution from the pressure of
electron and ion gases; r,(; *) are the tensors of electron and ion viscosity:
n;T;

(e) nele (e i) _ i (1
S = _0'73—I/e_w‘(f)’ 7 = —0.967zu§j’, (4)

" Permanent address: Theory Department, General Physics Institute, 117942 Mos-
cow, Russia

.
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where wg'i) = Vol + nge’i) - 26,5V . y(e). Further, R is the friction forse
between the electrons and ions:

R = Ry + Ry = —0.51nemevett — 0.71neVTe, (5)

where the forse of relative friction Ry is defined for w < ve (we have ves = Ve in the
case considered; let us note that if w > ve holds with, then Ru = —neMeVel, but
in this case some questions arise on applicability of the hydrodynamical description).
Finally, q(®? in Eq.(2) is the heat flux:

q© = ¢ +qff =0.7In.Teu — 5167 Leyr, = _so™Tigr, (6
MeVe msiVs
and
m,
Qe = -R-u-Qi Q:i= 37n_efneye(Te = Ti) (7)

are the heating powers.

We solve the above equations by expanding in powers of the electric field E. To
investigate modulational instability, we have to take into consideration terms up to
the third order in the fields, as well as interactions through virtual waves (which are
perturbations of the pump electric field on the beat frequency Aw and in general also
the double frequency 2wp). Then we proceed with the following ansatz

B = Eob(k — ko)d(w — wo) + E16(k — k1)6(w — w1) + 6Exws (8)
where §Ey,, is the modulated perturbation of the pump fields Eo(1), |6Ekw| < |Eonl-

After linearising the corresponding equation for 6Exy, and using an analogous
procedure for the complex conjugate fields E*, we have the following dispersion equa-
tion for the modulational instability (the analogous equation was obtained in [3]):

(ko - (Ak +ko))? (ko - (Ak — ko))? 2
1 = SolBol? | e + ATAK — koPehp_p + 1B *
o | 2|8k + koPehksko 12[AK — ko[2ehi—k, 1B

lk; x (Ak +ki)|? /K3 | Ak + Wl i S (Ak - k)| /K2 Ak — K |” )
(hppr, — (BF+ k)2 [(Aw +w1) (g, — (Ak— k)2ct[(Bw—w1) |’

where elg,z o) is the linear high frequency longitudinal (transversal) dielectric per-
mittivity of a plasma, and Ey(1) is the Langmuir (electromagnetic) pump field (we

assume the plasma is underdense: w1 > Wpe» where Wpe = (47moe2 /me)l/ 2 is the
electron plasma frequency). The factors ¥ in Eq.(9) are

fooud ve|Ak|2v2 w,
o = - SRR e . IR N O Y 10
0 = 3 dnoT, Aw[(Aw)? — |Ak[?v3)] 1A L
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where v; = (107, /3m;)!/? is the speed of sound (under the assumption (1)).

First we consider the case of Langmuir pump (E; = 0). The instability is possible
only for supérsonic regime. Its rate is determined by

3 [|Ak|v ¥ lamew Eo|? 3
ﬁwd:ye%(l In) [__e_zz [Eol A(|k0|,|Ak|)] : (12)

Ve 3m; ve 4mngTe

where A([kol,|AK|) =~ B5L. if|AK| < [kol,, and A(Jko|,|AK|) = (el if|Ak| >
|ko|. The maximum weave vector of the modulated perturbations is determined by
the diffusion condition |Aw| > |Ak|2v%., /v. as well as by the assumption of supersonic
motion |Aw|™°? > |Ak|v,. Thus we have for the maximum rate

2
mod _ z w. 'EOI
0,max 5 pe 471'77,0Te

The minimum wave vector of the modulated perturbations for this situation follows

from the condition of supersonic motions as well; this value also determines an insta-
bility threshold (as a condition |AK|min < |AK|max):

(13)

(14)

|Eol? 5 (10 m, %|k0|UTei
4mneT, ~ 2 ’

3 m; Ve Wpe

Thus the modulational instability of a monochromatic Langmuir wave can de-
velop sufficiently effective practically at all angles between the wave vectors of the
pump wave and low-frequency modulations. We stress that for the case considered
the instability thresholds arise even for a monochromatic pump. So the investigated
situation qualitatively differs from the collisionless case, where there are no thresh-

! olds for a monochromatic Langmuir pump. The appearance of the thresholds in the
”collisional” situation is closely connected with collisional damping of wave-satellites
to the monochromatic pump wave. '

For the electromagnetic pump (Ep = 0) the instability is also supersonic. Its rate

3
3

2
mod 1, (| Ak | ) [y};%e [Ea? %)

P Ve 5 w} 4mngT.

The instability rate is increased on the entire interval of the allowed values of |Ak|,
whose maximum is also given by the diffusion condition. We have

] 4 2\ 2
mod =V&<lﬁ |E | ) . (16)

V1,max Cure \ 5 wi dmngT.

By deriving (9) we have used an assumption |Ak| > wgeue Jwic, which gives the
minimum value for the wave vector of the modulated perturbations. So the following
threshold arise:

.
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2 2 8
————‘EIP 5max fps (225)21 s (v—Ti)‘l e, 5 17)
4mnoTe w1 c 10me c wo
It is worth comparing the modulated instability rate and threshold with other
nonlinear processes taking place in strongly underdense laser plasmas. The most

effective nonlinear process there is stimulated Raman backscattering (SRS) [1]. Its
rate and threshold are

1 2
SRS _ wee B2 \? srs _ 1 (Wpe
— e c————— -_— - o~ = . 18
¥ e (wl 4rngmec? ) Mhr =9\ Hem (18)

Comparing (16) and (18), we have

1
'y“‘"d _ 10me Ve wf,e 2\’ (19)
ASRS T 3m; wpe W vk, {

For the typical laser plasma parameters (wp ~ 10" rad/sec, wpe ~ 10%rad/sec, ve ~
10'2rad/sec, vre/C ~ 10—2 —107?), the rate of the modulational instability is always
less than the 4SRS. But we note that the SRS is a resonant process occuring only in
localized regions of the (inhomogeneous) plasma corona determined by corresponding
energy and momentum matching conditions. The modulational instability is a non-
resonant process (like filamentation of the laser light), and consequently no matching
conditions are to be satisfied. Moreover if we compare the thresholds of the modula-
tional instability and the SRS, we find yEod/ ASRS ~ 10° (ve/c)*, this can be much
less than unity, depending on plasma temperature. Thus the modulational instability
can occur when the SRS is ” switched off”.

The considered case of relatively small instability rates (because of condition (1))
is useful to establish the instability threshold. It is also interesting to examine the
case of larger rates, when inequality opposite to (1) takes place.

Acknowledgments. I would like to thank the Alexander von Humboldt Foundation
for financial support, and M.Y.Yu for hospitality.
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EXPERIMENTAT, STUDY OF ELECTRIC AND MAGNETIC FIELDS
OF LASER PLASMA

A.V.Kabashin, P.I.Nikitin, V.I.Konov.
General Physics Institute of Russia Academy of Sciences,
Vavilov street 38, 117942, Moscow, Russia.

By now a great number of papers have been published
reporting investigations of magnetic fields of laser plasma
(e.g./1-5/) . However in most papers only fields withing plasma
or surrounding it ionization "aureole" were studied, i.e.
fields withing conductive medium, where plasma magnetic fields
penetrate by the processes of "diffusion" or "convection".

Oonly in few papers magnetic fields of overall plasma blob
have been investigated. Resulting dipole moment of plasma was
attained by departure of laser beam from a lens center /1/ or
by oblique incidence of radiation on target surface /2,4,5/.

In this paper new method of magnetic field "splash" from
laser plasma is proposed.

Considerable signals of magnetic field near the plasma
(e.g. in region behind the target) have been observed for the
first time under production of asymmetric contact of plasma
ionization "aureole" with target surface. Significant currents
along the target were also observed in such conditions.

In addition, structure of electric fields near laser
plasma have been investigated.

For the first time investigation of magnetic fields in
laser plasma was carried out by fiber-optical sensors based on
Faraday effect in ferrite-garnet films and semimagnetic semi-
conductors /6,7/.

Experimental set up.

In our experiments plasma was produced by several lasers
of different wavelengths: A1= 10.6 um (1 us), A2= 1.06 um, A3=
0.53 um (0.7, 3.5 ns). Radiation was focused in air or on
various targets with the intensities of I=5-109—1013 W/cm2 at

pressure P= (0.1-760) Torr.

Conductive copper targets with the thickness of 0.1 mm
and dielectric 2 mm teflon targets with dimensions 33-33 mm2.
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were used in experiments.

Magnetic fields in different points behind and in front of
the target and current along the target were detected by
sensors D,_, as shown in Fig.l. A segment of a central core of
of a 50-Q cable, which had a load resistance R=50 Q, was used

as a probe in measurements of electric potentials.

g_dagnetic fields under plasma production
on conductive target.
1. First of all laser beam with symmetric distribution of

the intensity I(x) over the focal spot (spot diameter =3 mm,
I=1010W/cm2) was displaced along the surface of target with
respect to its geometric center (Fig.1). By such displacement
1x only asymmetry in contact of ionization naureole" with

target surface was produced.

i c) B, Oe
7
target /
Jredqe -5 v 1, mm
e e x
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o I
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. ‘
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+— I |
!
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s
Fig.1l Experimental scheme Fig.2 a) laser pulse,

b) magnetic field, c) Bc(lx).

Experiments revealed the appearance of considerable
magnetic field signals (Bc=2—3 oe) in all region behind the
target under such displacement (Fig.2b). Direction of magnetic
fields changed when the beam was displaced to different sides
from the center. Direction of vector B_ was defined by the
vector product [k, lx], where k-wave vector of laser beanm,
lx—vector from target center to the spot (Fig.l). Maximum
amplitudes of signals were detected under the displacement of
laser beam to target edges (Fig.2c) .

Experiments also showed that as in /2,8/ plasma
production by tandem pulses with variable delay results in

considerable increase (20-40 times) of field amplitudes B_.
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2. To understand the influence of conductivity of aureole
-target interface to magnetic field "splash", region of their
contact was superposed from one edge by thin dielectric with

the thickness of 0.1 mm (Fig.3) .
considerable magnetic fields behind the target were also

observed under such superposition. Their direction was defined
by vector product -(k,m ], where m —vector from target center
to the edge of dlelectrlc. Max1mum amplitudes were attained
when all region of contact with aureole from one side was
superposed (Fig.3). However amplitudes decreased when

dielectric superposed a part of laser spot.

R N
. N\

> D
L $ v Lo mm | R
10 N,, y o B - lx, mm

i \r\'_,. % c’ T -5 \5 }
/

Fig.3 B (L) Fig.4 Bg(l, )

Magnetic fields under plasma production
. on dielectric target.
Experiments in scheme Fig.1 were carried out using

non-conductive targets of the same dimensions.

In this case magnetic fields By behind the target were
also observed under the displacement of laser beam from target
center. However their direction appeared to be directly
opposite to the case of conductive target and was defined by
the vector product -[k,lx]. Temporal shape qf signals was
similar to the signal in Fig.2c, their amplitudes were maximum
under certain displacement lopt<lmax (Fig.4).

comparison of results for conductive and dielectric
targets shows significant role of currents in contact aureole-

-target to generation of resulting dipole moment of plasma.

Eletric fields of laser plasma.
Spatial structure of electric field near laser spark in

atmospheric air have been also investigated. For that purpose

potentials along the spark axis were scanned by the probe.
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Experiments revealed rather compli-
cated distribution of electric
potentials along z-axis (Fig.5 b), that
could be explained only by quadrupole
configuration of volume charges in laser
plasma. Such confi- guration may be
composed e.g. by two dipoles in entrance
d1 and exit d2 to the spark (Fig.5a).

Relative contributions of dipoles d;
and d2 essentially depend on the Fig.5 (U-signal from
intensity and wavelength of radiation. proke)

At low intensities dipole dl dominates, while at I > 1011W/cm2

d2 is significantly predominant.

spark ignition on the surface of a target result in consi-
derable change in structure of electric fields. For dielectric
target it leads to deformation of initial distribution, for
conductive one only potentials due to dipole dl are detected.

At low intensities observed structure of electric fields
could be explained by the mechanism, connected with gradients
of electron pressure VNe and temperature VT in plasma front.
However dependencies at I > 1013W/cm2 show that in this
conditions new nonlinear mechanisms take place.

conclusions.

Asymmetry of contact of plasma aureole with target sur-
face (or asymmetric conductivity in contact) result in magne-
tic field "splash" from laser plasma. Topology of such fields
sufficiently differs for conductive and dielectric targets.

Quadrupole configuration of volume charges in laser

plasma have been observed for the first time.

/1/ Vv.V.Korobkin, R.V.Serov, Sov. JETP lett 4, 103 (1966).

12/ G.A.Askarjan et al., Sov. JETP lett 5, 93 (1967).

/3/ J.A.Stamper et al., Phys. Rev. Lett. 26, 1012 (1971) .

/4/ V.V.Korobkin, S.L.Motylev, Sov. JETP lett 29, 700 (1979).
/5/ V.A.Gorbunov et al., Sov.J. Quant. Electr., 9, 130 (1982) .
/6/ S.N.Baribin et al, sSens. and Act.hA, 25-27, 767-774 (1991).
Fard'J A.V.Kabashin, Abs.of Eurosensors-VI, san-Sebastian (1992).
/8/ V.I.Konov, pP.I.Nikitin et.al., JETP Lett. 39, 609 (1984).
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GENERATION OF MAGNETIC FIELDS AND POTENTIAL STRUCTURES
IN VISCOUS LASER DRIVEN PLASMA.

A.N.Kochunov, A.V.KéBashin, P.I.Nikitin and A.V.Borovsky.
General Physics Institute of Russia Academy of Sciences,

Vavilov street 38, 117942, Moscow, Russia,

By now a great number of papers have been published
reporting investigations of magnetic fields of laser plasma
(e.g. /1-3/). .Many mechanisms were mentioned for their
explanation, including the most well known gradient mechanism,
connected with the force of hydfodynamic pressure /3/.

In this paper theory of generation of spontaneous magnetic
fields (SMF) in collisional viscous plasma under interaction
with the field of monochromatic laser wave have been
developed. In addition, mechanisms of generation of potential
layers in laser plasma under the action of non-linear

electromagnetic forces have been considered.

Initial equations.

Consider a model of plasma consisting of ions with mass
my charge eZ, and electrons with mass m and charge -e. We
will base our analysis on the two-fluid hydrodynamics of
plasma in an electromagnetic field. The equations for it in a

10-momentum approximation of Grad’s method are:

%Ene+vneve: 0, C )

;Eni+1nivi= 05 (2)

mene[%fve+ (ve~7)ve]= - Vpe— en [E + %[vex B]] -

- menevgi(ve_ vy) + %;ke : (3)

mini[:_tvi"' (vi-V)vi]z - Vpi+ eni[E + %{vix B]] -+

+ menevgi(ve— Vi) +~g;ﬁi, (4)

where ne,i’ Ve.i’ pe,i_ densities, velocities and
pressures of electrons and ions; E and B - electric and

magnetic fields; Fe'i— viscous forces which in the Grad's

T
10-momentum approach are:
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e i_ & -
Fr' ™= 7 Tet)s (5)

Viscous tensor in (5) is defined by the expression:
'] @ 3 ?
O_E'ﬁ:e.'s;]"' Ekve.kﬁe.sj*' ﬁe.sl Elve.f ﬁe.lj O_Elve.s—

L 4,P _ L 2
3"'sj e,1r hjye.r+ a eiﬁe.sj+ Sveimene[ve.sve.j 3GBJveJ

&N

? ? 25 4, e
neTe [E:sve. :]+ Ejve .s _565 jv ve] mecBr [eslr'ﬂ:e. jl+
ejhﬁe.sl] = 0. (8)
Where a:—g[1+——%72] is a constant.The expression for
% z2 -
1 N e _
ﬂsj = %i.sj is the same as for wsj = We &3 only the

superscript (e)» (X)) Further, the quasi neutral condition is
assumed to be satisfied

n, = Zny (7)
Physical variables such as electric and magnetic fields
and current density are assumed to contain slowly and fast

varying temporal dependencies. So
B=<B>+B1 . E:<E>+E1 . J=<J>+J1 5 (8)
v=<v?, n =<n_>, ni=<ni>

Generation of SMF by Rotational Part of

Miller s Force.

For calculation of Miller's Force, let wus consider
eq.(3-4 ) in combination with Maxwell’s equations /4/. Using
representation (8), the slow current amplitude can be derived
as: %

~ E
3. = (Wl /am)——
1 P WP +iw
el (9)
From Maxwell s eq. we have:

ﬁ1=(1c/m)[vxﬁ1]. ' (10)

Using (3),(4) and (8) it’s easy to write the expression

for Miller”s force:
Agedey By - J I
FM' < c[J x B] mene(enev)ene>’ (11)

Substituting (9) and (10) to (11), we obtain:
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v(ﬁ1.é;‘) w2, Im[(ﬁ1-V)ﬁ;‘J} (12)

. o Y4 2 2 2
We+ 05 0 (VI %)
Taking the curl of Eg.(12), gives:

© (P, Im[(E, V)E*]
rot(_FL) :—(wg/ls'rcene) rot {Li#} e

D2 2
ene w (vei+w )

_ 2
Fﬁ——(wp/lsﬂ){

As a result we obtain @he expression for the source
produced by the rotational part of Miller’s force:
p F.

1<B> _ e M
S 4mA<B>+--—[Vx[vx<B>]]+[ [ en, en, ]] (14)

Generation of SMF by viscous force.
From eq. (3),(4),(8), (8-10) we obtain JB /%

o ;
<T >——L{26 (EE)(E;S E*E)}-
e.sj " POl 3Vs3 1s 1;] 1s7137)
o o ~ S
_(Q)B/vle’ia){E”[E1x<b>]s+ E, g [E]x<b>] o+ R-C-}} (15)

Here b= <B>/|<B>|, Wp=e<B>/m_c.
By using wB/vgia <<l , it is easy to write the expres-
sion for the source of the SMF produced by the viscous force:
F [7x((E1-V)E1*+(E;‘ E)]
[Yx|— mem 1 =2 = (w /20%aen ¥ > > (18)
e (’vgi+ ™)
As a result, the equation of generation of SMF by F% is:

P
LB Jo5A<B> + —p——[Vx((E V)E +(E*NE. )] (17)
e 7t 5 1DE,

10Taen w

Maximum magnetic flelds could be expressed as:
Be(wf)/we)-s,s-lo"»l(w/cuz)/v. For I:10'%w/cu®, A=1,06 pm
(T =100 eV, nezlozo cm3), we obtain B:0,1 MG.

Generation of potential structures in laser plasma.

Electron component in plasma is subjected to the action of
lateral forces that give rise to charge separation. Forces of
electromagnetic origin try to compensate them. From (3),(4)

condition of balance of forces may be writen as follows:

]
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vP vT F F, 1
B —0 ¢ Bl By o g Lo TYBT & .. (18)
eng e en, en c
For dipole moment of plasma volume d= [ r p dBr it is easy
v
to obtain that:
= [rpi(VE_,) dr & - = [ E_ dr (19)
4T pot an g pot
because E = 0 outside plasma region.

ot
Let us consider contribution of forses F and F,It of

eq.(18) to integral (19) consequently.
1)Miller“s force.
Substituting the expression for Miller®s force (12) to

(20), we obtain: o

o
doret catdo i G@LTHO WP Y (20)
M elemn2en out “in

Or rewriting in numerical representation:
d(CaSE)= 2,48 107 11A%Ap (21)
Here AP- loss of radiation power in MW, A-wavelength in Pm
For Nd-glass and CO lasers with the intensity of
I=10 W/cm2 we obtain respectlvely d =10 10,].0_8 CGSE.
2)Viscous force.
Using the the expressions for viscous force (5),(15), it

is easy to obtain from (19):
2

“p ? &
d, = — 5 3; |E | &@’r = - 0.114

(11)
B 120a%m?en "

Conclusions.
Generation of magnetic fields in collisional, viscous

laser driven plasma have been considered. Apart from well

known gradient, mechanisms connected with Miller’s force and
the force of electromagnetic viscosity have been obtained.
In addition, mechanisms of generation of potential

structures in laser plasma have been considered.

/1/ V.V.Korobkin, R.V.Serov, Sov. JETP lett 4, 103 (1966).

/2/ G.A.Askarjan et al., Sov. JETP lett &, 93 (1967).

/3/ J.A.Stamper et al., Phys. Rev. Lett. 26, 1012 (1971).

/4/ H.Hora, Phys.of laser driven plasmas,J.Wiley & Sons (1981)
/5/ Y.M.Abdullaev et.al, Zh.Eksp.Teor.Fiz. 94, 133 (1988)
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CHARGED PARTICLE AND PHOTON ACCELERATION
BY WAKEFIELD PLASMA WAVES IN NON-UNIFORM PLASMAS

S.V.Bulanov*, V.I.Kirsanov*, F.Pegoraro**, and A.S.Sakharov*

* General Physics Institute of Russian Academy of Sciences, Moscow, Russia
** Dept. of Theoretical Physics, University of Turin, Turin, Italy

We discuss the acceleration of charged particles and the upshift of the frequency of
short wave packets of laser radiation. The acceleration and the upshift are caused by
wake plasma waves ezcite;i.by a strong laser pulse in a non-uniform plasma. We show
that unlimited acceleration of charged particles is possible for specific spatial dependen-
cies of the plasma density. In this unlimited acceleration regime, particles have a fized
phase relationship with respect to the plasma wave, while their energy increases with
time. When the wave breaking limit is approached and surpassed, the efficiency of the
acceleration of the charged particles and of the frequency upshift of the photons can be

increased significantly.

The acceleration of charged particles and the frequency upshift of short wavepackets
of electromagnetic radiation takes place if they have the appropriate phase with respect
to the the wake plasma wave [1,2]. In a plasma with a uniform background density
the charged particles and the wavepackets leave eventually the phase interval where
acceleration occurs. This restricts the value of particle energy gain and the increase of
the packet frequency. In a non-uniform plasma the speed of propagation of a plasma
wave and its wavelength, as well as the group velocity of the electromagnetic radiation,
depend on position and it is thus possible to increase the time interval during which
the charged particles or the electromagnetic wave packet remain in phase [3] ( in this
reference the amplitude of the plasma wave is taken to be spatially constant ).

The relativistic equations of motion of an electron with momentum p in the field

E of a one-dimensional electrostatic wake plasma wave can be written in the form

2
4(09)_ (e ed) oy »
dz \ w, cp 2w2c’
d. 24 222
£ (mict 4 ) = e, )
where " gt
1/)=wp(t-—to)=w,,(t—/ - (3)
9
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is the phase of the plasma wave, with ?, the arrival time of the electromagnetic radiation
with frequency w, 3> w, and group velocity vy & ¢[l — (w; /2w?)] at point z, and E
depends on the phase 3 and on the coordinate z. In a uniform plasma, in the ultrarel-
ativistic particle limit and for moderately strong plasma waves, the energy gain of the
charged particles is given approximately by A€ = eElcc With lace = 2(Ap /2m)(wo/wp)?
the “acceleration length” over which the the particles remain in phase with the wave.
This length is much greater than the wavelength ), = 2wc/w,, since (wo/ wp)? > 1. The
energy of the accelerated particles exceeds the typical quiver energy of the electrons in
the plasma wave by the same factor.

The above limit on thé energy gain is due to the fact that the accelerated particles
eventually escape from the phase interval in which the electric field of the plasma wave
is accelerating. This loss of phase matching can also result from the non-uniformity of
the plasma density which leads to a change of the plasma wavelength or from the change
in the amplitude of the driving electromagnetic pulse due to self-focusing, defocusing,
energy depletion, etc. In addition in a relativistically strong plasma wave the wavelength
depends on the wave amplitude so that a change in the amplitude results in an increase
or a decrease of the wavelength. However these same effects can also allow for an
“ynlimited acceleration” regime in which the final energy gain is determined only by
the length of the plasma. : |

We consider a small amplitude plasma wave (eE/wpmec < 1), in which case
E(z,t) = —wp(z)?m F(¥)/e, with F(p) = —(I |ao|*/4) cos(¥), I the length of the
short laser pulse, and a, = ed | /m.c? with A, thewave vector potential. By direct
inspection we see that, for ultrarelativistic particles, Eqgs. (1-3) admit a solution with
unlimited acceleration at constant phase 1(z) = %(0) and energy £(z) = E(z/L)/3, if
the density profile is chosen such that

wp(z) = wpo (L/2)'/3, (4)

and the non-uniformity scale length L, the reference values of the plasma frequency
wpo and of the particle energy £, are related by £ = (¢/3wpo)(Wo/wpo)? { [(0)*+
(/R F0)?) [/ —$(0)}, and by & = 3m.L wl, F($(0), with F((0)) > 0.
The optimal acceleration rate occurs at 4(0) = 7 and has its maximum for a relatively
small amplitude of the wake wave E,, = (m./ \/gre)(cw;a /wo), corresponding to £ of

the order of I c.. In this case

E(=) m mec(wo/wpo) (#/lace)'/* (%)
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Note that for relativistically strong wake plasma waves significantly larger acceleration
rates can be produced, but in such a case particles remain at resonance with the plasma
wave only for a limited time so that the final energy gain is limited. On the contrary
in the case discussed above, even if the acceleration rate is smaller, the particle energy
gain is in principle not limited in time. An unlimited particle acceleration regime is
also possible in the case of a strongly non linear plasma wave, but it can be shown that

unlimited energy gain can only be obtained at a small acceleration rate.

A second possibility of enhancing the efficiency of the acceleration of charged parti-
cles is to increasé the value of the electric field in the plasma wave. The maximum field
in a stationary plasma wave is given by E = v/2(m.c wp/e) (w, /wpo). For larger values
the wave breaks and its structure becomes distorted and transient. The region where
the wave breaks spreads towards the trailing edge of the driving laser pulse with a veloc-
ity of order (¢/2)(wp/wo)? < c so that a region with a regular structure can exist for a
rather long time due to the relatively low value of this velocity. An estimate of the max-
imum wake field amplitude can be obtained by requiring that no wavebreaking occurs
inside the laser pulse before the electrostatic potential in the pulse reaches its maximum
amplitude. The corresponding value of the electric field B = (m.c wy/e)(wo/wpo)? is
much bigger than the wave breakig value given before. In this case, the particle energy
gain can scale as (w,/wpo)imec?.

If a short laser pulse, with central frequency w, >> w, interacts with a plasma wave
propagating with phase velocity vy, = ¢ and a wavelength much longer than the width
of the pulse envelope, the energy of the puls;a can either decrease or increase depending
on their relative phase. In the first case the wavepacket can be used to amplify the
plasma wave. In the second case it is the energy of the wavepacket that increases.
In the geometrical optics approximation the number of photons is conserved and the
increase of the pulse energy corresponds to the upshift of its frequency. This mechanism
has been called “photon accelerator” in analogy to the process of particle acceleration.
We denote by Q = Q(%, z) the local electron plasma frequency, which includes the effect
of the plasma wave on the background density and electron energy, and assume that its
dependence on z is weaker than that on 9. Then, with ¢ the electrostatic potential of
the wake field, we have in lieu of Egs (1) and (2)

(L) - 4 -
dz \ w, 2k2c3 [(1+¢)2 — (wg/wg)]lh 2w

owfe N

) (6)

c
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and ﬂ"i _ wy (1+¢) (09/0¢) ; (7
do & [L+ep - @)™

In the wave breaking regime the denominators on the right hand sides approach zero as

a consequence either of the decrease in the minimum value of (1+4)?, or in the increase
of the value of w: /w?. The latter case can occur when the plasma wave propagates in the
direction of increasing plasma density. The solution of Egs. (6) and (7) corresponding

to unlimited frequency upshift is obtained to a density profile of the form

wp(z) = wp(0) (1 + ?g)m, (8)

with inhomogeneity scale-length £ = Pm[2¢/wp(0)] [wo Jwp(0)]* The frequency upshift
of the wave packet is given by w(z) = dwy(wo/2)/® {L/[L(wo/wpo)® A — z)}*/%. This |
solution is valid only until the photons reach ¢ = 0. The maximum frequency of the
accelerated photons is Wmaz = 4wo[wo/wp(0)]3/2[Z(wo/wpo)2A¢]'1/8, however, due to
the dependence of Wmaz on A¢ this acceleration mechanism leads to a large frequency
spread of the accelerated photons in the wave packet.

The scale of the plasma non-uniformity and of the particle and photon acceleration
given above can be of the order of or much shorter than the laser pulse depletion

length, except for the case of a relativistically strong plasma wave. Aslong as (¢/w,) <

! < (c/wsp), the distortion length due to the dispersion of the electromagnetic radiation

can be either shorter or longer than the acceleration length.

In conclusion we have analyzed the role of the spatial non-uniformity of the param-
eters of the wake plasma wave. An appropriate choice of the plasma density profile is
more convenient in the case of particle acceleration, as it is possible to achieve a regime
of unlimited acceleration, while in the case of photons the acceleration scheme that ex-

ploits the increasing electron density of a breaking plasma wave is more advantageous.

1) T. Tajima and J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979).

2) S.C. Wilks, J.M. Dawson, W.B. Mori, T. Katsouleas and M.E. Jones, Phys.
Rev. Lett. 62, 2600 (1989).

3) B. Meerson, Phys. Lett. A150, 290 (1990).
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LANGMUIR WAVE COLLAPSE WITH RIPPLED CRITICAL
SURFACE IN LASER PRODUCED PLASMAS

FAIZ DAHMANI
Labo Fusion, CDTA/HCR. 2,Bd.Frantz Fanon BP1017
Alger—-Gare, Algiers - ALGERIA

The Langmﬁir wave collapse in laser—produced plasmas is
of great interest because of its great role in Langmuir
turbulence kinetics, being the main mechanism of absorption
of Langmuir oscillation energy. Collapse has recently been
studied extensively both in numerical simulations and

experiments.

In this work, experiments were conducted using'a 1.06pum
laser light at irradiances of 10" - 5x10" w/cm® on a flat
gold target. The second harmonic emission from the plasma
was collected at 90° of the incident laser beam onto a

streak camera.

A typical result obtained at a laser intensity of 4x10™°
W/cm2 is shown in Fig.i(a). The analyzed spectrum [Fig.1(b)]
shows the existence of two lines corresponding to two
wavelengths Ai and AZ. The second line shifts to the blue,
whereas, the first one (Ai) appears before the end of the
process (L). A very important result was set up in these
experiments; it's the apparition of a second and third burst
which seem to be due to a broadening toward the end of the
processes (L') and (L°°), respectively, of other lines
between Al and AD (Ra), and AO and KZ (A4). These lines; Aa
and A‘, originate frpm Ri, broaden and shift toward the red
with time, and eventually give rise to a continuum super

—imposed on Ai and AZ.
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Since the second harmonic (2w0) emission is collected
perpendicularly to the laser propagation direction and then
parallel to the laser field Eo’ a simple physical argument
shows that the 2mo emission arising from the beating of the
laser (?ozo) with such a plasma wave will give zero emission
in this direction. The plasma wave is a longitudinal
oscillation where the electrons are vibrating in the
direction of ?e' The electron current associated with the
transverse light wave is also in this direction. Thus, there
is normally no current transverse to the laser axis and
therefore no radiation in this configuration. The unigque
explanation of this phenomenon is an eventual nonplanar
nature of the critical surface. Effectively, simple
calculations showed that due to a rippling of the critical
surface,1 the effective incident angle of the laser light is
changed from 6= 0° to 6= 11°.

In the first phase of the temporal evolution, at laser
intensities on the order of 5x10"® W/cm® (PDI's threshold) a
decay instability develops generating a plasmon family (me,
?e) and ion—acoustic waves (wa,?a) near the critical surface

and gives rise to Ai whose relative shift with respect to Ko

—

is = (A= X )M/x = (v3 /2).C_/C (C_, C; ion sound
1 o o s =

and light speeds).

In a second phase of the temporal evolution, the effects
of Langmuir weak turbulence appear with the decomposition of

wg plasmons into we' ones and give rise to a second line ~Az

such that : (A= A)M/XN =73 c /€.
2 1 (o] s

This spectral line Az undergoes the same effects as Al,
i.e., the Doppler effect and the ponderomotive effects in
<(B + Eo)2> increasing in time three times larger than that

for Ki(é is to the local electric field of the Langmuir wave)
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These arguments are in perfect agreement with the

experimental results presented in Fig.1l. The split between

Al and xz, which equals vf;_ﬂ CS/C is Az— sz 8A. This leads
in this instance to Cs/C o B.éxlo_‘, and hence Csz 2.5%10°
cm/sec, corresponding for gold targets having Z/A >~ 0.4 to
Tez 1.6 keV which is in very good agreement with the
experimental value deduced from x—ray vacuum diodes (Tez 1.4
keV for 4x1015h!/cm2),2 and then to ve/C ~ 8.3x10* proving

the existence of lz.

Furthermore, the average shifts observed correspond to
the values of #= <(E+Eo)”>, which for E > E_, is the super
—-position of two effects <gog> and <Ez>, the first one is
generally negligible compared to the second one. During
Landau damping, the expression in E’ can no more bring its
contribution to the spectrum of 2mo. It is supposed that the
trapping effects in <E°§> (nucleations) must dominate and
therefore reconstitute the initial ray A‘ in new rays Ka and
A4 subjected as Ai to ponderomotive effects and broadenings

L and L’ ° characteristic of new sequences of collapse.

As far as the temporal eveolution is concerned, these
results are in good agreement with Cheung and WQng.l4
Effectively, the time duration of a collapse (supersonic
evalution), Tos as measured in the experiments in Refs.3 and
4 is roughly 102wp? (wmvdenotes the ion plasma frequency)
and in the simulation results of Ref.5, when converted to
physical units, give 7 < (A/Z)(lBSb).mp;1 ~ ;q;—* » T‘which
is generally smaller. Taking o =~ w =~ 2.83x1014§4, w >~ 0.9
%10%s™  for the cnnditinn:e oz the presengn work
(z= 79, A= 179) and therefore 7 _ =< 1ozmp:‘ ~ 110ps. This is

in very good agreement with the observed streaked features
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observed here (< 108ps).

In conclusion, lateral observations of (2m0) emission
from a laser—produced gold plasma at high laser intensities
permits to, show experimentally the existence of processes
linked with collapsing evolutions and their final damping by
burnout with a rippled critical surface, to observe three
sequences of collapse, which bring supporting evidence to
Zakharov’'s theoretical works on Langmuir collapse, and to
complete the works of Cheung and Wong of nonlinear evolution

of collapsing plasmons.
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Critical Surface Behaviour Through Second Harmonic Spectra

A.H. Khalfaoui, S. Abdelli, T. Kerdja and D. Ghobrini
CDTA, 2 Bd Frantz Fanon, BP 1017, Alger-Gare, Algeria

Introduction

An experimental analysis is reported on visualisation of
sidescattered second harmonic spectra originating from the
critical surface of a plasma produced from a 1.08 wmm Nd-Yag
laser beam.
In an inhomogeneous plasma electromagnetic wave can be linearly
converted by resonance absorption to an electrostatic plasma
wave. This well known process takes place near the critical
density when a p-polarized wave is obliquely incident on a
plane target.
Observation and analysis show that, mainly two interaction
processes contribute to the 2w emission, resonant absorption,
and the parametric decay instability1 (PDI) in which the
incident electromagnetic wave decay into a Langmuir wave and an
ion acoustic wave just below n_. Qualitatively, the 1latter
possibility of exciting longitudinal oscillation arise at
sufficiently high intensity of laser radiation energy flux,
where certain thresholds need to be reached. The present
results confirm these origins and extend the investigation to
the coupling physiecs. Second harmonic radiation is emitted
from such a system where at least one of the merging waves is a
Langmuir wave and shifted in the presence of motion of the
critical surface such as’ w, = 2w° & Z(Ko- ﬁ;z).g s g is the
critical surface velocity and ﬁo is the wavenumber of the
incident transverse wave. The shift relative to the nominal
value of 2w will be in the blue or red direction, depending on
the sign of u.
The maximum value of the shift is attained when the pump wave
is incident along the direction of divergence of the plasma,

B8, Koz - kog or Aw = 4wou/c. By monitoring these Doppler
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The velocity of the critical surface can, thus, be calculated
as u = ¢ Aw/4w where Aw is the shift, ¢ the speed of light and
w, the pump frequency, e.g., at t = 0.21 nsec, AX = 5 A then
u = 1.4x 1D7cm/sec.

A later times, t > 0.03 nsec the intensity of the second
harmonic increases further but with a stronger red shift, and
hence the velocity changes sign. The bulk of photons reach n_
at arround 0.27 nsec whith 4 in the same direction as the
incident beam, the plasma is being compressed.

Extending this analysis, several accelerations have been
obtained by monitoring the shifts of the main peak at different
fluxes Fig. 2. For incident beam intensity Io < d4dx 1013 H/cmz
the critical surface has a complex hydrodynamic behavior as the
critical surface heads, first, toward the beam (u<0) before
starting compression (u>0) and coming back in expansion again,
with greater acceleration. For Io ~ 10" the critical surface
motion is relatively more stable e.g. at I°= 3x10“ it is

constantly heading in the same direction as the incident beam.

Time resolved second harmonic spectra

In Fig. 3. the second harmonic optical density has a complex
time evolution

The observed oscillatory structure could shed a 1light on
several phenomena of the coupling physics involved near the
critical surface. It shoud be noted, first, that the
oscillations are more prononced as the incident flux goes from
~ 10" to > 10™W/cn”.

The nonlinear process involved in the coupling of the

: . 3y 3
longitudinal and transverse waves, inherently produces very

hot electrons at the phase matching points. These hot electrons
are, virtualy collisionless at these densities, they quickly
spread out and augment the hot spots dimensions to relatively
large observable spatial scales.

This specific event depresses locally the plasma density below
n_ postponing any new coupling in this particular zone. The
spatial and time dispersion of the incident laser beam is such

as to repeat the process, and hence the second harmonic will be




Iv-1271 7-7

shifts of the second harmonic a resonable estimation of the

critical surface behavior can be guantified.

Experimental arrangement

In the present experiment, a plasma was produced by focussing
a Nd-Yag laser pulse of T = 0.7 nsec with a wavelength of A =
1.064um through a £/1.2 lens on a slab target of polyethylene
(CH,) .
The intensity range was such as 7x 10*%< Io< 3x 10 W/cmz with

o

an incident angle 0 < 8 < 11.7 . The focal spot, receiving the
80 % of the incident energy, measured has a value d ~ 22 um.
The sidescattered 2w spectra were observed at about 45° with
respect to the p-polarized incident beam. Using a 1200
lines/mm, and a one meter long spectrograph, coupled to a
streak camera Imacon 675, the time evolution of the 2w spectra
have been recorded.

An image of the target is accurately focussed at the entrance
slit of the spectrograph. The output plane of the spectrograph
is then imaged on the entrance slit of the streak camera.

A microdensitometer has been used to measure the optical
density from the spectrographic films with dynamic range of

over two order of magnitude.

Critical surface dynamics

Fig. 1. shows a time evolution of a second harmonic optical
density as a gaussian incident laser beam of 4x 10“ W/cmz
impinges into the inhomogeneous plasma. To construct the
evolution of the critical surface velocity the spectrum of the
harmonic is recorded with a time resolution of 60 psec.
A typical time scan of the 2w spectrum is, also, seen on the
same figure on the photograph.
One of the main features of this spectral time evolution is the
varying wavelength of the main peak. For t = 0.03 nsec the
optical density has a growing Doppler blue shifted amblitude as
more photons arrive to n_ indicating the motion of the critical
density towards the beam, at times when the plasma starts its

expansion.
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generated from several emitting regions, in spatial motion,
thereby producing an oscillatory spectrum. Several conceguences
of these cyclic events may have some effects on the integrity "
of both the laser beamh (filamentation) and the critical
surface (rippling).

/1/.K. Tanaka et al., Phys. Fluids, 27, 2187 (1984).
/2/.N.G. Basov et al., Sov. Phys. JETP, 49, 1059 (1879).
/3/.P.D. Carter et al., Opt. Commun. 27, 423, (1878).
/4/.5. Abdelli et al., Laser and Particles Beams 10,

4, 628 (1992).
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INDUCED SURFACE CURRENT EFFECT IN TOKAMAKS AND STELLARATORS

B. Lehnert
Alfvén Laboratory, Royal Institute of Technology
S-100 44 Stockholm, Sweden

Introduction

A problem of general interest in MHD theory is that of free-boundary modes in a plasma
confined in equilibrium by a magnetic field B, = B, + B, ie. when B;, is due to the plasma
volyme current j, = curl Bjol 1, and B_ is produced by steady currents in a set of external
conductors. Thus curl B, = 0 in the plasma and in vacuo near its boundary. Often the field
B, is inhomogeneous and the motion of the plasma boundary then generates an induced
surface current effect and a corresponding force on the plasma due to a related pressure
unbalance. This contributes to the change in potential energy /1/. The induced surface current
effect will here be discussed in connection with tokamaks and stellarators.

Basic Concepts

We restrict ourselves to incompressible motion for which the macroscopic time scale of the
plasma perturbations becomes long as compared to the time for MHD signals to traverse the
plasma body. In the unperturbed state Vp, = j, X B, where the pressure p, and the current
density j, vanish at the plasma boundary. For small displacements E the change in potential
energy becomes W = 8Wy;, + SWg where /1/

W, =-2[[[§- F av (o))
LoE. G +F )dS = = LirE.F
W =-3[/E- @+ T JdS = SW i+ SW =7 (1§ Fav @

uoiv={ curl] B, VE |- ﬁxBo}x.Bo+(curl B[ B, V)E]wu B, @

D={ @& - V. @&0y) - V, @8 - V | “
po(fsj+ ?Sc) =-% {(Bjo+ B,)- [(E. V)Bco]} = pofs »)
boF = {curl [€w BCO]}X B+ {[cur] &) V}BCO ®

Here fi is the outward directed normal of the plasma surface, V and S are the plasma volume
and surface, ﬁv = :i'x B, +j, x B - V § is the perturbation of the conventional plasma
volume force, and ?S is the surface force due to the induced surface current effect, with 0F‘S as
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a corresponding volume force obtained from a formal rewriting of the surface integral into the
volume integral of eq. (2). Moreover, the force fs is transferred into a physical volume force
ﬁs by "retarded” MHD signals propagating into the plasma /1/. The result is represented by
an integro—differential equation

Do B o s e
p, @GN =F B+T® ™
where p, is the plasma mass density. This is a genuine eigenvalue equation for unrestricted

displacements, taking all plasma forces into account. It is consistent with the starting points of
the extended energy principle /2/, but not with its final formulation in which the contribution
dWyg is being neglected. The latter and the corresponding term ﬁs in eq. (7) modify the
eigenvalues and extremum values related to the total change S8W in potential energy. The
induced surface current effect is, of course, of equivalent importance also in the non-linear
case of large displacements.

A crude estimate of the magnitude of the induced surface current effect is obtained from
replacing all derivatives in egs. (1) — (6) by equivalent characteristic lengths, i.e. Lg = EIIVEI,
Lj = BjO/IVBjOI, L, = B /IVB_|. We consider a toroidal system with the major and minor
radii R and 7. When the wavelength spectrum of a perturbation includes large-scale parts for
which L 3 is comparable to a and L, the contribution SWg cannot be neglected as compared
to 8Wy,. This happens even in cases where the inhomogeneity of the external field B is
rather small. It applies to ohmically heated low-beta tokamaks where L, = R, Lj = 7 and
BjoLcchoLj < 1. It also applies to low-beta stellarators with an equivalent number of 21
helical windings and a magnetic vacuum well of the order of one percent for which L, =
EBcolBho(t — 1), i.e. when there is an average helical field strength By, = 0.1 B at the
plasma surface.

Rigid Displacements in Toroidal Systems

We introduce a rectangular frame with z along the axis of a toroidal system, possibly
having small deviations from exact axisymmetry. The external field B, = Beort Beop ~is
assumed to have the toroidal and poloidal parts B, and B . The contribution W i from ij
in egs. (2) and (5) represents an interaction between the total plasma current and the external
field B, whereas 8Wg, and fsc are due to the interaction between the induced surface
current and B . Rigid displacements E = EC = const. yield fv =0 and Wy, = 0 according to
egs. (1) and (3), i.e. W = dWg. Neglecting Wy, as in conventional theory /2/, would thus
lead to the paradoxical result of vanishing induced surface currents and 6W = 0 for rigid
plasma motion across an inhomogeneous external field B.

co’

For tokgmaks axial (vertical) displacements Ec = gcz are of special interest. Then (Ec-
V)B,, = (& - V)Bcop. The contribution SWS]- for a “frozen-in” plasma body of finite size is
similar to but not identical with that obtained from the simplified classical model, where the
plasma is represented by a line current, and where a mirror-type component Bmp
contributes to vertical stability /3/. However, there is also a contribution from
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W= 20 [[[[ €, VB, ] av=0 &

In systems with a homogeneous imposed vertical field and no extra poloidal field, there is.no
vertical derivative of B_,, i.e. 8Wg = 0. More advanced systems with vertical
inhomogeneities of B, from additional sets of poloidal field coils will on the other hand be
subject to an extra stabilizing effect due to eq. (8). This provides additional means for vertical
position control of tokamaks with strongly elongated cross sections.

For low-beta stellarators the field B, is inhomogeneous in all spatial directions. The
contribution SWSj can be neglected since the current density j, is then small in equilibrium.
The contribution 8W g, remains, and it is always stabilizing.

Non-Rigid Displacements in Toroidal Systems
The change Wy, in potential energy can in general be written as

BWg,= (W [fugds v =@-8)E-V) B i

Thus ug becomes positive in regions of “good” magnetic curvature where ﬁBfo increases in
the direction of fi, and negative in ”bad” regions. The integrated effect of W g, can therefore
provide an additional stabilizing contribution in minimum-average-B geometry, when the
displacements are coupled along the field lines in a collective mode. A particular case is that
of the idealized low-beta isodynamic stellarator /4/ where the magnetic surfaces and the
surfaces of the magnetic guiding centre drift coincide. Then there is even a local minimum-B
well, ug > 0 all over the plasma surface, and §Wg = §Wg, > O for any displacement. This
particular case demonstrates that the genuine eigenvalue equation (7) modifies the minimum
(extremum) values of the potential energy change, as given by the extra contribution SWg of
eq. (2). Configurations which tend to approach this isodynamic limit belong to the Helias
class of advanced stellarators /5/. ‘

An example can finally be given on the external m = 1 kink mode in tokamaks. The
minimizing eigenfunction of conventional MHD theory has earlier been deduced for a radial
displacement ét = E_,C exp [i(m6 — np — wt)] in a frame (r, 6, @) with r as the distance from the
magnetic axis of a tokamak with nearly circular plasma cross-section /6/. The first non-
vanishing contribution from the work of the volume force 'F\“V then becomes /6/

sW, = 2naB £ )" ol n- (1/g) R (10)
where B 00 is the toroidal magnetic field strength at the magnetic axis and g, the safety factor
at the plasma surface. To get an indication of how this result is modified by the induced
surface current effect, we introduce the contribution §Wg from the inhomogeneity of the
toroidal field and of a superimposed magnetic octupole field having the moderate strength

B, at the plasma surface. For the worst case n = 1 we then have SWSj =0 and the total
change in potential energy becomes
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8W=(2naB,, Ec)z[ 918) - (1/g,) + (2)RB /B, )’ ]/uoR an

corresponding to the stability condition

a> 1/[ L+ (U8y+ (32) (RB, /A B, )2] (12)

The critical safety factor would then become reduced from q, = 1 to q, = 8/9 by the toroidal
field inhomogeneity, and be further reduced by the octupole field. Needless to say, a rigorous
determination of the critical q,—values has to be made in terms of the eigenvalue equation (7)
with the included force ('ES.

Conclusions

For tokamaks, stellarators, and a number of other magnetic confinement schemes,

— MHD theory has to be revised by taking the induced surface current effect properly into
account;

— there are several cases in which this effect is expected to provide new possibilities of
stabilization and of lowering the critical safety factor.
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MHD EQUILIBRIUM AND STABILITY OF DOUBLET
CONFIGURATIONS
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and F. Troyon
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Association EURATOM - Confédération Suisse,
Ecole Polytechnique Fédérale de Lausanne
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Switzerland

1 The operational limits of tokamak configurations with single

magnetic axis imposed by ideal MHD stability have been intensively studied in
the last decade [1]. Much less efforts have been made to investigate plasmas
with external separatrix [2]. On the other hand, plasmas with external
separatrix are used in modern tokamaks to obtain better confinement. Doublet
configurations with two magnetic axes and a separatrix inside the plasma
may igve different confinement properties than single axis tokamaks. Doublet
tokamak configurations were tried experimentally [3] but were not studied in
detail theoretically [4]. In order to determine the operational space of these
configurations allowed by ideal MHD constraints, a package of equilibrium and
stability codes has been developed with an appropriate treatment of the internal
separatrix. Some stability results for n =0 and n = 1 ideal MHD modes are
presented.

2. The poloidal flux function y(r,z) for an axisymmetric equilibrium
magnetic field B = Vy x V¢ + F(y)V¢ satisfies the Grad-Shafranov equation:
Yy Jo ; dP 1 _dF
V.(r2) = T“ro o = rd\y+r Fa’ @

where p(y) is the plasma pressure and F(y) the toroidal flux function. To solve
the equation one can prescribe the shape of the plasma boundary and the
current density profile jy specifying either dp/dy and FdF/dy or dp/dy and

x d ' da
I'(y) v I jpds / dv I ds 2
Sy Sy

The plasma domain is decomposed into three subdomains: two
inside, and one outside the separatrix. In each subdomain a structured grid
with quadrangular cells is introduced. We use a variational finite difference
scheme that is the average of two finite element discretizations corresponding
to two different triangularizations [5].

The ma;.?ping procedure is replaced with a grid adaptation scheme
on magnetic surfaces \gr= const. This was already successfully used in a
number of codes [5,6,7]. The iterative procedure combines grid adaptation and
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Picard iterations on nonlinearity. The Grad-Shafranov equation with
rescribed right-hand side is solved with an overrelaxation method. Then the
gyperbolic x-point is determined and the separatrix is traced as \q1= Vx-point. 1N
each of the subdomains a linear interpolation is used to match the 3 points
positions with magnetic surfaces. Flux functions dp/dy and FdF/dy or I* are
then updated on the new grid and the loop is repeated.
For code verification analytical solutions were used which are
superpositions of Solev'ev and vacuum solutions :

4 = Yo-@2-192 + 40202-02)%2
+ (a+br2) z + c cos(dz) r I1(dr), 3)
dp/dy = 8(1+02), FdF/dy = -8 o2 62.

In Fig. 1 the grid adapted to magnetic surfaces is shown for y, = 0.6, r, = 1,
a=06,0=03,a=0, g= 0.1, ¢ = 0.7, d = 2. The external boundary is chosen to
coincide with the external separatrix.

A convergence rate N-2(N is the number of points in one direction) is
achieved for the coordinates of magnetic surfaces and those of the magnetic
axes. With grid packing near the separatrix the same rate can be reached for
the x-point position also.

For characteristic up-down symmetric equilibria with Ny = 64,
Ng = 64, (Ny, Ng — number of points in radial and poloidal directions) inside
separatrix and Ny = 32, Ng = 64 outside, 15 iterations are needed to reach an
accuracy of 10-5 in y variations over the adapted grid. It takes 20 s on NEC SX-
3/22 at 240 Mflops.

3. A variational formulation of the linearized ideal MHD equations is
used for the stability code. The potential energy representation is based on the
following displacement vector representation [8]:

BDxB _EBxV B
7 X ];‘2 +Y ]’;2"’+z§, @

where B = Vy x B.

Flux coordinates (y,0,0) in each subdomain and finite hybrid
elements are used to avoid spectral pollution [9]. The poloidal coordinate is not
fixed by a choice of the Jacobian but is defined by the equilibrium grid. Some
further modifications were introduced to improve code convergence: "spectral
shift" elimination [9] and numerical destagilization correction [10]. In the
vacuum region between the plasma and the conducting wall a
"pseudodisplacement" approach [11] is used.

Inverse iteration and a direct matrix solver are used to find the
eigenvalues. The solver is based on the PAMERA code [12] modified to treat
connectivity conditions between subdomains and to exploit the banded
structure of matrix blocks. The connectivity conditions at the x-point are
written as X =§ * Vy =0,

For grid dimensions inside Ny1 = 128, Noj = 128, Ny = 128, Np = 128
and outside separatrix Ny3 = 32, Ng3 = 256 the computation of one eigenvalue
takes 70s at 900 Mflops on a NEC SX-3.

4.  In Fig. 2 the adapted grid is shown for an up-down symmetric
equilibrium with vacuum (or pressureless currentless plasma) outside
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separatrix. Note that the angle between separatrix branches is ©/2 at the x-
point. Stability of n = 0 and n = 1 external modes was computed for such type of
equilibria. For n = 0 two unstable modes are present when the conducting wall
is far from the plasma. The most unstable mode corresponds to displacements
of upper and lower parts of the plasma in opposite directions (Fig. 3a). The
mode with lower increment corresponds to mainly vertical displacement of the
whole plasma (Fig. 3b). The distance wall-plasma boundary needed to stabilize
n = 0 modes is about equal to the plasma minor radius for a wall shape similar
to the external boundary. This distance is close to the value needed to stabilize a
single axis plasma inside the separatrix taken alone (the elongation is 1.5 for
the case considered).

Limiting B-values against n = 1 external mode were also computed
for the case I"(y) = 1-y, q, = 1.05, aspect ratio of internal plasma 4.2, elongation
of internal plasma 3.0. First, the ballooning marginally stable pressure profile
was computed. Then dp/dy was scaled to get n = 1 external mode stability. At
marginal n =1 stability we get g=p a Bo/kolp = 3.5. The limiting B -value
against external n = 1 mode is barely effected by the presence of the mantle. Let
us note that there are two unstable n = 1 modes with different increments even
for an up-down symmetric doublet plasma corresponding to a single unstable
mode in a single domain plasma. The two modes differ mainly in mode
structure outside separatrix.

5. The validity of the developed codes was demonstrated with various
convergence studies, checking against analytical solutions and benchmarking
with other codes. Stability criteria for high-n ballooning and localized Mercier
modes were implemented. Automatic pressure profile optimization against
ballooning mode stability can also be performed. Preliminary studies of doublet
configuration stability have shown that both n = 0 and n = 1 external modes are
not more unstable than for a single plasma with nested mangetic surfaces and
half the elongation. Future work should investigate doublet B-limits and n = 0
stability in more detail including the effect of up-down asymmetry.

Acknowledgement: This work was partly supported by the Swiss National

Science Foundation.
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Fig.1. Up-down asymmetric equilibrium with grid adapted to
magnetic surfaces. Corresponds to the analytic solution Eq.(3).
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IDEAS IN TOKAMAK CONCEPT IMPROVEMENT

W. A. Cooper and F. Troyon
Centre de Recherches en Physique des Plasmas,
Association Euratom-Confédération Suisse,
Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland

It is experimentally observed that the transport properties of tokamak devices im-
prove with the transformer-induced toroidal plasma current. For configurations in
the parameter range of the ITER (International Tokamak Experimental Reactor) de-
vice, however, the toroidal current requirements predicted become very large ( 25M A).
Steady state operation is impossible and disruption phenomena triggered by these cur-
rents could cause severe damage to the vacuum vessel and other systems of the device.
It would be thus of great interest to devise a way to relax the toroidal currents needs
without degrading the confinement properties. One possible approach that we propose
here is the use of external helical windings to sustain a significant fraction of the edge
rotational transform. The tokamak, however, ceases to be axisymmetric and becomes a
three-dimensional (3D) configuration.

We consider here a circular cross section tokamak with finite toroidal current on
which we impose a L = 3 external helical field to produce a triangular deformation of
the plasma that rotates toroidally. The application of L = 1 or L = 2 components, or
combinations thereof could also be considered. But we have decided to limit the scope
of the study so far to L = 3 components motivated by the fact that this class of field
only alters the external region of the plasma. The bulk of the plasma where the pressure
concentrates rémains essentially a conventional tokamak. The basic configuration has 8
periods and an aspect ratio A = 10, large enough to permit comparisons with analytic
calculations. The plasma boundary is prescribed as

R = Ruoo(1) + Rio(1)cosu + bcos(u — Nv) + écos(u — 3Nv), (1)
Z = Ryo(1)sinu + ésin(u — Nv) — ésin(u — 3Nv), 2)

where Rgo(1) = 10, Ryo(1) =1, § = —0.055 and N = 8. We use the VMEC equilibrium
code [1] to compute 3D equilibria that selfconsistently model tokamaks with externally
applied helical fields. This code imposes nested magnetic flux surfaces-on the eonfigu-
rations investigated. The coordinate system is (s,u,v) where 0 < s < 1 is the radial
variable, 0 < u < 27 is the poloidal angle and 0 < v < 27/N is the toroidal angle. The
magnetic axis is at s = 0 and the plasma boundary is at s = 1. In order to calculate 3D
tokamak equilibria, we must prescribe two surface functions. One is the pressure profile
given by

p(s) = p(0)(1 — s — 0.55% + 0.55*). : 3)

This choice makes the pressure gradients relatively weak in the outer region dominated
by the stellarator fields. The toroidal plasma current enclosed within each flux surface
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s is prescribed as
8 24,1 5)
2rJ(s) = —15[27rJ(0)] (s -3 + %) 4)

The- normalised toroidal current shown in the results is defined as J(1)R;o(1)/®(1),
where 27® is the toroidal magnetic flux. The rotational transform profiles for a toka-
mak at §* = 1.55% and normalised toroidal current equal to 0.0433 are shown for a case
of an external L = 3 helical field (§ = —0.055) and for the axisymmetric case (§ = 0) in
Fig. 1. This example illustrates the point that the bulk plasma is basically a conven-
tional tokamak, while the stellarator fields provide the rotational transform support in
the near force-free plasma edge. We define g* = (V [ &®zp*)!/?/ [ d®z(B?/2), where V
is the plasma volume.

The TERPSICHORE package of codes [2] has been employed to investigate the
Mercier, the ballooning and the global external ideal magnetohydrodynamic (MHD)
stability properties of the 3D tokamaks under consideration. Within the parameter
ranges that we have explored, the ballooning modes yield more restrictive criteria on
local stability than the Mercier modes. The stability calculations are performed in the
Boozer magnetic coordinate system [3] and the parallel current density is calculated
to consistently satisfy the condition of charge conservation [4]. For the ballooning cal-
culations, the spectrum of modes in the Boozer coordinate system includes poloidal
mode numbers m upto 60. Nevertheless, we find that this is insufficient to correctly
converge ballooning eigenstructures in the outer edge of the plasma where the stellara-
tor fields dominate when the Shafranov shift approaches and exceeds 50% of the minor
radius for cases with * > 1.5%. Upto 84 mode pairs are employed to determine the
stability to n = 1 modes. An axisymmetric conducting wall is placed at 3 times the
average minor radius to simulate a wall at infinity. We find that for the configuration
examined, the coupling between different toroidal modes within the n = 1 family [2] is
weak. Theé calculations are performed on 48, 56, 68 and 96 radial intervals within the
plasma. The number of interval in the vacuum region corresponds to 1/4 that within
the plasma. The convergence is quadratic in the mesh size. In Fig. 2, we show the
converged eigenvalue for n = 1 external modes as a function of the normalised toroidal
current. Each curve corresponds to different values of the parameter §*, ranging from
0.99% to 3.22%. The stability results we have obtained are summarised in Fig. 3. The
dotted curve in the figure constitutes the Shafranov shift equal to half the minor radius
in the normalised toroidal current and B* parameter space. The domain above this
curve corresponds to Shafranov shifts that are smaller and that below to shifts that are
larger. Two regions of stable ballooning operation are obtained. In the high current
region, the ballooning stability limits improve with increasing current This property
characterises typical operation in the first stability regime of a conventional tokamak.
The region is limited from above in the figure by the emergence of the ¢ = 1 surface
from ‘the magnetic axis. In the lower current ballooning stable region, we find that for
fixed 3°, the stability properties improve with decreasing plasma current. This would
characterise operation in a second stable regime. However, as the current decreases, the
Shafranov shift becomes increasingly large, leading eventually to convergence difficulties
in the equilibrium and stability computations. The external n = 1 global ideal modes
yield a more restrictive limit than the ballooning modes, as shown by the solid curve in
Fig. 3. For * > 1.5%, the limit imposed by the external modes is closely aligned with
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a Shafranov shift of half the minor radius. The stable domain lies below the curve. One
important difference with the conventional tokamak second stability operation is that
a second stable window for the n = 1 modes is demonstrated here with a wall far from

the plasma [5].

In conclusion, we have investigated the ideal MHD stability limits of a tokamak de-
vice of aspect ratio 10 and circular cross section on which we have superimposed a
L = 3 external helical field to reduce the plasma current required to sustain the rota-
tional transform at the edge of the plasma at finite 8. We have demonstrated that the
helical fields and the plasma current combine to permit access to the tokamak second
stable regime, where not only the ballooning modes but also the n = 1 external modes
are stabilised. For values of #* > 1.5%, the limit imposed by the n = 1 modes almost
coincides with a Shafranov shift of half the minor radius.

REFERENCES

[1] S. P. Hirshman and O. Betancourt, J. Comput. Phys. 96 (1991) 99.

[2] D. V. Anderson, W. A. Cooper, R. Gruber, S. Merazzi and U. Schwenn, Int. J. Supercomp. Appl. 4 (1990) 34; W. A.
Cooper, G. Y. Fu R. Gruber, S. M i, U. Sck , D. V. And Proc. Joint Varenna — Lausanne Int. Workshop
on Theory of Fusion Plasmas (Editrice Compositori, Bologna) (1990) 655.

[3] A. H. Boozer, Physics Fluids 23 (1980) 904.

[4] J. Niihrenberg, R. Zille, Proc. Joint Varenna — Lausanne Int. Workshop on Theory of Fusion Plasmas (Editrice
Compositori, Bologna) (1988) 3.

[5] S. C. Jardin, A. Bhattach jee, A. Bond: M. S. Chance, S. C. Cowley et al.,, Proc. 14th Int. Conf. Plasma
Phys. Contr. Nucl. Fusion IAEA-CN-56/D-4-13, Wiirzburg, FRG 1992.

L=3 Helical Tokamak

0.5 T T T T Cut. Qurent = 4.3210°
beto-star = 155810
43310

Curent = 43291
beto—sle = 15707
4330°

lota = 1/q

00 I | | ooe
00 02 04 06 08 10

Figure i: The rotational transform profiles in tokamaks with external L = 3 helical windings (upper
curve, § = —0.055) and without them (lower curve, § = 0). The normalised toroidal current is 0.0433
and #* = 1.55% in both cases.
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A MULTIPLE TIMESCALE APPROACH APPLIED TO
TAYLOR’S THEORY

*
J. W. Edenstrasser & M. M. M. Kassab )
Institute for Theoretical Physics, University of Innsbruck, Austria.

Abstract

A multiple timescale derivative ezpansion is applied to Taylor’s theory of plasma
relazation to the state of minimum magnetic energy, in particular to investigate his
famous conjecture concerning the helicity conservation K = [A.B dr = const. for a
'slightly imperfect’ plasma. The invariance properties of the helicity integral K are
investigated on the ideal MHD (Alfvén), collision, and resistive diffusion timescales. On
the ideal MHD timescale it is found, just as ezpected, that K is an invariant of motion
for each single fluz tube. On the collision timescale Taylor’s conjecture that only the
overall K is an invariant of motion is ezplicitly proven. Finally, for the resistive diffusion
timescale 1t turns out that — in accordance with Taylor and Woltjer — the time
derivative is proportional to the resistivity apart from an additional contribution arising
from the MHD fluctuation spectrum.

INTRODUCTION

Many theories have been presented to describe plasma relaxation processes, the
most famous of which, however, is the one presented by J.B.Taylor [1,2]. Taylor’s
theory states that, after an initial violently unstable phase the plasma relaxes, under
the topological constraint of helicity conservation K= [A.B d7 = constant, into a
quiescent, grossly stable state of minimum magnetic energy. Since for an ideal plasma,
the magnetic field lines are frozen to the plasma, i.e., each field line maintains its own
identity, Taylor concluded that K represents an infinity of topological constraints, in
the sense that K is conserved for each flux tube. Furthermore, he concluded that for a
’slightly nonideal’ plasma, in the sense that the topological properties of the field lines
are no longer preserved, the global K is the only topological invariant of motion.

In spite of the success of Taylor s theory, there remain some important questions
to be answered. First of all, what does a ’slightly imperfect’ plasma mean and what are
the dominant physical processes which destroy the infinity of ideal MHD (IMHD)
invariants of motion preserving the overall K as the only one and furthermore what are
the corresponding timescales. In this paper, we answer this question on the basis of the
multiple timescale approach presented by J.W.Edenstrasser [3]. The invariance
property or the time evolution of the helicity integral K is investigated on the IMHD
(Alfvén), on the collision, and on the resistive diffusion timescale.

*
) On leave from the Dept. of Eng. Physics, Cairo University.
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BASIC EQUATIONS

Following Ref.[3] we consider the three timescales 7o = r(Alfvén), 71 =
7(collision), and T2 = T(resistive diffusion) , satisfying for a present—day large fusion
device the ordering To & T1&€ T2, and apply the following multiple timescale derivative
expansion scheme :

= 0 _ i) — T
Q = 23:06“ Qn(x,to,tl,tz) , X = §=0 o T’ and 6:= Ty (1)

where Q stands for any dimensionless physical quantity. This expansion scheme is then
applied to the dimensionless Maxwell’s equations

crl B=J+LE, aivB=0, clE=-38, divE=L"q
E=-2A_1X,q=nrne, Li=(vs/c)?=0(8) @) |

and to Ohms’law, whereupon we obtain for each order of the expansion parameter ba
separate set of equations . For example, the equations for Ohm s law read

Eo=—-Ugx By (3) Ei=- [Uo x By + Ugx * By + {%ﬁ}%(l/ae)(VPeo/no)] (4) i
Ep=— [ Usx B AL Bel3(1/ae)
9= ox By + Ux % B+ {-6—1} (ne1/no){le x Bo +{'5;} (1/36)(VP80/HO)}
+ Usex Bo+ {-ge;}[(l/ae) ((V-Thiy + VP11)/no) — Ae(V)e]] . with

Unx = {{%}%}n(nin/no)( Uin-Uo ) and (V) e = —Modo- ()

For non standard notations the reader is referred to Ref.[3].

Boundary Conditions
(a) At the magnetic flux surface ¥ = o+ 6 ¥+ 62 ¥y = const.

(Bo + 0By + 8B2)-V(¥o + §U 4+ 820y =0, (6.a)

(Bo + §B1+ 62B2)-(dso + 6dsy + 62ds2)=10. (6.b)
(b) At the perfect conducting wall surrounding the plasma:

B,-dS=0 & Ui, -dS=0 & Uen - dS=10 . (6.c)

THE INVARIANCE OF THE LOCAL HELICITY ON THE ALFVEN TIMESCALE
According to our expansion scheme we can write the local helicity K for each
single flux tube in the form
Kb = J(Ao + 0A + 62A2)-(B0 + 6By + 62By) (d7o +6dTy + 2dy), (7

v
where dr = (d7o + 6dmi + 62 dr;) is a volume element enclosed between two neigh—

bouring magnetic surfaces U= Uy+ 00+ 8§ ¥y = const., created by the magnetic
field By + 6By + 62By. The application of the multiple timescale expansion [3] then
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yields in lea,ding order the time evolution of the local K on the IMHD timescale

JAOE—dTo+JBo H—°dTo+J(A0 Bo)aro (8)
Makmg use of the zero—order Maxwell s equations and zero—order Ohm % law we obtain
LA J AoxEq-dso — 2 J Bo- Eodro + JBO VX, dro + J(Ao Bo) Uo-dsp = 0. (9)

This means that for the IMHD timescale we have obtained the result of Taylor,
i.e.,, that K is conserved for each single flux tube. If we assume that the plasma is
surrounded by a rigid, perfectly conducting wall so that the plasma boundary is
identical with the outermost magnetic surface, then naturally also the overall K taken
over the whole plasma volume is an invariant of motion.

THE INVARIANCE OF THE GLOBAL "K" ON THE COLLISION TIMESCALE
First, we will investigate the time evolution of the local K for a single flux tube.
The next order in our expansion scheme yields for the time derivative on the collision

timescale the expression

-gIT{T = § onEo'dsl -2 J. Bo-Ey dr; + J By-VX, d7y -I-é AyxE-dsg —

2]130-131 dro + JBo-vx1 dro + § ApxEq-dso —2JB1-E0 dre +
JB,-VXO dro + J(Ao Bo)(Gr2 + 97 + J(AO-B1+A1-B0) oo (10)

We now perform the time average over the Alfvén scale ,assume that the plasma
behaves along the field lines like a polytropic medium, i.e., that VPeo/ny can be
considered as the gradient of a function of ng, VPeo/no = Vf(n,), and finally arrive after
some tedious manipulations at the following surface integrals taken at the zero—order
surface ¥y = const.

G = <§[§‘3—ng0] -dso + {g_}% B4, (Ag- Bo)- dsy —§(AO-BO)B,-dso>TO 40
(1)
Thus, we conclude that the local K is on the collision timescale no more an
invariant of motion, whereby the violation is essentially due to the radial first order
electrical, magnetic and ion particle fluxes. On the other hand, from the boundary
conditions (6) we further conclude, that the global K remains an invariant of motion
Thus we have explicitly proven that Taylor’s famous conjecture is valid for the
collision timescale .
EVOLUTION OF THE GLOBAL "K" ON THE RESISTIVE DIFFUSION SCALE
Due to the resistivity the magnetic field lines no longer preserve its topological
properties, so that it is meaningless to investigate K for each flux surface. In this
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section we investigate the global K taken over the whole plasma volume and first
obtain

& ff AgxEy-dS — 2[Bo-E; dr + JBQ'VX'z dr + § AxE;-dS — 2 IBl-El ik
'JBl-vxl dr + GApEq-dS — 2 IBg-Eo dr + | By-TXodr (12)

Now we assume that all zero order quantities are independent from to, i.e., that
the plasma has on the Alfvén timescale already relaxed to the zero—order equilibrium
and that the first order quantities have a harmonic to—dependence and then perform
the time averages over the IMHD and collision timescales, leading us to the final result

W,
(GE"y = (§ AxE1 dS — 2[BEydr) - {8l aecd Ave modo 5 + [Bo nodany,
: (13)
The first two terms in Eq.(13) represent the contribution arising from the MHD

fluctuation spectrum, whereas the third term is the one found by Centen [4], and
finally the fourth one represents the well known result found by Woltjer [5]. This

means, that on the resistive diffusion timescale (_3_1;12) is proportional to the resistivity
N0, apart from an additional fluctuation term.

SUMMARY

A multiple timescale approach has been applied to investigate the invariance of
the helicity K in Taylors relaxation theory. On the IMHD timescale the known results
were reproduced. At the collision timescale we have proven Taylor’s conjecture
concerning the local and overall helicity for a Z%lightly nonideal’ plasma. On the
resistive timescale we have not only found the known proportionality between the time
dependence of K and the resistivity, but have furthermore shown the contribution
arising from the IMHD fluctuation spectrum and the ‘one arising from the time
evolution on the collision timescale.
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PLASMA RELAXATION and CURRENT REVERSE in TOKAMAK
V.I. Petviashvili

Russian Research Center Kurchatov Institute, Moscow,123182

ABSTRACT: Turbulent relaxation of a plasma is deseribed in
terms of Lyapunov theory of stability of dissipative systems.
The turbulence itself is supposed to disappear at the end of
relaxation, when stable state is reached. The state corresponds
to the minimum of Lyapunov functional L proposed in [1]. The
relaxed equilibrium states are found with the considerable
pressure maximum inside the plasma. They correspond to Tokamak
or toroidal pinch type of configuration. Arnold's restriction
of equivalent vorticity is needed to have minimal I for
tokamaks.

1.The tenet of turbulent relaxation in plasma devices was
advanced by J.B.Taylor [2]. According to it, the turbulence,
reconnecting magnetic field lines, changes plasma equilibrium
structurally, directing it to the relaxed state. Turbulence
ceases at the relaxed state because the state is stable. The
relaxed states obtained in [2] are force -free, with zero
pressure. .

We show here that Lyapunov's functional L, proposed in [1]
for ideal plasma, can be used for description of turbulent
relaxation. The relaxed states obtained are of Tokamak or
toroidal pinéh type, with rather high pressure in the center.
These are well organized structures, with minimal freedom in
distribution of parameters. The similarity of I with free
energy in thermodynamics can be seen: The state with minimal I
is stable.

The simple way to obtain L is to assume incompressibility
of plasma flow. This allows to apply Arnold's theorem about
foliation of phase space of vector functions satisfying the
freezing-in equation. This imposes reasonable restriction on
variations, so the minimum of L on the Arnold's leaf may give
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tokamak
—type configuration. As was shown in [1] the minimum of L with

no restrictions on variations gives toroidal pinch
configurations only.
2.We start from MHD equations for incompressible plasma:

p(a,v+V-vv)=-Vp+ixB;  J=UxB/AT; (1)
a,p+v-vp=0; v v=0 ; (2)
9 B=vx (vxB)+ vxI; ¥-B=0 ; (3)

T is the operator of turbulent dissipation, which may include
the o-effect of +turbulent dynamo theory and turbulent vis-
cozity. Introducing the vector -potential A we obtain from (3):
AV (V- A)=uxB+ T ; B=vx4 . (4)
Arbitrary potential vector function here is chosen in a way to
make A frozen in plasma, along with B, if T=0. The density of
helicity h is frozen as well then, satisfying the equation of
continuity, the consequence of (3,4):

a;h+v-Vh=0 ;  h=A-B; iz T=0: (5)
We take L as a sum of integrals of motion of (1-5), when T=0
I=E+I,; E=r(pve/2+4B°/8m)d’x; I,=rf(h)dx ; (6)

Here E 1is energy, If is helicity integral, f is arbitrary
function [1]. The plasma equilibrium is stable if it
corresponds to the extremum point OL=0 and minimum condition
5150 is fulfield. Equation for extremum of (6) is:

j*2f'B= AxVL'; ¥=0; . 1'=qf. (7)
We have from (1,7):
vp=jxB; B:-Vh=0; A-J=-2f’'h. p= srhf”dh=hf’-f+const. (3)

This means that p, h=A-B and A-J are constants on magnetic
surfaces. These last conditions select from the set of general
equilibrium states (first eq.(8)) very small subset satisfying
(7) which are stable if 62L>D. If v£’=0 the current is parallel
to B and p=0 (force -free equilibrium [2]). The function f(h)
alone determines distribution of p and B by (7) along with
proper boundary conditions.
3. If T#0 we have from (1-4) and (7):

d T=r (J+21'B-Axve’) T &’x; d,L|_=0, L|, =const. (9)
Index e here means substitution of extremum (7). The boundary
effects are neglected here. In the vicinity of extremum (7)
energy is decreasing and helicity integral I, is growing. The
rate of change depends not only on scales of turbulence but on
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orientation of the vector T too. In view of (9) the states (7)
can be attractors if other conditions of Lyapunov stability

4,Is0;  ISL_ » 6°L>0. (10)
are fulfilled in vieinity of them. For the simplest model
Tx-0A/T; OA=A-A_; >0, (11)

(Ae is the solution of (7), T is time of turbulent relaxation)
where the vanishing of turbulence at extremum is assumed, we
have from (9):

d,Ia ~0°L/Ts (12)
This indicates the condition for point (7) to be attractor: it
should be the minimum of L i.e. the inequality 62L>O is needed.
Similar conditions can be derived for more complex forms of T.

4.The last stability condition (10) will be considered
here. From (6,7) we obtain:

62L=f(P6v2/2+6B2/8%+f‘h2+f"h$/2)d3§ 50, (12)
where
h =A-OB+B-0A; h,=0A-0B;  OB=Vx0A;

The necessary condition for positivly definiteness of (13) for
arbitrary 0A is £”>0. This can not be met in Tokamak -type
solutions of (7) [1]. In this case (13) can be positive only
for the restricted set of OA. One consequence of freeze -in
equations (3,4) may serve as the natural restriction. According
to [3] variations of A,B for arbitrary v and time t are located
on a certain leaves, invariant relative (3,4), if T=0. Arnold
proposed to look for minima of Lyapunov functional on the leaf.
Small variations in this case have the form [3]:

6§=§1+§2+O(§3); B,=Vx (ExB); B,=Wx(ExB,)/2; v-§=0; (14)
where £(x) is arbitrary veoctor function, meaning virtual
displacement. After this it follows from (5) that

Sh=h, +hy+0(£7); hy=-£.Vh; hy=—-vh, /2, (15)
and this gives: h(x)+Ohxh(z+£). Substituting (14,15) into (13)
we obtain the reduced condition of stability:

62ngw>o; WlEl=r (B$/2+1§- B, )& x/4m, (16)
the index § here means that variation is carried on Arnold's
invariant leaf. W coineides with potential energy in
energetical principle of linearized equations of incompressible
MHD. So equilibrium states in Tokamaks to be attractors require
to satisfy (7,8) and be stable in linear approximation.

.
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5.The condition that current density is O at the boundary
of plasma can be satisfied if

f'|b=0; Vf’]b=0 17y
at the boundary. This follows from (7). The parallel current
changes direction in the periphery of plasma into solutions of
(7) with such f [4]. The reversed current amounts from few to
30% of direct current. The upper 1limit is reached when direct
current is close to bootstrap current.

The reverse current may occur in experiments when
external toroidal electric field is put off. Generation of
reversed current in the plasma periphery may improve plasma
confinement in Tokamaks.

6.The safety factor and absolute value of helicity are
growing in Tokamaks and decrease in toroidal pinches from
plasma center to the boundary. In the toroidal pinch -tfype
solutions f can not satisfy (17) because of this. So the
parallel current is not exactly O at the boundary of them.

In the pinch-type solutions of (7), with sufficiently high
pressure in the center, the foroidal current may not change
direction when toroidal magnetic field is reversed near the
boundary. The favorable feature of the pinches is: L may be
minimal in toroidal pinches without any restriction on OA. That
means (13) may be positively definite for some f with £">0.

Making plasma configuration close to some solution of
eq.(7), which satisfy (16) or last inequality (10)), may
improve the confinement of thermal energy.
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Pressure and Inductance Effects on the Vertical Stability
of Shaped Tokamaks

D. J. Ward, A. Bondeson, F. Hofmann,
Centre de Recherches en Physique des Plasmas,
Association Euratom—Confédération Suisse, EPFL, Lausanne

In previous work [1] it was shown that the combination of triangularity and high 3, is
strongly stabilizing for axisymmetric modes in highly elongated (2.5 < x < 3.0) tokamak
plasmas. The effect of pressure in dee shaped plasmas reduces the driving energy of the
instability. In contrast, in an inverse-dee pressure is highly destabilizing. In a pure
ellipse pressure has a negligible effect on the free space growth rate, but is somewhat
stabilizing in the presence of a resistive or ideal wall. The purpose of the present note is
to extend the study of shape and profile effects to cross-sections of moderate elongation
in the range 1.6 < xk < 2.

The primary results from Ref. [1] are shown in Fig. 1. Here an upper limit on the
growth rate of the vertical instability is specified (such an upper limit is imposed by
limitations of the active feedback system), and we find that the stability boundary in
terms of the operational parameters l; and f, is very nearly linear. This boundary
defines a region of stability (toward low /; and high ,) for a given shape of the plasma
cross section. This stability boundary is nearly independent of the details of the current
profile, and also independent of the aspect ratio if the boundary is plotted in terms of
l; vs. €8, We see from Fig. 1 that the slope of this boundary increases strongly with
increasing triangularity, and decreases with increasing elongation.

Here we present some first results from a comprehensive study of the effects of tri-
angularity, pressure, and profile effects in moderately shaped (x = 1.6-2.0) tokamak
plasmas surrounded by a resistive wall. These results again show the stabilizing effect
of triangularity and pressure.

The resistive wall stability calculations are performed using the NOVA-W [2] stability
code with equilibria calculated using the CHEASE equilibrium code [3]. For the cases
shown in Figs. 2 & 3, the resistive wall is specified to be conformal to the plasma
shape, and to be at a distance from the plasma at the midplane of 1.4 times the plasma
minor radius, d = 1.4a. The resistive wall has a ratio of resistivity to wall thickness of
n/6w =4 x 10754

The plasma—vacuum boundary is specified as
R/a= A+cos(f +6sinf+ Asin20) , Z/a=ksing (1)
where « is the elongation, § is the triangularity, and ) is a squareness parameter (used

in some of the cases shown in Fig. 1). The following definitions are used for the poloidal
beta, B, = (4/moI?Ro) J,; p d°z, and internal inductance, l; = (2/u3I7 Ro) [ B} d°z.

Figure 2 shows results for equilibria with elongation x = 1.8 for several different
values of triangularity ranging from § = 0 to § = 0.5. The resistive wall growth rate y
(in s71) is plotted vs. B,. For each value of triangularity two pressure profile specifications
are used: one peaked, with pressure peaking factors PPF ~ 3.3, and one relatively flat,
with PPF =~ 2. The same current profile is specified for all cases in this figure yielding
l; =~ 0.75.

Figure 2 shows the stabilizing effect of high £, in all cases except for the pure ellipse
with a peaked pressure profile. This stabilizing effect increases strongly with triangu-
larity. Only at very low values of 8, do the high-triangularity equilibria have higher
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growth rates than those at lower triangularity. Here, at 8, = 0, the § = 0.5 equilibria
have growth rates higher than those at § = 0 by about 15%. Furthermore, the shape
of the pressure profile has only a modest influence on the stability. The stabilization by
pressure and positive triangularity is somewhat stronger for the broader pressure profiles.

Figure 3 shows results for the same shapes and wall but with a narrower current
profile, so that l; ~ 0.95. Here, the growth rates are higher than in Fig. 2 (note the
difference in the scale) owing to the reduced coupling of the current profile to the wall.
For the low-triangularity cases there is a much larger increase in the growth rates as the
inductance is increased than for the high-triangularity cases. In fact, the growth rates
at Bp = 0 for the § = 0 equilibria almost double in magnitude as [; is increased from
l; = 0.75 to l; =~ 0.95, whereas the growth rates for the § = 0.5 equilibria increase by only
about 20%. Note that for this high-inductance current profile, the higher-triangularity
cases are more stable than the low-triangularity cases for all values of f,.

We find that the results for cases with higher elongation (x = 2) give the same
trends, but naturally with higher growth rates. One clear conclusion is that with any
nonzero triangularity the most unstable equilibria are those with 8, = 0. Therefore,
low-pressure operation gives the most restrictive conditions on the vertical stability for
a given configuration. We consider now these zero-pressure cases and the variation of
growth rate with respect to the resistive wall distance.

Figure 4 shows how the growth rate varies with respect to the normalized distance d/a
of the resistive wall for various values of triangularity and with 8, = 0. We see that for
the cases with the broader current profiles (I; = 0.75) the growth rates for équilibria with
different triangularities are quite similar, with the high-triangularity cases being slightly
more unstable. However, equilibria with narrower current profiles (I; ~ 0.95) show a
much greater variation in growth rate with respect to the amount of triangularity, and
the high-triangularity cases are more stable. In fact, the curves for § = 0.5 are fairly
close in magnitude for the broad and narrow current profiles, as mentioned above. The
curves are shown for both the x = 1.8 and the k¥ = 2 equilibria. At zero triangularity
the k = 1.8 equilibria with /; =~ 0.95 have growth rates quite close to those of the x = 2
equilibria with l; ~ 0.71, whereas at triangularity § = 0.5 the growth rates for the
k = 1.8 cases remain well below those for the x = 2 cases for the broad and narrow
current profiles.

CONCLUSION

The combination of high triangularity and high 3, is strongly stabilizing for the
vertical instability in tokamak plasmas surrounded by a resistive wall. For narrow current
profiles triangularity is stabilizing even at 8, = 0. Only with broader current profiles at
very low values of 8, do the high-triangularity cases have larger growth rates than the
low-triangularity cases (and only by about 10-15% at zero pressure). Also, the variation
in resistive wall growth rate with respect to changes in the internal inductance is much
smaller at high triangularity. We conclude, therefore, that high triangularity is generally
beneficial for vertical stability in elongated tokamak plasmas.

[1] D. J. Ward, A. Bondeson, and F. Hofmann, LRP 468/92, CRPP-EPFL, Lausanne
(December 1992). To appear in Nucl. Fusion 33 (1993) #5 or #6.

[2] D. J. Ward, S. C. Jardin, and C. Z. Cheng, J. Comput. Phys. 104 (1993) 221.
[3] H. Liitjens, A. Bondeson, and A. Roy, Comput. Phys. Commun. 69 (1992) 287.
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PROBABILITY OF ACCESSING THE MULTIPLE SATURATED STATES
IN THE RESISTIVE INTERCHANGE INSTABILITY

L. Garcia
Universidad Carlos III and Asociacién Euratom-Ciemat, Madrid, Spain
B.A. Carreras and V.E. Lynch
Oak Ridge National Laboratory, Oak Ridge, USA

Poloidal flows at the edge of a tokamak play a critical role in the overall plasma
confinement. A poloidal shear flow in a plasma confined by a sheared magnetic field has, in
general, a strong stabilizing effect [1]. Linear stability theory shows this stabilizing effect for
many plasma instabilities. One might expect that the shear flow would have a similar effect
on a nonlinear stability. A general scaling model developed by Biglari et al. [2] shows that
when the shearing frequency dominates over the diffusive time scale, fluctuation levels
should be reduced. However, numerical and analytical studies of long-wavelength drift wave
turbulence and resistive pressure-gradient-driven turbulence show that the effect of a pure
shear poloidal flow is much weaker [3, 4] than predicted by the scaling model.

In the case of resistive interchange modes, the effect of the poloidal flow in the
nonlinear stability regime depends on the radial structure of the flow. At a given rational
surface, the effect of a sheared poloidal flow, Vg # 0, is very weak, while the effect of a
curvature flow, Vg"# 0, is strong, and produces a reduction of the fluctuation level [4, 5].

The saturation level of the fluctuations is computed numerically by time evolution of
the equations describing the instability with an initial value approach. By changing the initial
perturbation, different saturated states can be reached. They are associated with different
dominant wave number in the spectrum. In a previous paper, we have investigated the
existence of multiple saturated states, and the effect of an external poloidal flow on the
probability of accessing these states [6]. The calculations included only modes resonant at the
g = 1.5 singular surface, and most of them were restricted to the 9/6 sub-helicity because of
the large number of calculations required.

In this paper, we study the probability of accessing the multiple saturated states for the
full 3/2 helicity. We use for the calculations the same equilibrium parameters as in Ref. [7].
The presence of an external flow can induce Kelvin-Helmholtz type instabilities for relatively
low beta values. This seems to be the case for the low-m modes with the equilibrium
parameters used in our calculations. To separate this effect, we employ a simplified
electrostatic model in the numerical calculations.

The basic geometry is a periodic cylinder with minor radius a and length L = 2ntRy.
We use cylindrical coordinates r, 8, and z = Ro{. The model consists of the momentum
balance equation, and the density evolution equation,

P U _ Pny. ﬁﬁ—ﬁvﬁmnﬂlaﬁﬂ—mwiﬁ,

BO at BO 5 n dar r 89 BO

a—a'is= -V-Vi, —‘2—’;01/, +x V37,

Here, n, is the electron density, V is the fluid velocity, U is the z-component of the vorticity,
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T, is the electron temperature, and p,, = m;ng is the mass density.
The velocity is given in terms of a stream function ®/By, V=Y, (r)é + (% X 2) /BO .

Here, V) is the equilibrium poloidal flow velocity. The velocity stream function is trivially
related to the electrostatic potential —®@. The derivative parallel to the magnetic field, V, is
defined as V = 9/9{ — (1/¢)9/26.

The driving term of the resistive interchange instability is the pressure gradient in the
bad curvature region (dQq/dr > 0). The second term on the right-hand-side of the momentum
balance equation is the field line bending term, which is stabilizing. The resistivity weakens
this term and allows the instability to grow.

The potential and density perturbations are written as a Fourier expansion

f(r80)=13 [ Fn(r)cos(mB + nl) + fr, (r)sin(m6 + nC)] R

The initial perturbation for each potential component is a Gaussian centered at the rational
surface with a given amplitude. The amplitude of each mode (m; n) is a constant Cy
multiplied by a random number between O and 1. The phase of each mode is a random
number between 0 and 2x. For the cases shown here, Cy = 0.1B0a21: Rr» Where Tp is the
resistive time.

We begin by studying the case without external poloidal flow. The nonlinear evolution
of 13 different initial conditions leads to the same final saturated state (Fig. 1). At the time ¢ =
0.017p, there are shoulders in the evolution curves of the potential fluctuations. Each of
these shoulders is dominated by one of the fastest-growing modes, m = 21 to m = 30. The
higher fluctuation levels are associated with lower mode numbers. The presence of these
high-m finite amplitudes has a stabilizing effect on the low-m modes [6]. The linear growth
rate of the m = 3 mode is 310 (in resistive units), and it is reduced to values between 100 to
160, depending on the dominant mode in the shoulder.

To study the effect of an external shear flow, we have used the poloidal velocity profile
Vp(x)=Atanh(x/Lg). For this profile,

V(;(O):}\./LE . For A = 500a/tg and T T T T
Lg = 0.1a, and 40 random initial
conditions, we have calculated the
probability of reaching the various final 10 -
states. This sample size gives us an
statistical error of 16% in our
probability estimate. As shown in Ref.
4, the level of fluctuations for a given
dominant mode does not change with
increasing Vy. However, when TRVjy

<@2>172

I I ] I
is varied between 0 and 5000, the 1().00 0.01 0.02 0.03 0.04 0.05
probability of accessing each final state LY
changes significantly. This can be seen
in Fig. 2, where we have used the

dominant mode in the saturated state ‘egyilibrium flow. A logarithmic scale is used to
spectrum as a label for this particular show the shoulders in the evolution.

Fig. 1. Time evolution of the rms potential
fluctuations for 13 random cases without
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100 | } J 1~ final state. As T5V; increases from 0
- B V=0 ] to 5000, the most likely final state
IS 7 - T goes from m =3 tom = 6. The
E 4 Y =3 ] nonlinear evolution of some of the 40
3 60 ]~ cases can be seen in Fig. 3.
g a0k _:_ Depending on the initial conditions,
m H E the instability evolves to some
8 20-F intermediate states (shoulders) or it
A T B goes directly to the final saturation

oL : | state. When Vj is increased, the
3 6 9 12 number of linearly unstable modes is
m decreased [4]. The first shoulder is

Fig. 2. Probability distribution of accessing dominated, in general, by one of the
different saturated final states for two values of fastest-growing modes, m = 12 to
the external flow shear. m =18 for A = 500a/tp.

By weighting the saturation levels with the probability that they will be accessed, we
can see that increasing the shear in the flow decreases the weighted averaged fluctuation
level. This result agrees with the scaling model results [2] , and it contradicts previous results
[6] in which the magnetic flux evolution was taken into account. The presence of an external
flow breaks the symmetry of the eddies associated with the resistive interchange fluctuations.
This induces a nonlinear
modification of the poloidal flow
profile. The value of the shear of
the poloidal flow at saturation
increases with respect to the
externally applied shear. The
higher fluctuations levels are
associated with higher shear flows.

To study the effect of the
flow curvature, V;/(0) =0, we use
the following profile for the

equilibrium poloidal flow: 0

r— 0.00 0.02 0.04 0.06 0.08 0.10
Vo(x) = r—VO cxp(—x2 / ZL%;). 1y

In these calcuslations Lg=01a. A Fig. 3. Time evolution of the potential fluctuations

factor r/r is included to reduce the /07 different random cases with tgVg = 5000.

Vg induced by the cylindrical

geometry effects. By using this external flow profile it has been shown [4, 5] that there is a
reduction in the saturation level. We have done statistical calculations of the distribution of
final states by using samples of 40 cases for TV, / a=6x10% and 9x10°. For these values
of the curvature flow, the number of linearly unstable modes is slightly reduced with respect
to the case without flow, and the fastest growing modes have similar mode number. The
consequence is that the effect of the external flow on the probability of accessing the first
steady state (first shoulder) in the evolution is very weak. However, as V{ increases, the

15 T T m T

<(I)2>1/2
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linear growth rate is reduced, and 10° T T T T T
the m = 3 mode can be completely
stabilized by the presence of the
high-m amplitude in the first steady 10!
state. If this is the case, all of the
low-m modes are stabilized, and
the first steady state is the final 10! -
saturation state.
The dominant modes in the first -
steady state go from m = 21 to 5

. 10 | | | | |
m =33. For the case with 00 01 02 03 04 05 06
2% /a=6x10°, the m = 3 mode vty
is completely stabilized when the Fig. 4. Time evolution of the potential fluctuations
dominant mode is m = 21 or of the m =3 and m = 27 modes for a case with
m =24. The evolution of the TRV()/‘I =6x10%.

oy

[

|
|
I
|
I

m =3 in a case dominated in the

100 ' | | | { first shoulder by m = 27 can be seen
B oat,V'=0 = ] in Fig. 4. The growth rate of the
m =3 mode during the first steady
state phase is 9. For the case with
~ txVo/a=9x10?, all of the low-m
modes are stabilized in the first (and
final) steady state phase. This
implies that there is an abrupt change
in the probability of accessing the
s final saturated states (Fig. 5), and in
3 21 24 27 30 33 the weighted averaged fluctuation
m level. The effect is thus much

Fig. 5. Probability distribution of accessing Stronger than in the case of shear

different saturated final states for two values of flow, and it has similarities with the

the external curvature flow. experimental data showing a strong
surge of the poloidal flow, and a

decrease in the fluctuation level in high confinement mode (H-mode) discharges.

80 -
A atVv'=6x10°

at V' =9x 10°

3
|
g

PROBABILITY (%)
$

S

7
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A MECHANISM FOR THE FAST MHD EVENTS IN SHEAR
REVERSAL REGIMES OF TORE-SUPRA

D.Edery, A-L.Pecquet, P.Cristofani, J-P Morera, E.Joffrin, P.Lecoustey,
M.Talvard, J-C Vallet, D.Van Houtte

Association Euratom-CEA sur la fusion contrdlée, C.E.Cadarache,13108 Saint Paul lez
Durance France

Introduction

In the Tokamak, internal disruptions are generally observed when g=1
magnetic surface penetrates into the plasma. In this regime the internal kink
mode m=1, n=1 is basic in the triggering of the instability[1]. However in
enhanced confinement regimes (PEP, monsters,LHEP) although the poloidal B
goes beyond the kink limit, no violent instability occurs. Recently improved
regimes with shear reversal profiles have been achieved on TORE-SUPRA in
ohmic and ICR heated discharges with central pellet injection. In these
experiments a new kind of sawtooth has been observed. In particular,these
sawteeth are localized in an annular region around the inversion radius.

In the following we present a theoretical model which attempts to explain
the mechanism of appearence of this kind of sawteeth.

Theoretical model

Enhanced regimes are characterized by nonmonotonic q(r) profiles with
large pressure gradients on the reversal shear radius r; where the minimum of
Q 9min is almost 1. The high pressure gradient and the smallness of the quantity
Agq=gmin-1 make these profiles very sensitive to the linear internal kink mode
[2]. The accessibility to regimes without sawteeth should then be possible only if
some saturation mechanism could be invoked. In fact, after its linear growth the
internal kink mode will develop non linearly towards a saturated helical state
with helicity 1 [2,3]. The magnetic topology of this accessible 3D equilibrium is
constituted by tangent kinked magnetic surfaces which are compressed together
at the reversal shear radius.In addition this compressional effect is located in the
region of bad curvature of the Tokamak.Consequently all these effects allow to
interpret the new sawteeth behaviour as resulting from destabilization of the
ballooning mode.

Before analyzing the ballooning mode stability, we recall the main
properties of the linear and nonlinear kink mode in the particular case of
nonmonotonic q profiles. The linear kink mode is unstable if Aq is less than a
critical value Aqc at which the equilibrium is marginally stable [2] and which
depends on the strength of the toroidal potential energy of the mode [1]. The
nonlinear evolution of the kink mode takes place within a narrow layer of width
Ary/r1=(11/R)2/3, leaving the outer region unchanged. The achieved helical state
must satisfy the nonlinear equilibrium equation for the helical flux ¥:
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AP=](¥) 1)
with solution:
. d_\P = 2(Qmin'l)
ar = q'(ry (F00+e@©)12 @

where x =rp-11, Io is the radial coordinate in the axisymmetric configuration
and 0 is the poloidal angle. The radial coordinate r in the non linear topology is
given by:

or
o = () + g(8))*1/2 3)
The two functions f(x) and g(8) result from the matching of the inner and

. . or
outer solutions at the boundary of the nonlinear layer. In fact 30 represents the

local deformation in rq, 8, of the original magnetic surfaces measured on the
unperturbed coordinate system and depends on the strenght of the kink potential
energy [2].

In the unperturbed equilibrium case one has _aalro =

In the kinked equilibrium case one has (g_rro)max = 1+r,/R. 4)

We now study the stability of the nonlinear equilibrium with respect to
the ballooning mode. In toroidal geometry the instability condition for a
localized perturbation is written [4] oW<0

d
W= v.v,002- [2p0 P € 9r R (5)
where, &=(B"xV0)/B2 is the ballooning displacement, ¢ is the perturbation of

the electric field potential ¥’=V,(B’/B) is the curvature of the field lines and %E
is the local pressure gradient in the helical topology. In the case of circular
plasmas and large aspect ratio, minimization of the energy integral(5) leads to
the explicit instability condition for the ballooning mode:

larg dro ., dro
iy Gl3ee-Cl-D <0 (6)

2uoRq2 , .
where o= J“L—%Tq— (- g%) is the ballooning pressure gradient parameter in the

unperturbed equilibrium. Hence the nonlinear kinked equilibrium is unstable
with respect to the ballooning mode if the pressure gradient o is less than the
critical value
[T gy 203,200, 12
ac=2[C -1/ 3G+ 0] 7
Using (4) in formula (7), one gets for o, the approximation:

ac =(ri/R)12 ®)




IV-1305 8-8

The ballooning mode is then destabilized if the local pressure gradient takes its
values within the interval [ 0, (ri/R)1/2 ] (Figl).

We now propose the following mechanism for the triggering of the sawtooth
crash.

Just before the sawtooth rise the local pressure gradient is relatively small
in comparison with oc. At this step the ballooning mode is marginally unstable.

During the sawtooth rise the pressure gradient increases locally on the
inversion radius up to values of order of r;/R.These values are now large
enough to destabilize the ballooning mode which ultimately triggers the crash.

ri lysi h i Ii

High velocity pellets are injected in low current Tore-Supra discharges
(Ip=0.88MA, Bt=3.8T, ne(0)=4.1019m-3, q(a)=5.5). Prior to the pellet
injection, 2MW of ICRH power are applied to preheat the plasma [5]. A
transient period (250ms) of enhanced confinement is obtained corresponding to
peaked density and pressure profiles (Fig 3) as measured by Thomson
scattering. In such conditions the bootstrap current represents 20% of the total
current. The polarimetry shows a slight variation of the central q value which
starts from 0.98 before injection and reaches 1.02 during the enhanced
confinement phase (Fig 4a). In comparison soft X-ray signals exhibit different
behaviours. Before the pellet injection, the inversion radius is located at 13.5cm,
the relative amplitude of the crash, function of the radius is plotted on Fig 4b.
One observes a typical value of 12% in the center. During the enhanced
confinement phase the inversion radius moves towards the plasma outside
(25cm). Associated to polarimetry, these above observations tend to demonstrate
that the current profile should be hollow. In such condition the sawteeth are
only localized near the inversion radius as shown on Fig 5 which gives the time
evolution of central and near rinv soft X-ray signals. No sawteeth are visible on
the central chord except one at t=7.97s which terminates the enhanced
confinement phase. This is probably due to the flattening of the q profile.

Now both theory and experiment have found that the observed instability
during the enhanced confinement regime in TS is localized at the vicinity of the
reversal shear radius within a layer of width Ary=r;(r;/R)23=5cm (Fig 2).
Moreover the pressure gradient calculated on the inversion radius from the
measured averaged profiles is Oexp=0.05 and is included within the theoretical
instability domain [ 0, (r;/R)1/2 ] (Fig 1).

In conclusion, a theoretical model has been presented which can explain
the fast MHD activity in shear reversal regimes obtained on Tore-Supra.This
model is well supported by experimental data and probably could be applied in
other Tokamaks during regimes with nonmonotonic profiles.
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LOCKED MODE STABILITY IN PLASMAS
WITH SHAPED CROSS-SECTIONS

R Fitzpatrick, R J Hastie, P S Haynes, T C Hender, T J Martin,
A W Morris and C M Roach
AEA Technology, Fusion, Culham, Abingdon, Oxfordshire,
OX14 3DB, UK (UKAEA /Euratom Fusion Association).

Introduction Experiments on COMPASS-C [1], JET [2] and DIII-D [3] have
demonstrated that error fields can drive large locked modes. In particular, the poloidal
mode number m = 2 and toroidal mode number n = 1 component of field errors can
drive large islands at ¢ = 2. The processes governing the formation of these locked
modes are reasonably well understood theoretically [4]. It is predicted, and observed
experimentally, that there is a threshold error field above which a locked mode is-
land is driven, and below which very little tearing occurs (ie. no locked mode island
is formed). As the machine size increases, this threshold error field decreases for a
fixed density, or for a fixed error field there is a increase in the threshold density below
which locked modes occur. The effects of machine size are confirmed by comparison
of COMPASS-C, DIII-D and JET data. Extrapolation to ITER (EDA, R = 7.75m)
shows the expected error field threshold in ohmic operation with 7, ~ 2 x 10°m—3
is very low [B,,,/Br ~ O(107%)]. The theoretical understanding of the formation of
error field driven locked modes is based largely on the infinite aspect ratio circular flux
surface calculations. For quantitative predictions of error field thresholds in devices
such as ITER, it is important to understand the effects of finite aspect ratio, plasma
shaping, and high B. Such effects are discussed in this paper.

Theory Background A threshold above which error fields will give rise to locked
modes occurs for the following reason. In general, the plasma at the rational surface
(rs), where the field error is resonant, flows relative to the static error field. This relative
flow has the effect of screening the field error. Despite this, there is a small amount
of reconnection at r,, driven by the field error, which gives rise to a braking torque on
the plasma (near r,). This braking torque is opposed by a viscous torque which tries
to maintain the plasma rotation. This balance of torques causes the amount of driven
reconnection to be a highly nonlinear function of the field error amplitude (or plasma
density). As the field error amplitude is increased, there is a critical threshold above
which the locking torque slows the plasma, increasing the driven reconnection and thus
further increasing the torque and slowing the plasma. Eventually, this leads to the
plasma flow near r, ceasing completely and the error field driving a fully reconnected
island.

In a toroidal system, the electromagnetic torque applied at a rational surface (r;) is
Ty(r;) = 207 Rolsh;|"Im(r;A;) (1)

where 1; is the reconnected poloidal flux at r;, A; is the jump in the ratio of the small
to large Newcomb solutions at r;, and Ry is the major radius. To evaluate the torque it
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is necessary to calculate 1;, and to invoke a layer theory to fix the value (and parameter
dependence) of A;.

In a vacuum, the helical flux interior to a set of conductors generating an error field
may be written as

Yuac(r, 0, ¢) = ZlQO(r701 4) (2)

where the basis functions Q,, are obtained from an aspect ratio expansion of the stan-
dard toroidal ring functions which are well behaved as r — 0 . Thus the I, may be
regarded as a set of idealised error field currents. In the presence of plasma, the error
field gives rise to a toroidal tearing mode relation

(A-Eyp=> I.C" (3)

where for a system of J rational surfaces, A and E are J x J matrices, and ¢ and C™
are J element column vectors. Here, 4 is the vector of the reconnected fluxes and A is
a diagonal matrix of elements 7;A;. The quantities E and C™ are evaluated with an
aspect ratio, beta and shaping expansion using the T7 code. In the simplest case the
driven layer dispersion relation is given by

riAj = —i(w — w;)T; (4)

where w is the angular frequency of the error field, w; is the angular frequency of a
naturally growing mode at r = r; and 7; is a typical reconnection timescale at r = r;.
From Egs (1), (3) and (4) the torque is given by

Ty = e {51, c"‘} ®)

") e (w—wj)mi =

in the physical limit where |w — w;|7; > 1. Hence the parameter dependence of the
torque at 7 = r; may be determined from examination of the coefficients C}". Physically
an increase in torque will be manifested as an increase in density threshold for locking,
or equivalently as a reduced minimum error field for locking at a given density.

Results Figure 1 shows the various components in an aspect ratio, beta and shaping
expansion of C?, (which gives the torque at surface 1, ¢ = 2 in this case, due to the m = 2
‘error field’ current I,). The current profile here is J; o (1 — (r/a)?)” with a central
go = 1.05, and the pressure profile is P o (1 — (r/a)?)?. Here the ellipticity parameter
(E,) is related to the elongation by b/a = (1 + E,)/(1 — E,) and the poloidal S, is
defined as B, = pog?Po/(eBo)? where e = a/R. The jumps in the toroidally coupled (¢)
terms at ¢, = 3 in Fig. 1 are related to toroidal coupling to the (stable) m = 3 external
kink mode and similarly the jump at g, = 4 is related to elliptic coupling to the m = 4
kink mode. It can be seen from Fig. 1 that the torque increases with increasing ¢, 5,
and E,. Thus as the elongation (or € or f,) is increased at fixed ¢, the minimum
error field to induce locked modes will decrease. Experiments in COMPASS-D are in
progress to examine the effects of plasma shape on error field thresholds [5].

In the above the effect of a pure m = 2, n = 1 field error has been considered. In
general of course field errors due to coil misalignments, winding errors or current feeds
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will give rise to a broad error field spectrum. Figure 2 shows how the torque at ¢ = 2
varies with ¢, for the same equilibrium as Fig. 1 with ¢ = 0.2 and E, = 0.2. In this
case the error field currents (I, I3, I;) have relative signs representative of a field error
due to an outboard midplane dipole. From Fig. 2 it can be seen that there are sharp
increments in the torque at ¢, = 3 and 4. These are partly due to couplings to external
kink modes (discussed above) but are dominantly due to the loss of coupled torque as
the ¢ = 3 and 4 surfaces leave the plasma. Such a staircase like increment in critical
density (and therefore torque) with g, has been observed in JET experiments [2]. In
the JET experiments the dominant error was due to turn-to-turn transitions of the
winding in the vertical field coils and has a qualitatively similar spectrum to that used
in Fig. 2.

An outstanding issue-experimentally is the considerable amplification of the field error
which is observed in larger tokamaks; for example in JET the observed locked mode
has an m = 2 n = 1 radial field at ¢ = 2 which is 60 times larger than the calculated
vacuum error field [2]. An amplification of the vacuum error field of 2 to 3 is expected
due to the requirement of maintaining force balance [4]. The observed amplifications
however are not explicable by this mechanism. A possible explanation is a change in
natural stability of the plasma due to mode locking:— since following locking tearing
can occur at all surfaces and the wall no longer acts as an ideal conductor. Calculations
however show under this mechanism locking does not cause a significant change in mode
stability, except for ¢, 5 3 — eg. for g, = 4 and the current profiles used in Figs. 1 and
2, the increase in Aj_, is about 2 when tearing can occur at all surfaces, for JET like
parameters.

Summary The effects of toroidicity, plasma shape and pressure on the threshold for
error field locked modes have been studied. It is found that for an m = 2 error field
the threshold for locked modes decreases with increasing €, E and f. Electromagnetic
torque can also be applied at ¢ = 2 by sideband coupling to m = 3, 4 etc components of
an error field. If ¢, is decreased then these sideband coupled torques are abruptly lost
when the surfaces at which they are resonant leave the plasma. This result explains the
abrupt changes in threshold density at integer ¢, (=3,4) observed in JET experiments

[2].
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Fig. 1 Variation of various components of C} with edge-q (g.) in an inverse aspect
ratio (e), elongation (E,) and poloidal-B (B,) expansion.
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Fig. 2 Variation of (2,1) Torque with edge~q (g,) for an error field spectrum repre-
sentative of an outboard midplane dipole error.
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Theory for small growth rates of the tearing mode in
a sheet pinch

W. Barbulla and E. Rebhan
Institut fiir Theoretische Physik, Heinrich-Heine-Universitit Diusseldorf,
Universitdtsstr. 1, D-4000 Diusseldorf, Federal Republic of Germany

Abstract: In the theory of tearing modes, analytical expressions for the growth rate + are only known
for large values ¥ >> 1/7r. However, since resistive instabilities cannot be externally suppressed, they
will be rather observed at small growth rates. In this paper, the described gap in the tearing theory is
closed. The expressions obtained for small growth rates are as simple as the ones for large growth rates
but differ from them appreciably. Their good quality was confirmed by numerical solution of the full
tearing equations. In addition, an implicit analytical formula is presented that bridges the gap between
small and large growth rates.

Introduction In the usual tearing theory it is assumed that the growth rate v lies
between the typical rates for resistive and ideal MHD processes, 1/7p << 7 << 1/74
(ta = Alfvén time, Tr = resistive time). In addition, the magnetic Reynolds number
S = Tr/Ta is assumed to be large. Accordingly, the limit 4 — 0 lies outside the realm
of the usual theory. However, since practically tearing instabilities are triggered by slow
changes of plasma parameters and cannot be suppressed, they will never be observed
at higher growth rates. In the contrary, immediately after the threshold of instability is
passed over there will occur a transition into neighboring or distant bifurcational equilibria
with tearing structure. In the study of tearing bifurcations and the related dynamical
processes it is just the limit of small growth rates that matters and bears the seed of the
bifurcating structure in it.

Basic equations We consider an incompressible resistive plasma and neglect the heating
caused by resistivity. The geometry of the equilibrium plasma will be restricted to a sheet.
The equilibrium values of the magnetic field, the plasma velocity and the resistivity are
then given by .

Bo = 4g(z)é, + Bo:€z, W =0, 1m0 =mno(z), (1)

mn

where 1) and 7 are related by niyg = —noy’ or no = const /g equivalently. The stability
equations for 7 — 0 are the same as the ones that were investigated) for ¥ >> 1/74 and
are

w-wy- By = (1-B)y+re @
e v = Crn (Ul - f;—) (b + Fot). )

where ¥(z) is a flux function for the perturbational magnetic field and ¢ is the plasma
shift. They are subject to the boundary conditions || — |€| — 0 for |z| — oo.
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Asymptotic perturbation theory Equations (2)-(3) can be solved by the means of
an asymptotic perturbation theory. Since S/y >> 1, according to (3) £(z) must satisfy
almost everywhere the approximate “exterior equation” ¥ + Fyé = 0 except for a very
thin “resistive sheet” in which £”(z) becomes large. Outside this sheet, 1 satisfies

FII

v -k - 2y =0. @

Within the resistive sheet, egs. (2)-(3) can be approximated in the usual manner by the

sheet equations
o = (e )b (TR )

¢ (%) (- 1) @+ Ro) (6)

where 1 = const. It suffices to expand the coefficients up to linear terms in the distance
s = z—zo from the singular point g only. In the symmetric case (F(z—z¢) = —F(zo—z)),
Fy and F{ vanish simultaneously at 2, whence

Fy(z) = Fy(zo)s , Fy'(z) = Fy'(zo)s,

and equations (5)—(6) are approximated by

" = 2 l ’YF, "

= [k+no< 0 )]¢+(no F°>5€ Q
"o S 'YFI " @Z

- ()RR e

all quantities with subscript like Fyj being understood as values at zo. Rewriting (8) in
the form

¢ = A(Bs + £)

with g\ 2 F’ b
and substituting . .
¢ =AiBy,, s= A1y, (10)
we obtain .
Xs(¥) = ¥ + ¥’ (11)

The growth rate can be obtained as usual by dividing (7) through zzv and integrating over
the resistive layer. Using :’ sds =0, As = 2s, and the definition
A”(O)

Alsy) = CP(zotst) Ym0 —s4) !

TR e il

(12)
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the result is

" ' st ’ st
Al = (B4 l— 40 As + lA kg _ Fy ¢sds — 1o sds
2 0 2
Mo P o —s4 Mo J-s4

" '
A% l:(kﬂ_i_ 100 AT(O)) Ay + g (77]F0 _ Fé“) IS:I ’
0

o

where "
I, = / Yxsdy and Ay =2y,,

v+
the integral extending from the left hand boundary y_ to the right hand boundary y4 of
the resistive sheet and being independent of all parameters of the problem.

The exterior equation (4) can‘be used to calculate A” (0). The expansion of the exterior
solution 9 (z) around the singular point z, yields

1
¥(z) = (o) + ¢'(2z0)s + Ezb"(zo)sz +... and P'(z) = ¢'(20) + "(x0)s...
both to the left and to the right of the singular point. From this, with (4) we get

¥(e) _ (o) [,C S (W%))”J "

¥(z)  Y(zo) ANED)
Making use of the symmetry around z, from this we get
F”I 1
Alss) = A(0) + (K + —257)As = ——— (@) (zd) + (¥)X(27)) As.
F ’¢(Iu)
It can be shown that the last term can be neglected whence we obtain
FIII
A"(0) = 2(k* + To’) (13)
0
Inserting this in (13), with the definitions (9) we finally obtain the result
v _ B
Ay+ 1) — — =-(Ay + I,
y (Ay+ )770 Fg( y+1,)

A0) = (3) (14)

F”/ %
2 (l - _O)J
[ *\m F

(14) is an implicit formula for evaluating ~ and is valid for 7 — 0 as well as for v >> 1/75.
In the latter case, the terms in the numerator of the right hand side of (14) that are free
of v can be neglected against the +/7-term, and one obtains the well known result!)

v= 61 ()" (13

A good approximation for I = Ay + I, is obtained by setting y. = 400 which delivers
I =2rT(3/4)['(1/4) = 2.1236.. .



Iv-1314 8-10

For small v, the terms containing /70 can be neglected in ( 14) and we obtain the result

2

7—5“(”( 7 7
K F;

=S (Ay+ 1,
Fo( y )

that shows a completely different potential dependence of 4 on S and A’. The dashed
curves in Fig. 1 show the dependence of v on A’ for fixed S according to (15) and (16),
evaluated for the simple equilibrium profile

Fo(z) = tanh(\z). (17)

The full curve was obtained by evaluating (14) and shows the smooth transition between
the two potential laws. It differs only invisibly from the curves obtained by a numerical
evaluation of the full equations (2)(3). Fig. 2 shows the corresponding results obtained
for the dependence of y on S for given A’. It is seen that vy becomes independent of S
which means that for small growth rates the dynamics is determined by ideal MHD effects,
the resistivity playing only the role of a trigger.

10000 . S = 100000 16406 gamma'(S), Iamb?a= 14 .

1000 |

100 £

100 s 1000 10000 100000 1e+06

Fig. 1 Fig. 2

! H. P. Furth, J. Killeen, M. N. Rosenbluth, Phys. Fluids 6, 459 (1963)
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On MHD Description of Semicollisional Modes in
Tokamaks

B. N. Kuvshinov*
FOM-Instituut voor Plasmafysica, ” Rijnhuizen”,
Nieuwegein, the Netherlands

In the high-temperature regimes relevant to present day fusion experiments with con-
fined toroidal plasmas, the ion Larmor radius p; can significantly exceed the characteristic
scales of the plasma motion. Examples of such a situation are the so-called semicollisional
modes [1], which occur when the plasma resistivity becomes so small that p; is larger than
the resistive layer width. Semicollisional modes are believed to be described properly only
with the help of kinetic theory. Recently Zakharov and Rogers [2] have claimed that these
modes can also be investigated within the framework of MHD. Having introduced a two-
fluid MHD model they have obtained results which are suprisingly in agreement with
those found from kinetic theory [3]. The primary goal of the present report is to reveal
the origin of this agreement.

We are starting with the assumption that the ion Larmor radius is small enough so
that the MHD approach is valid. The momentum equation and the equation for diffusion
of generalized ion momentum in the ion fluid have the form (magnetic drift effects are
neglected here)

v .
gﬁz.]xB—Vp, (1)
%(B+%VXV)=V><[VxB]—Vx[(df%-{-D)VxB], (2)

d. = c/wy. is the electron inertial skin depth, wye is the plasma frequency, D = ¢*/(470)
is the diffusion coefficient for magnetic field, V is the mass plasma velocity and the other
notations are standard. We omit the factors c and 47 in equations, but keep them in the
definitions of the characteristic parameters. We consider the isothermal plasma model,
i.e. suppose the adiabatic index to be equal to unity. Then the plasma pressure evolution
equation is given by

dp/dt =—-p V-V. (3)

Egs. (1) - (3) are a closed set of equations which constitutes the starting point for the
analysis. It differs from the standard set of resistive one-fluid MHD equations only in two
points. Firstly, the skin depth in Eq. (2) is renormalized due to electron inertia. Secondly,
in the left hand side of Eq. (2) a term appears which accounts for the Hall effect.

First of all we consider the small oscillations of a slab plasma immersed in a straight
uniform magnetic field. The linear perturbation has the form &(r) = € exp(—iwt + ikr),

* Also at Russian Scientific Center ” Kurchatov Institute”, Moscow, Russia
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w is the oscillation frequency, ¢ is the perturbed plasma displacement, (0¢/0t = V), k
is the wave vector, r is the space coordinate. A further simplification is the omission of
plasma resistivity and electron inertia effects. In this approximation Eqgs. (1) - (3) become
after linearization

¢,
022
Here ¢ = po/ 0o, C% = B}/(4mpo) is the Alfvén velocity, e; is the unit vector along

By. Zero subscripts mark equilibrium quantities, the subscript 7 L” denotes the direction
perpendicalar to Bo. From Eq. (4) the following dispersion relation can be obtained

— W =AV(V-€)+Ci{

+VL(VL-E)+ iﬁ“’;[(V(V &) —Af) xe}. (4)

2(1 kiel. 202 2 _ 1202 j’_z_kzk2041 kic -0 5
{w(—w2——kZC§)— A}(“)_ z A)_Qzﬂiz A(—wz——kfcz)— ’ ()

where k, is the longitudinal component of the wave vector and Qp; is the ion cyclotron
frequency. For tokamaks the Alfvén waves straighten along the magnetic field lines are
typical, so that ki > k,~1/Rand w < k  C4, where R is the large tokamak radius.
In addition we suppose w > kzCs (i.e. we neglect the coupling of Alfvén waves with ion
sound waves). Then Eq. (5) is reduced to

w* = K2C4(1+ kLAY (6)

where p? = c,/Qpi is the ion sound Larmor radius. The dispersion of Alvfen waves is
determined by the factor kips- Usual Alfvén wave converts to »semicollisional” one when
this factor exeeds unity. To consider the case kip, > 1in the frame of MHD one could
suppose T; < T in order to satisfy the inequality kyp:; < 1. However, as will be shown
below, the fluid model remains valid even when this inequality is violated, kipi > 1.

Let us consider a cylindrical tokamak and suppose that &(r) = § (a) exp(yt+imb—in()
(single helicity approximation), where 0 and ( are the poloidal and toroidal angles in a flux
coordinate system, a is the radial coordinate. In the region near to the rational surface
with ¢ = m/n, ¢ being the safety factor, the perturbation exibits singular behavior and
the radial derivatives of the perturbed quantities are large in comparison with 6- and (-
derivatives. This circumstance enables one to simplify significantly the starting equations.
We neglect equilibrium pressure gradient effects and the coupling with the ion sound wave.
Projection of Eq. (1) along bo X Va with bg = Bo/|Bol, gives a relation for the perturbed
magnetic field B,

B-Bo=0. (7
This condition means that we may introduce the perturbed poloidal flux such that B
will be proportional to bo X V. From Egs. (2), (7) it follows that two components of §;
can be expressed in terms of a single scalar quantity ?,

do® d®
7‘;1 = _E;’ (8)

where 1 = & - [bo X Va]. The parallel component of § is found from the projection of
Eq. (1) along b and from Eq. (8),

£-Va=[box Va]- V& + o=
Qpi

c ]
£bo= o= b0 Vg )
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Using the above relations one can write the vorticity equation (rotation of Eq. (1) pro-
jected along bo) and Va-component of Eq. (2) in the form

2D d%y

& P
P =l VI LLE VT S L Lk (10)

° dz? s dz?
Here z = m(a—a,)/a;, A\, = mp,/a,, \} = m(d2 + D/7)/a?, 4 = y/wa, ws = CaS/(qR),
and S =dlng/dlna.

Equations (10) coincide with those obtained by Zakharov and Rogers [2] except for the
renormalization of the coefficients due to drift effects, which have been taken into account
in Ref. [2]. Now we will show that the MHD resistive-layer equations are identical to the
equations derived by Pegoraro and Schep [3] in the frame of kinetic formalism. To prove
this fact one should compare the exact kinetic ion response (i.e. the relation between the
perturbed ion density and the perturbed electric potential) and the ion response calculated
with the help of MHD model. Projecting Eq. (2) along Va and expressing 7 through #;
(7; is proportional to V- V) we come to

Ko Weudh POV -0 ER WAL 11
ng da?  p? ng * T; da? (11)
The perturbed ion density 7; obtained from the linearized Vlasov equation for the modes
with w > kyc, is given by [4]
;l,' e
e == 1= exp(p}AL) Io(-pIAL)] 22, (12)
ng I’c
Iy is the modified Bessel function of the first kind and A 1 stands for the Laplassian. The
transition from the kinetic ion response (Eq. (12)) to the MHD ion response (Eq. (11))
involves the substitution (remember that in the singular layer A; ~ d? /da?
z
1 —exp(—2) Io(z) — s (13)
This, however, is just the Padé approximation that has been introduced by Pegoraro and
Schep [3].
We see that there is no difference between MHD and approximate kinetic [3] ap-
proaches. Both approaches are based on assumption (13) and, hence, give the same
result. Indeed, using the Fourier transformation of Egs. (10),

e
dk "1+ X2k dk” 14+ A2k2° ~

(14)

where f = (14 k?) ®;, and carrying out the standard asymptotic matching procedure one
comes to the relations initially derived by Pegoraro and Schep [3]

Pv)Q(v) _ 22
P - ) (15)
Here
PW)=T(-0)T(~1/4 +v), Q)=1+ % % r % (16)
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v=(1/4+% /A2)1/? (Eq. (15) is valid for v < 1). The value C2/Ci is determined from
the solution in the ideal region (see Ref. [3] for details),

Cy _ g, m=1
C { am/[A, m>2, an

A and A’ are the standard parameters in the theory of m = 1 kink mode [5] and tearing
mode [6] respectively. In the limit 4 < ), Eq.(15) can be significantly simplified. It then

becomes X
-2 2L = ' (18)

The cubic equation (18) describes three branches of oscillations. In the limit C2/C1 — 0
it means 4% = (2/7r)z\,A3. For small, but finite C2/C1 (AZ/3A§/3 < Mg < );) we have
42 = (2/m)AH s Finally, if C2/C1 — o Eq. (18) becomes ¥ = (A'/Tm)AcAs. These
instabilities are the semicollisional analogues of resistive kink, ideal m = 1 kink and
tearing mode respectively.

We have demonstrated, that the MHD model properly describes semicollisional modes
in tokamaks even if the characteristic width of the singular layer is less then the ion
Larmor radius. Moreover, the MHD treatment is identical to the Padé approximation
in the kinetic approach. This fact is not suprising. The above analysis shows that the
"semicollisional” effect is intrinsically the fluid one. It simply means that at small scales
not B, but B+(M/e) V X V becomes the frozen-in quantity. Obviously the kinetic theory
is not necessarily required to describe such an effect. We conclude, that investigation of
semicollisional modes in more realistic configurations also can be done on the basis of the
MHD model.
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THE LINEAR THRESHOLD OF THE INTERNAL KINK MODE
G. Fogaccial) and F. Romanelli

Associazione EURATOM-ENEA sulla Fusione, Centro Ricerche Energia Frascati,
C. P. 65- 00044, Frascati, Rome (Italy)

The stability of the internal kink mode is usually described within the
context of the ideal MHD model following the first work by Bussac et al.[1]. Toroidal
effects, associated to the coupling of the dominant m=1 component to the m=2 and
m=0 components of the eigenfunction, yield a stabilizing effect. Therefore the

mode turns out to be stable for B p<fpc, where B p is defined as

Rn2 I1
Bp=- g [r2Bdr (1
LB

with q the safety factor, q(r1)=1, B=2p/B2, p the pressure, B the toroidal magnetic
field, Rp the major radius and Bpc a coefficient which depends only on the
current density profile. In the original Bussac paper, ch was approximately
evaluated for a parabolic current density profile, obtaining BpC=O.3. It has been
recently pointed out [2] that the value 0.3 tends to overestimate the threshold and
that a more realistic estimate yields Bpc around 0.1. However, the ideal MHD model

is inadequate to fully account for the physical effects relevant for a relatively
weak instability as the internal kink mode. In particular, perpendicular
compressibility of the thermal trapped and barely circulating particles can
produce a significant stabilizing effect [3] which can determine, in situation of
pratical interest, the actual stability of the internal kink mode.

The stability of the system is described by the ideal MHD model

-02E = §jxB+jx8B-V-3p @)

with 8j=Vx8B and 8B=Vx(ExB). The pressure tensor is expressed as dp=0p, I+(8pj-
O6p1)bb, where I is the unit matrix, b the unit vector in the direction of the
equilibrium magnetic field, and the thermal ion and electron pressure
contribution can be splitted into a convective and a compressional part: Spj 1=,V
-ij_+(m/2),[d3Wl2 Hj and 38 pj=£t V-pji+mfd3vv|2Hj. The compressional
contribution is evaluated by solving the drift kinetic equation

. . odj €0
VIbY (@0 Hj=-ia-orTy) " = S B 3)
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where ¢ is the electrostatic potential related to the perpendicular displacement by
Vo=im(BxEy), 0+Tj=-i(Tj/ejB)(bxVInFm;)-V, (ndj=-ivdj~V, vgj is the magnetic drift
velocity and the velocity space variables are the energy per unit mass E=vZ2/2 and
the magnetic moment p =v,2/2B.

The usual variational procedure is followed here, which corresponds to successive
minimization of the energy functional, order by order in €=r1/Rqg. The energy
functional is obtained by multiplying Eq.(2) by E* and integrating over the
volume and it is given by

D(£)=8+8WMHD+8 Wkc (4

where the first term 8l=-(1/2)w2fdtpl€I2 is the kinetic energy functional, which is
zero for marginally stable modes; the second term is the usual MHD contribution

SWynp=(1/2)dt BAV-E, +2§; xi2-2(8 1 -'VP)(§ | F)+18B  2-€ | " (Jibx3 B)]

and the last term is the compressional contribution given by &Wkc=-
(1/2)fd1[8pLV-EL*-(8pic-8pL¢)(§1"-k) ] (the superscript c refers to the
compressional terms). In the MHD case such a contribution is given by
SWkc=5/3/dtl(V-E)I2 and can be set to zero by a proper choice of the parallel
displacement. In the present analysis this term is evaluated by solving Eq(3). The
minimization of the energy functional D(§) in leading order (SWMHD(O)) and in
the next one (&8W MHD(Z)) is satisfied by a displacement € (r,6,0)=
éo(r,9,¢)+£§1(r,6,¢)+... such that V-£,0=0and V-£11=-2E1 0K, (T, 0, » being the usual
radial, poloidal and toroidal variables, and x the equilibrium magnetic field
curvature). Then at the lowest order the effect of perpendicular comressibility is
minimized by a perpendicular displacement such that vV EL1=2810k

In the limit 1-q(r)=0(1) inside the gq=1 surface, €10 is a rigid displacement
with Ero(r)=Eoel(me-10) for r<ri and &ro(r)=0 for ri<r<a. Therefore by using the
eigenfunction corresponding to the rigid displacement and by solving Eq.(3) with
the ordering mdj,m*Tj<<m<<mbi=el/ 2vi/qRo to calculate pressure compressional
terms, 8Wkc can be evaluated exactly as the hot particle contribution in Ref.[4].
The most important contribute to SWkc comes from the trapped particles. Equation
(3) yields b-'VHj=0, i.e. Hj=Hjo eid® with the quantity Hjo determined by orbit
averaging the next order equation, yielding Hjo=<§l-|<eiq9>, where <...> denotes

bounce average. By considering a parabolic pressure profile p(r)=po(1-r2/ro?),
the final expression for SW k ¢ turns out to be

awkCEZnRo(rlBO|§0|/R0)2-(3/4)(25)I/Zul(rOZ/ROZ)Bp with p 1=2JoldA2EQ) -
K(A)]2/K(X)~0.55 and E(A), K(A) the complete elliptic integrals. Note that the

compressional effects appear only at the fourth order in €.

Following Ref.[1], the minimized functional can finally be written at the fourth
order in the following form
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2
37 (1-9(0)) (Bp$ pe) + 3(26)1/ 21 [ 7Bp =0 (5)

If the compressional contribution is neglected, the usual instability criterion
Bp>Bpc is recovered. However, for small values of Bpc, the instability condition
becomes

g 1

r12 3m(1q(0)) 6

3
Bp>7 (2e)1/2 1y

Therefore for q(0) approaching unity the stabilizing effect associated to
compressibility may dominate over the effect of toroidal coupling.

The above calculation fails for 1-q(0)=O(g). Following Ref.[5], the mode

stability in this case is described by the integro-differential equation for Ero(r),
(the subscript r will drop for simplicity):

1
= [x3<8q2+3vz/mA2)d§—f]+a(x>x2A1 [2(x)x25 0dx-Brx3/20=0 &)
0

where x=r/r1, 8q(x)=1-q(x), Y=-im is the growth rate, wa=va/(31/2r1q'Ry) with VA
the Alfveén velocity, a(x)=(2Rg/r1Bg2)dp/dx, A1=(C1+3)/(1-C1) with C1=(x
d&1(™=2)/dx)/x1™=2)|_1 and finally the term Pk related to the compressional
contribution is BK(x)=(15/81:)(p(x)/Boz)(Zrl/Ro)1/2(u1+u2). The numerical
coefficient Wy, resulting from orbit averages for circulating particles, is given by
p2=2Jo1dA[2E(L)-(2-A2)K(M)]2/A6K(A) . Note that for ultra flat q profiles, both for
trapped and for passing ions, the contributions to eingevalue equation (7) are
0(e1/2) with respect to the other terms.

Equation (7) can be solved analytically if the kinetic term Bgx3/2 is replaced by
Brox&o with Bgo being constant. Such an approximation is not expected to produce
major differences with respect to the general case. In addition, the following
model g-profile is assumed: q(r)=qg for O<r<r-8, with 8qo=1-qg>0 and § the typical
lenght of the layer around the surface q(r1)=1; q(r)=1+8qq(r-r1)/8 for ri-8<r. In
such a case the solution for O< r<r1-8 is simply given by

2

e N By
(Bro-88q02) ~ (8)

Eo(x)

with v=-1+(1+Bko/8q02)1/2 and A being a constant determined from the matching
with the solution in the region r1-8< r. On matching the solution in the inner
region with that in the external region and taking, for the sake of simplicity, the
limit 8 =0, the following threshold condition is obtained
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dq0? 1 1 2]

@12A1 (Bro/8ao2)-8 "6 v (v+4)

9

with a1=4poRor1/r02B02 for a parabolic pressure profile. The solution of Eq.(9)
yields the following threshold B p value, for 8 qo<<fkol” 2 and 8q0>0:
45(m+p2) 102 2114,
—HEE IO 2 10
Pogan A1 r12(Ro) (0)
with p1+H2~ 0.65. In the limit 8qo>>Bkol/2 and 8qg>0, the following solution is
obtained

15(u+M2) g2 2r1.9,,
" 11
PP (on AL r12( ) (11)

Finally, for 8 qo<O the result of Ref.[5] is recovered, namely

45(u+p2) 102 2r14,9 3
s e Y (= 3(——)1/2
By 24360

( Ro
4n A1 r12 Ro

5
- 13qol (12)
In conclusion, we have shown that the effect of compressibility has a strong
stabilizing influence on the internal kink mode. For finite shear values inside the
g=1 surface the threshold Bp value given by Eq.(6) is about Bp=0.3 for 1-qo=0.2,
r1/Rp=0.1, r02/ r12=3 and parabolic pressure profiles. For 1-qo—0 the mode can be
stable also in the presence of a finite pressure gradient. The minimum Bp value

for 1-qo=0, r1/Ro=0.1, ro2/r12=3 and A1=1 turns out to be, from Eq(10), Bp=0.2.
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Two Novel Applications of Bootstrap Currents:

Snakes and Jitter Stabilization
A. Thyagaraja and F.A. Haas*
AEA Technology, Fusion, Culham, Abingdon, Oxfordshire, 0X14 3DB, UK.
(Euratom/UKAEA Fusion Association)
Abstract

Both neoclassical theory and certain turbulence theories of particle transport in toka-
maks predict the existence of bootstrap (ie, pressure-driven) currents. Two new ap-
plications of this form of non-inductive current are considered in this work. The first
is an explanation of the ‘snake’ phenomenon observed in JET based on steady-state
nonlinear tearing theory. The second is an active method of dynamic stabilization of
the m = 1 mode using the 4itter’ approach suggested by Thyagaraja et al in a recent
paper.

1. Introduction: The bootstrap current is a striking prediction of neoclassical theory!
which has received a measure of experimental support even though neoclassical trans-
port is not observed in general. It was suggested independently by Yushmanov??,
Connor-Taylor* and Haas-Thyagaraja® that there might be a turbulence-enhanced,
anomalous pressure-driven current associated with turbulent particle and energy losses
and possibly anomalous resistivity. In a recent paper®, we have reviewed various theo-
ries of particle and current transport in tokamaks and described their principal features
and differences. Here, we consider two contrasted applications: ie, DC bootstrap, in
helical geometry and use nonlinear tearing mode theory” to explain ‘snakes’ &; we sug-
gest that an AC form of bootstrap, in poloidally symmetric geometry could be used to
‘jitter stabilize’ the m = 1 mode®.

2. Snakes and bootstrap currents: We briefly summarise the salient features of
our theory of the nonlinearly saturated m = 1 tearing mode (the details will be pub-
lished in a forthcoming paper). Considering the nonlinearly saturated final states in
reduced MHD following an m = 1 linear tearing instability in tokamaks with Q@ <1,
asymptotics’ give a bifurcation relation, expressing the saturated island width w;ang in
terms of the shear parameter s. This relation involves the profile of the current density
inside the (unsymmetrical) island. This is different from the m > 1 problem studied
by Carrera et al '°. In contradiction to their assumption that the pressure gradients
within the island are flattened, the experimental observations of snakes show that this is
not necessarily the case for m = 1. Using the non-dimensional forms established for the
helical flux function *(Y, u, A), and defining the parameter o = (2—13)/s,s =r:id'(r:),
the nonlinear ‘inner’ equations are solved to give

* Oxford Research Unit, The Open University, Boar’s Hill, Oxford.
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2a fo [ T3 ohmic(¥) — 1] d¥ =1-2a f’ J; »(¥)d¥, where ) is proportional to the satu-
rated island width. The expression for J + ohmic Was already obtained in Ref. 7. J§ , i

calculated from neoclassical theory using the well-known expression for the bootstrap
current: ]“ = —k(}k )1/ 2_¢c r, where k depends on collisionality, ratios of density
and temperature gradlents etc All phenomenological models of anomalous bootstrap
currents lead to the same general form with & ~ (g)l/z. We treat all the cases in a
unified way, setting Ap = Praz — Pseparatriz- For an arbitrary pressure profile, F()
within the island, we get, J; (¥) = (5_132 &L, where, 6; = k.pri— (r' —rE—.(%)/2. The

bifurcation relation is a quadratic in A for given Ap and shear:

r=o(1 - s 1)

where ) = 3a* :iggf’ :‘ is the solution in the absence of pressure. The numerical

=
constant o* = [ 1A 2;‘1(’:) with 1 < @* < 3. The island width is then given by,
Wisland = 2AT;. Thls can also derived from Smolyakov’s'! Rutherford-type equation,
%"- = p.Dp [-1}7 e Tﬁ-fi] We use the notations, w = 2Ar; and wg = 2Aor;. When

63, is non zero, there are two real solutions, Ay, for sufficiently small pressure within
16662

the island:, 13 = A, [‘M‘ 0

%fxﬁoi > 1), there are no real solutions. As the pressure within the island rises, the

two solutions approach each other and disappear when the critical value is exceeded.
This result may indicate a ‘8 crash’ of the saturated m = 1 island. The smaller of
the two solutions with A = iﬂl leads to small, saturated islands even when s is not
small! The model predicts two dlstmct types of islands: purely Ohmic ‘hot islands’
with T, maxima within islands. With pressure-driven currents present, there could also
be a ‘cool’ island scenario with merely a pressure maximum within the island; the
temperature at the O-point can even be lower than at the separatrix and the resistivity
can also be high.

] If the island pressure is sufficiently high (ie when

In a recent paper, Gill et.® have documented observations of large, very localized pres-
sure perturbations observed in JET due to the formation of a small region on the
g = 1 surface which persists for a surprisingly long time, called the snake. The most
common type are pellet induced snakes. More rarely, spontaneous snakes associ-
ated with increased resistivity changes and impurity accumulation prior to the onset
of sawteeth are seen, as are more exotic double and negative snakes. We take a
typical example of a pellet-induced snake. Thus, case B (Table 1, Ref. 8) is a pel-
let produced snake with a lifetime of nearly 2 seconds. From experiment we take:
Ap ~ én.. T, ~ 2.0 x 10* ergs/cc. s = r; = 50cm; R = 300cm; B, ~ 3 Tesla. The
shear parameter s is not known in this case, but a reasonable estlmate is, s ~ 1071,
We now estimate 68; ~ .4 x 1072, Taking « ~ 1 we obtain, A ~ —2 ~ 0.16. ThlS
leads to, Wisigng ~ 16cm. This is in moderate agreement w1th experlmenta.l island
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width of 20 cm. The case of spontaneous snakes involves impurity accumulation and
increased resistivity. They are fairly rare and are not strictly steady-state phenomena.
It seems that pressure-driven currents within the island offer the most plausible ex-
planation for them as for the ‘negative’ snakes. Given the uncertainties in the theory
and measurements, the estimates, 685 ~ 5 X 107, wisang =~ 20cm for Case C, are in
qualitative agreement with experiment. There are no detailed measurements available
for the more exotic ‘double’ and the ‘negative’ snakes although the theory can also
account for them. At present, both the model and the data are in too primitive a state
to conclude definitely that the neoclassical bootstrap current is sufficient to explain
snakes via our nonlinear saturation mechanism.

3. Application of AC Bootstrap to Dynamic Stabilisation: Active control of
plasma instabilities, both of the dynamic and the feed-back variety can be expected
to play an increasingly important engineering role in the reactor regime where severe
constraints set by both gross/disruptive and fine-scale/transportive instabilities must
be avoided for both economic and safety/operational grounds. We consider the possi-
bilities of a type of active control of gross plasma instabilities suggested by the recent
paper of Thyagaraja et al® through the use of fluctuating pressure-driven currents.
We present some estimates of the possible requirements. Using Ohm’s law and taking
]”d to be the ‘noninductively’ driven current source (of whatever origin), it follows
that if jf ] (2"‘ )(X;%_—C(‘:SLT‘;) where A is the radial localization width of the driven
current, I * is the total maximum noninductive current and r, is the resonance radius
of the mode required to be jitter stabilized, the jitter amplitude of ¢ is obtained as,

~ (%)(Ipmm(“)) For stabilization of the m = 1 mode, we require, M’ﬂﬂ > 1.
ThlS shows that low frequency, strong localization, large amplitude and hlgh resistiv-
ity are ‘good’ for jitter stabilization. The localization width A is set by the method
used to drive the noninductive current. The general formula shows that as the colli-
sionality decreases, n decreases rather sharply with temperature (if assumed Spitzer,
or neoclassical) and the requlrements for penetratlon seem rather stringent. We get
the following condition on —E (_E)mw > (“R) (‘”A ), (ml—“a)—fg'g) where, A < L,,

728 = S/]T"’, o ﬁ?ar(’"BB) q= ﬁ;, s = "q"(r“ and fBS is the ‘bootstrap’
fraction. We ﬁrst consider the COMPASS example and take w < 3x10*sec™! (~ 5kHz),
va/R = 107sec™?, A = 2cm, rs/L, = 0.3, s = 0.1, fBS = 0.5, n, ~ 2 x 103/cm?,

T. ~ 1keV. Weﬁnd that —2 = € > 2% for stabilization to occur. This estimate is strictly
neoclassical. In the case of JET, we take: T.; ~ 5keV, n ~ 10cm=3 B, = 3Tesla,
Ts/Lp = 0.3, ff = 0.8, R = 300cm, Z.;; ~ 2, w = 10"sec‘1 A = 3cm. These param-
eters lead to (using neoclassical resistivity) va/R ~ 3 x 1063ec , N~ 2 x 107 8cgsu,
fAr =2 x 107® and € > 25%. This rather large perturbation can be considerably
reduced if the ‘anomaly’ factor is 5, for exa.mple For the turbulent bootstrap, in
the Haas-Thyagaraja model n = nN e+ 179( ) , where 74 could in general be very
much larger than the neoclassical term The frequency w in the plasma frame may be
achieved in various ways; for example by ‘switching on and off’ RF power or interrupt-
ing the beam suitably, etc. To estimate power requirements we suppose that the total
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power input to the equilibrium plasma is P;,; and the associated energy confinement
time is 7g; taking a to be the minor radius and Pjiuer to be the total power required
to jitter the plasma pressure by the realtive amplitude, %{3 at frequency w and radial

localization length A, we have, fli;;‘o;:' ~ (wTE).(ﬁf).(i;,é) and the condition,

P, jitter
—_ =
P, ~ (wre)-(

rsA. wR. ATA%w rs
- )4;).(4 iy @)

For COMPASS-type numbers, taking 75 ~ 10 ms, we find Pj.r to be between 5 to
10 % of the total power. In the case of JET the power fraction ~ 35%. Note that
this power is really applied in ‘bursts’ in a localized region and does not add to the
plasma . The present scheme relies solely on heating the plasma rather producing § jﬁ'd
directly. Note that although the effective resistivity is increased, this does not mean
that for a given total current the loop voltage or Ee:) is necessarily increased, since
an increased bootstrap current can compensate the enhanced resistivity. In analogy
with the well-known situation for the particle flux where the outward diffusive and the
inward pinch can cancel, perturbative measurements are needed to verify the turbulent
bootstrap.

4. Conclusions: Two different, new applications of bootstrap-like currents have been
presented. Quite apart from the importance of describing snakes and active control
using jitter techniques, the theory suggests experiments in both areas (DC and AC)
which are likely to provide valuable insight into the nature of current diffusion and
transport in tokamaks.
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Euratom.
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Magnetic equilibrium with fluid flow
in a large m=2 island at RTP

B.Ph. van Milligen
(Asociacién EURATOM-CIEMAT para Fusién, Avda. Complutense 22, Madrid, Spain)

N.J. Lopes Cardozo
(FOM-Institute "Rijnhuizen", PB 1207, 3430 BE Nieuwegein, The Netherlands)

Abstract

In recent work [1, 2] observations of a large m=2 island were presented that demonstrated the
existence of a pressure gradient across the island. This fact disagrees with the usual
assumption that the isobaric surfaces coincide with the flux surfaces. In [1, 2] a
phenomenological model was proposed in which the observed gradients are explained from a
short mean free path along the field lines due to the high collisionality in the outer regions of
the plasma.

In this work we address the same problem from the equilibrium point of view. We
describe the equilibrium in the presence of an island by means of a semi-analytical model. In
the presence of pressure gradients along the flux surfaces the forces due to grad(p) and j x B
do not cancel at all points in space. Due to the pressure gradient along the field lines, particle
transport will take place from the inside (high-pressure) region of the island to the outside
(low-pressure) region. Preliminary results indicate that the pressure gradient across the field
lines, along with the j x B force, can drive a compensating cross-field fluid flow from the
outside to the inside. This dissipative flow only occurs at sufficiently low temperatures (high
collisionality), because with low collisionality transport along the field lines is dominant.

We present a computer simulation of the m=2 island, partly based on experimental
data and partly on assumptions. The simulation demonstrates that fluid flow may be
important in equilibrium calculations in islands in the outer regions of the plasma.

1. Introduction

The computation of a tokamak equilibrium taking acount of the existence of islands is a
notoriously difficult problem, even when ideal MHD is assumed to be valid in most of the
plasma volume. The situation becomes even more difficult when fluid flow must also be
taken into account. Nevertheless, experimental observations (see section 2) lead us to believe
that is exactly the situation we need to describe.

In this paper we make a first attempt at trying to understand the complex equilibrium
with flow problem in magnetic islands. For that purpose, we rather arbitrarily define an
"equilibrium” flux and afterwards check that the chosen flux functions indeed lead to a
situation that can more or less be described as being in equilibrium. Of course, such a model
cannot lay claim to a high degree of reality, but we believe the excercise is instructive. Then
we observe how a deviation from equilibrium similar to the one we have observed in an
experiment leads to fluid flows.

2. Experimental observations and interpretation

Previously, we have reported on the observation of a large m=2, n=1 island on RTP [1, 2].
The RTP tokamak has major radius Ry = 0.72 m and the plasma minor radius is a = 0.165 m.
The observations were made in an ohmically heated discharge with plasma current I = 145
kA, toroidal field By = 2.1 T, edge safety factor q, = 2.8, cgntral electron temperature T ,(0) =
750 eV and central electron density n,(0) = 5.5 . 10" m™. A large rotating m=2, n=1 mode
occurred preceding a major disruption and lasted for about 12 ms., interrupted by a minor
disruption 3 ms. before the major disruption. The analysis of the island, 2 ms. prior to the
minor disruption, was made based on measurements of the poloidal field with a set of pick-up
coils, a 20 channel heterodyne ECE radiometer and a 19 channel FIR interferometer. We
observed both T,- and n_-gradients across the island. The T, gradients could be understood by
carefully analysing local transport across and along the field lines within the island, taking
account of the mode geometry. The n, gradients were more difficult to explain, although a
possible cause for both types of gradients was found in mode rotation with respect to the
plasma fluid. It was concluded that the island did not conform to the usual assumption that
pressure is constant on a flux surface.
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3. A simple mathematical model for an island equilibrium

Our model takes a simple analytical equilibrium upon which we superpose a disturbance that
generates an island chain. We shall use the toroidal coordinate system (r, 6, ¢) that relates to
the common cylindrical coordinate system (R, Z, ¢) by R =Ry +rcos 6 and Z =r sin 6.

3.1 An analytic equilibrium

We assume an "equilibrium" as given by profile-consistency considerations [3]: a low-B
plasma with circular and concentric flux surfaces. The current density is simply given as:

i) =jo (1+9x%)2, o
where x =r/a and a js the minor radius of the plasma. The central current density jg is given
by jo = Ip(1+q,)/(1ta2), where I, is the total pl=.ma current and q, the boundary safety factor.

The poloidal field is given by: and the g-profile by
'J'Ojoax 1+qax2
Bgx)=————, 2 = 3
o(%) 2 (1+q7) 2) q(x) q.( T+q, 3

Thus, taking a = 0.165 m (the RTP value) and q, = 2.8, the q=2 surface is located at r,;;, =
0.129 m. The plasma current L, is calculated from q, and By =2.1T: I, = 141 kA.
The total magnetic field can be written as

1
B=-—B¢e¢——§V\yxe¢ (O]

where By, the toroidal magnetic field and v is the usual poloidal flux. For simplicity, we take
B, constant and likewise R = Ry, so that our model is effectively cylindrical. Anticipating the
definition of a (m,n) magnetic island in Section 3.2, we introduce local coordinates (r, , ):

{ = m6-nd (coordinate across the field lines on an (m,n) rational surface) and

o,
= T"““ 0+ mi ) (coordinate along the field lines)
rmn

These coordinates are chosen such that V{ . VE = 0 on the rational surface. An alternative
manner of writing the magnetic field is then:

B = Vy x V§ + Viyg x VE, 5)
where the ﬂuxlcs ¢ and e are, in terms of the quantities of Eq. (4):
1
Y = P (EmBq,rZR/r,m1 + n\yrm/R) (6a)
1
e g (3~ ) =

where g, = MR/, + 0?1, /R. This way of writing the magnetic field has the advantage
that Vg vanishes on the rational surface, thus simplifying the description of the magnetic
field in the vicinity of the rational surface.

From Egs. (2) and (4) we calculate the main poloidal flux y:
HaioRoa” 2
\’I(X) = Ta In (1+qax ) (7)
such that g can be written, using Eq. (6b):

2 2 292 2
a“B, m(1+q,) a“By n2 9 X (X—Xmn)
cERef - IRy 23] S e Ot T -

Yo S T e R Ul Tag s i
This flux function contains all the information we need to describe the magnetic field
components perpendicular to the field line direction on the rational (m,n) surface. The
approximation on the r.h.s. of Eq. (8) is to second order in (x—%,,). The irrelevant constant C
is chosen equal to zero.
3.2 Theisland
The island, located on the (m,n) rational surface referred to above, is generated by currents
predominantly directed along the field lines on_the rational surface. Therefore, the island can
be described in terms of a single flux functiony that gives rise to a radial field perturbation.
We arbitrarily define the island flux as

" sy g ADTAD
\y§=—£2\1-(1+cosC)e (x=x)7/A (%a)
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where x; is the position of the island (x; = x,;), and N and A are factors determined by the
island width w and the amplitude of the radial field disturbance on x,. From the
approximation of e, Eq. (8), we find
w?By n2 q,2x 2 w/(2aA))? = N,

- Tm:'ﬁﬁ (WA gp B x,) = - 2;;';‘5 sin ©c)
Note that Egs. (9b,c) are in exact agreement with White's formula for narrow islands [4],
when w/(2a) — 0. The actual position of the island x is chosen by demanding that the force
jxB in the O-point of the island be very small. Note that x < x ., affects the interpretation of
measurements of external field fluctuations due to the island, usually assumed to be generated
at X = X, and thus affects calculations of island widths. From Eq. (9) the perturbed field B
and current density j may be derived by taking the appropriate derivatives (Eq. (5)).
3.3  Ideal MHD force balance
Ideal MHD equilibria must satisfy Vp = jxB. Thus, since the total magnetic field can be
written, in the presence of the island:

B = Vy x VE + V(yg + ) x VE,
and with the plausible assumptions that p = p(§, 1) and yg = y¢(r), it follows that
p= p(\v6+ Ve) = p(¥e). ] )

ne may ask to what degree Egs. (1-3) combined with Eq. (9) actually do constitute

an equilibrium. We choose B = 7 mT; w = 2.9 cm; % = 0.65. Egs. (9b,c) then yield N and
A and we compute the equiliﬁrium using Eqgs. (8) (the exact formula) and (9a). The flux ‘Pg is
shown in Fig. 1. Because X, < Xy, the island is asymmetric (in accordance with observation,
cf. eg. [5]). The radial component of the force jxB is much larger than its toroidal or poloidal
components (except in a few internal points of the island), so we may compute p(r,0,¢) to
good approximation by radially integrating this force inwards from the plasma boundary. The
condition p = p(¥) is satisfied to within 30% near the separatrix of the island, the deviation
being much smaller (around 10%) in the island interior (Fig.2). The large deviation from the
equilibrium condition near the separatrix is inevitable, because the island is embedded in a
plasma with a considerable pressure gradient through the X-points.
3.4  Deviation from ideal MHD: plasma flow
As mentioned in the introduction, we proceed to calculate the flow in the island. We assume
that some mechanism such as heat transport or mode rotation (cf. [1] and [2]) creates a
pressure gradient across the island. More specifically, we impose the pressure profile as it is
in the X-point region throughout the plasma. This must be regarded as an extreme case: in
reality the mechanisms cited above will never quite be able to establish such a situation,
although possibly they may come close.

In absence of ideal MHD equilibrium, the force balance equation must be modified.
The steady state in a constant-density magnetofluid is described by (cf. eg. [6]):

jxB—Vp=pvV?y (10)
where p is the density, v the kinematic viscosity and v the flow velocity. This equation allows
computation of the "flow" G = pvv under the assumption that v, also, does not depend on
space, given boundary conditions. We present preliminary results of this calculation. Fig. 3
displays the radial component of G in X- and O-point and Fig. 4 shows the flow field. It is
observed that the flow is mainly radial and converges close to the inner island separatrix.
Possibly the sink can be identified with transport along the field lines that twist around the O-
point and connect the high-pressure to the low-pressure region.
4. Conclusions
The semi-analytical island model presented in the present work can lay only limited claim to
reality. Nevertheless, it serves as a demonstration of the importance of flow in magnetic
island regions. The flow arises when some mechanism creates a pressure gradient across the
island. In earlier work candidates for such mechanisms were proposed (e.g. local transport
within the island or mode rotation). In general, these mechanisms tend to be effective only at
low local temperatures (T, < 500 eV). This flow possibly exerts a significant influence on
global radial transport, and it seems necessary to develop ways of estimating the size of this
effect. The present work provides enly a first attempt, and it is hoped that more realistic
models can be constructed in the future.
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PROPAGATING NONLINEAR MAGNETIC STRUCTURES

T.J. Schep*, F.Pegoraro** and B. Kuvshinov*
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I. Introduction

Coherent nonlinear magnetic structures, such as magnetic islands and current
sheets, have been studied in the zero frequency limit. In this case the current den-
sity is constant on magnetic surfaces. In high temperature plasmas however, resistive
modes are found to propagate with a finite velocity when diamagnetic and/or finite
gyro-radius effects are accounted for. It is thus important to investigate the dynamics
of such propagating nonlinear structures.

In this paper we discuss a physical model for such structures that include diamag-
netic velocities and finite ion gyro-radius and electron mass effects.

Propagating magnetic structures are largely governed by the motion of the electron
fluid. A number of features are rather independent of the ion response and are thus
valid for arbitrary values of the ratio of the thermal ion gyro-radius to the characteristic
scale-length of the structures.

These structure are characterised by a current density distribution that is not con-
stant on magnetic surfaces and tend to develop large currents at magnetic separatrices.
Electron mass effects arise from the electron inertia and from a finite gyro-radius con-
tribution to the stress tensor. In the highly non-collisional regimes of interest finite
electron mass effects limit the large current densities that arise at magnetic separatri-
ces. Current density gradients, however, can still be large.

A fluid Hamiltonian can be derived from the electron equations, under mild re-
strictions on the ion response, and the equations can be cast in Hamiltonian form. It
is shown that two infinite sets of conserved quantities ( Casimirs ) exist that reduce to
the 2-D reduced MHD Casimirs in the limit of zero mass and small ion gyro-radii.

II. Description of the Model

We model a low-f tokamak configuration by a plane slab, periodic in (y,z) and
inhomogeneous along the z-direction. The magnetic field is B = By(€, + &, x V).
The flux ¥ = ¥o(z) + \il(z,y,t) corresponds to the helical flux function in a torus.
Here, Uo(z) represents the flux of the shear field and ¥ the flux of a single helicity
perturbation.

The main equations that govern the non-linear magnetic perturbations are the
electron continuity equation and the momentum balance along magnetic field lines. In
this parallel balance we take into account inertia and a finite gyro-radius contribution

arising from the z-component of the stress tensor V- II |, = cmT/(eB,)é; X Vn - Vu,.

We consider structures that vary on a time scale that is fast compared to the
resistive time scale and that propagate along y with constant velocity w. Then, the



IV-1332 8-15

momentum balance and continuity equation are:

10 1

u .
zalnn:[lnn—i—zx—@, ]nn] + 7 [\Pe, J], (1)
10¥, u 5

;—gt——[lnn‘i'zm—q), ‘I’e]+d§[h1n7 ‘]]1 (2)

where all quantities depend on (¢,z, A = y—ut) and the brackets are defined by [ T g] =
€.-VfxVyg.In Egs. (1) and (2), n is the electron density, ® = e¢/T is the normalized
electric potential, a = ¢T'/(eB,), B = 47n,T /B2,

J=V¥, U, =0+40,/Q =7 -d2V?7, (3)

are the perturbed current density and the generalized flux function (momentum), d, =
¢/wpe being the electron inertial skin depth. The last term in Eq.(2) arises from the
stress tensor. It is seen that the generalized flux ¥, is conserved if this term is negligible
(zero electron temperature). In the limit of zero electron mass, ¥, and ¥ coincide and
the last term in Eq.(2) vanishes. In this limit the magnetic flux ¥ is conserved. In the
general case however, none of these fluxes is conserved.

ITI. General Properties of Stationary Solutions

In the stationary case (8/0t = 0) Egs.(1) and (2) can be written in the form
u Pe =
[®——z—Ilnn+="J, U, +p.lnn] =0, (4)
a Be

where pe is the electron gyro-radius. Equation (4) can be integrated, and the functional
relationship is determined by imposing that, far from the rational surface at ¢ = 0,
these expressions reproduce the linearized equations.

In case of a locally linear density profile, Inng(z)/no = —z/I,,, and a linear magnetic
shear field related to ¥y = —z2/2l,, these boundary conditions yield

(9+)® = fx, (5)
where 5% ; I % "
g+ =—ae}§(ﬂa—aeﬂ) + a:(q"‘lnm—aelz), (6)
and
fe=20,(¥, — U+ d.2J) + d,2 j:2dsln(%—ln#x)). (7)

where uy = afl,, a, = ufu, —1, B = B.I2/I%, T, is the reconnected flux and
d, = d.f*/?. Note that g4 and f+ are combinations of quantities that are even and odd
in z, such that they satisfy the mirror symmetry relation

g+(:c,/\)=g_(—:c,/\), f+(z,)‘):f—(_z7’\)' (8)

S —
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The even and odd parts of g4 and fi become of the same order for z = O(d,).

The functional relationship (5) is valid outside regions where f. lines are confined
to a finite part of the (z, A)-plane. These regions are separated by lines that connect X-
points given by Vg4 = V fi = 0. These points do not necessarily coincide with singular
points of ¥ or V.. Inside islands a different relationship between fi and g+ may hold,
which is determined by matching conditions across separatrices.

The previous results do not depend on the specific form of the ion response and are
valid for arbitrary values of the ratio of the thermal ion gyro-radius to the characteristic
length of the perturbation. For a linear profile of the background density, the ion
response to propagating modes is

=13+ %aiPQ, 9)

where 7 = T/T;, and a; = 14 Tu/u.. The shear field coupling to the parallel ion motion
and ion temperature gradients have been neglected .

In fusion plasmas the inertial skin depth d, is smaller than the ion gyro-radius p;.
In the MHD limit, where all scale-lengths are taken to be larger than p;, we may neglect
electron mass effects. Then the operator P in Eq.(9) is P = 1 4+ p;>V? and it can be
shown that the mode equation is

- B u V@, — U)H/2
A&l =_£_aipi2(—l)/2
(‘I}s _\I’)

(10)

l; ve

The large p; limit applies either to small structures or to regions close to the current

layers and the X-points. In this limit In[n/no(z)] = —7&. Upon adding and subtracting
g+® = f+ one obtains (o = sign z)

Caf G gty o geaB ozl
(1+7)@ o ke lnaG’, J=V \I’_(1+r)13[1 G]’ (11)
where G is positive and is given by
de_z I - . 1/2
G (2 Wy = Wb S =i ] (12)

Qe Ux 2ﬁae

Equations (11) and (12) show that in the limit of zero electron mass (d, — 0) the
current density becomes singular along the separatrices ¥ = ¥,. The finite electron
mass limits the current density through its contribution to the denominator G. Since
the current density remains finite and since we require finite electric fields, it follows
that G is proportional to z near z = 0.

IV. Position of X-points

The X-points of fi or, equivalently of g4 , are given by Vgi = 0. Near the
outermost X-point at (z,,),) we write, for a regular current distribution, G = a, +
a(z — z5) + ..., where a,(> 0) and « are related to the current density and its radial
gradient at the X-point. Using Eqs.(6) and (11) the functions g+ can be expressed in
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terms of G and z. From Vg = 0 one finds that the position z, of the X-point is
z, = O(d,) and that o, = O(d,) and & = O(1). In the limit ds — 0, the current density
at the X-points remains finite and all X-points coincide.

V. Hamiltonian Formulation

The following energy integral can be obtained from the general Eqgs. (1) and (2),
Bk /d%{l(v\y)? + Lo + 16, [(nn) +2%0lan - 8l =]} (1)
2 2" 2" a no(z)

In its derivation it has been assumed that the ion density response In[n/no(z)] is related
to the electric potential through a linear, self-adjoint operator.

The total energy can be considered as a Hamiltonian that is a functional of Inn
and ¥, . On the basis of Eq.(13), Poisson brackets {F,G} can be defined and Eqs.(1)
and (2) can be cast in Hamiltonian form. Functionals C that annihilate the Poisson
brackets {C, F} for arbitrary functionals F, are the Casimirs of the problem. One finds
two infinite sets of Casimirs

Cy = /dzz F(¥, £ pelnn). (14)

In the MHD limit, v — 0 , m¢ — 0 and Inn « V2® , these sets reduce to the well
known Casimirs of 2-D MHD: C; = [ d?z F(¥) and C; = [ &z w G(¥) where w = Ve
is the vorticity.

VI. Conclusions

A set of equations has been derived that describe propagating non-linear magnetic
structures. These structures tend to develop large currents at magnetic separatrices
that are, however, limited by electron mass effects. This set of equations contains two
infinite sets of conserved quantities that are functionals of U —d?J + p.Inn and are
valid for arbitrary values of the ion gyro-radius p;. Near separatrices and X-points of
U —d?J = pelnn, the radial scalar-length becomes small and the large pi-limit of the
jon response applies. The position of the outermost X -points of ¥ — dgj + pelnn is
z, = O(d,) and does not coincide, in general, with the position of the X-points of the
magnetic flux ¥.
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Differential mode rotation and the sawtooth
instability in Tokamaks

R Fitzpatrick, C G Gimblett, and R J Hastie
AEA Technology, Fusion, Culham, Abingdon, Oxfordshire, 0X14 3DB, UK
(Euratom/UKAEA Fusion Association)

Abstract

We present a model of the sawtooth trigger mechanism in a tokamak. Central to the
model is the interaction between differentially rotating ¢ = 1 and q = 2 surfaces. The
electromagnetic torque due to the m/n = 2/1 toroidal sideband of a 1 /1 mode acts
at the 2/1 surface so as to bring about co-rotation of the two surfaces. As a result
of this the perturbed magnetic field penetrates through the ¢ = 2 surface from the
plasma interior. This in turn further destabilises the system through toroidal coupling,
precipitating the sawtooth crash phase.

1. Introduction. We propose a model of the sawtooth crash trigger that uses ideas
similar to those employed in the interpretation of resonant magnetic perturbation ex-
periments carried out on the COMPASS-C tokamak!. In these experiments, a static
external coil created a perturbing m/n = 2/1 helical field which induced an electro-
magnetic locking torque at the (rotating) ¢ = 2 surface. Initially, the rotation of the
¢ = 2 surface shielded the plasma interior from the applied perturbation, but above a
critical amplitude of the coil current the ¢ = 2 surface was suddenly brought to rest,
simultaneously permitting the field to reconnect through ¢ = 2 to the plasma interior.
In the case of the sawtooth, we imagine the driving helical perturbation to be due to the
presence of a rotating 1/1 displacement of the plasma inside the ¢ = 1 surface, caused
by the natural instability of the 1/1 mode. Due to toroidicity, this perturbation has a
2/1 sideband component that exerts an electromagnetic torque at ¢ = 2. In general,
the ‘natural’ rotation frequencies of the ¢ = 1 and ¢ = 2 surfaces are not the same,
but above a critical amplitude of the 1/1 perturbation the torque acts so as to bring
about co-rotation. Reconnection can then proceed at ¢ = 2, allowing field penetration
through this surface into the previously shielded plasma exterior. As reconnection at
¢ = 2 occurs, the 1/1 driving mode is further destabilised due to toroidal coupling.

In this paper we give an outline of the basic features of the model. Full details will be
provided in a future report.

2. Analysis and model equations. Our starting point is to assume the presence of
a 1/1 mode, and then calculate the profile of the associated 2/1 toroidal sideband. In
fact, we need only quote the result?

(rafha = rafhyyy) Waps(ra) = —6Wiy € Boko. (1)

Here, {o is the 1/1 top-hat displacement, r; and r; are the radii of the g=1and 2
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surfaces, & = r1/Ro, Ro is the major radius, Bo the toroidal field, Az the well-known
stability index associated with the logarithmic discontinuity of the poloidal flux at the
q = 2 layer, A}, nis the (toroidal) potential energy of the 2/1 mode®, ¥y (r2) the value
of the reconnected poloidal flux there, and §Wy; is a toroidal coupling integral. Let
—6Wyg €2Boo = D1y exp(i)y) where Dy1 represents the amplitude of the 1/1 driving
term, and \; gives the phase of {. Similarly, writing ¥z/1 (r2) = Tayy exp(idz), we find
from (1) that

r9lgp = TZA;/l + D11/ Y2p1) expi( A1 — Aa). (2)

3. Electromagnetic and viscous torques. Electromagnetic torques can only de-
velop inside the resistive layers. The toroidal torque acting at the ¢ = 2 surface
o ¥3,Im (rzA21),*° and is given by
212 R, Im(rA
T¢EM2 = XDf/l (2 2/1?
o |T2A2/1 - TZAg/l‘

7 ®3)

using Eq.(2).

Neglecting plasma inertia in the outer regions, the change in the steady-state toroidal
rotation profile AQy(r) induced by electromagnetic torques satisfies
d/dr(rpydAQy(r)/dr) = 0 where p) (r) is the (anomalous) perpendicular viscosity***®.
The rotation produces balancing viscous torques when AQy(r) suffers gradient discon-
tinuities across the layers. Assuming that edge interactions are sufficiently strong to
give AQy(ao) = 0 we can solve for AQy(r) :

Td’ EM2 [™ dr :

- _— 0<r<
47‘-238 s T’l‘J.(TI) srsn,
AQy(r) =4 Typmz [ _dr rri (4)
an?R3 Jr r'pa(r') ¥ ’
0 ro < r < ag.

4. Layer physics. In a typical ohmically heated tokamak the layer dispersion relation
at g = 2 takes the form r3Ag) = —i(w — wy)T2, where w is the rotation frequency of
the driving 1/1 perturbation and w, is the natural frequency of the 2/1 mode. This
relationship describes ‘visco-resistive’ layer physics and an asymptotic layer analysis
gives T 2.1'r,1,/ 37'}52/ 67"71/ ®, where 7y,7r and v are local hydromagnetic, resistive
and viscous timescales respectively. The driving 1/1 displacement of the core rotates
at the natural frequency of the 1/1 mode, w;, Doppler shifted by the changes in-
duced in toroidal plasma rotation due to the action of electromagnetic torques, so that
w = w; — AQy(ry).

5. Torque balance. Combining all these ingredients, torque balance at the rational
flux-surfaces yields
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1|E0|2 w - A W—wy _ (_T'2A'2/1)

T a2+w2—1—-w, where w_u-h—wz’ a= T —alm’ (5)
1/ Ros; \? TH(Tl) ™ iy (1)

A = = (—) X (w; —w / 6
2 \6Wi,¢q (wr 2) 'rV (r1) " rm_(r) (6)

and s; = r1(q'/q);,. The first of Eqs.(5) is similar to that obtained for the ‘slip-
frequency’ of a linear induction motor, and displays bifurcated solutions for a2 < 27(7,

According to Egs. (2) and (5) the reconnected magnetic flux driven at the g = 2 surface
satisfies

‘1’2/1 = \Ilg'ﬁa(az + @2)—1/2, where \1112-‘71:{ = DI/I(—-TZAIZ/l)_l (7)

is the fully-reconnected flux (i.e. that achieved when there is no frequency mismatch
between the ¢ = 1 and ¢ = 2 surfaces).

In many tokamak plasmas we have |w; — wy|m, > 1%° | implying o < 1. In this limit
Egs. (5) and (7) yield

2w o~ (Wi +ws) + (w1 —we)y/1 — |&2/A2,
Top = UGR(a/2)(1+ /(1= [&[2/A2)7 ®)

for |éo] < A, and

w N wy+ 402((01 — wz)A2/|fO|2:

Uop = UHA(L+16a2A%/|¢o|*) /2 9)

for |&| > A. Thus, for |¢| < A the core displacement rotates close to the natural
frequency of the 1/1 mode, and there is virtually no magnetic reconnection induced at
q = 2. As [{o| is slowly increased, there is a gradual change in the rotation frequency
of the core displacement until, at |&| = A, it lies mid-way between the natural fre-
quencies of the 1/1 and 2/1 modes. At this stage there is still very little reconnection
at ¢ = 2. Any further increase in the amplitude of the core displacement leads to a
discontinuous change in its rotation frequency to a value which is very close to the
natural 2/1 frequency. This process is termed the mutual ‘locking’ of the 1 /1 and 2/1
modes. After locking there is substantial tearing at the ¢ = 2 surface, and the driven
reconnected flux there closely approximates to its fully-reconnected value.

6. Growth rate after mode locking occurs. As a general point we can expect an
increase in the growth rate of the system as before locking the 2/1 harmonic ‘sees’ an
effective ideal wall at ry, after locking the effective wall is removed to ao(> r2) and this
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will have a destabilising effect.

7.Estimation of core displacement. A crude estimate of the critical core displace-
ment required for co-rotation can be obtained from Eq. (1). We assume the g = 2 sur-
face to be fully reconnected, and for uniform current density we may take ryA; n~ =1
and §Wyp ~ 2(r1/ry)%. Taking ry ~ ao/3 ~ ry/2 we find & ~ 12(Ro/ao)2(b3/1/Bo)ao,
For the COMPASS-C tokamak! (R = 0.56 m, ap = 0.2 m, By = 1.1 T) the critical
field needed to lock ¢ = 2 is observed to be b2/1(r;) ~ 10~2 T. This field can be pro-
duced by a shift of the core of magnitude {; ~ 1.7 cm. In the DIII-D device (Ro = 1.67
m, ap = 0.64 m, By = 1.3 T) if we take b/!(rz) ~ 10~ T, then the associated core
displacement is €y ~.0.4 cm. Finally, for JET (Ro = 3.0 m, ap = 1.1 m, and B, = 3.0
T) and again taking 2/1(ry) ~ 10~* T gives £, ~ 0.3 cm.

8. Discussion. A number of experimental observations of sawtooth behaviour might
be interpreted with the aid of the foregoing model, and these include :

(i) Experimental evidence that modification of bulk plasma momentum, for instance
with the use of neutral beams, has a strong effect on the sawtooth period.

(ii) Evidence that the RMP experiments on COMPASS-C which lock the ¢ = 2 surface
lead to the removal of sawteeth.

(iii) The reconnection event at ¢ = 2 may correspond to the appearance of the so-called
‘gong’ mode® at the time of the sawtooth crash. Further, measurements of centroidal
displacement indicate two distinct growth phases. This could correspond to the ¢ = 2
reconnection further destabilising the 1/1 driving perturbation.

(iv) As noted®®, there is a strong scaling of the locking phenomenon with device size
and if this interpretation of the sawtooth trigger is largely correct it might help to
explain the existence of ‘precursorless’ sawteeth in the larger tokamaks.
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BETA LIMITS FOR TOKAMAKS
WITH A LARGE BOOTSTRAP FRACTION

A. Bondeson
Centre de Recherches en Physique des Plasmas, Association Euratom -Confédération Suisse,
Ecole Polytechnique Fédérale de Lausanne, Lausanne/Switzerland

I. INTRODUCTION. There is currently a strong interest in the possibility of operating a
tokamak in steady state with the major part of the current coming from the bootstrap effect,
supplemented by some "seed" current in the central region, e.g., from radio frequency current
drive. There are several open questions concerning such bootstrapped tokamaks, e.g., the beta
limits and the amount of current drive required. The bootstrap current tends to broaden the
current profile, which typically has detrimental effects on the confinement time and beta limit
[1]. A theoretical estimate for the beta limit of a bootstrapped tokamak limit was given in [2].
It was shown to scale as e1/2g2cyg (1+%2), where g = B/Iy is the Troyon coefficient, Iy =
I[MA]/(a[m]B([T]) the normalized plasma current, K is the elongation and Cps quantifies the
efficiency of the bootstrap current generation. Although analytical estimates can be given for
Cps> and the behavior of g is quite well known, a realistic assessment of the bootstrapped
tokamak requires quantitative knowledge of what values of g and cpg can be obtained when the
current and pressure profiles are related by the bootstrap mechanism. Here, we address this
question by global numerical calculations and compute beta limits for bootstrapped tokamaks
with differently shaped cross section. The main result is that this beta limit is highly sensitive
to shaping and increases with elongation and triangularity.

II. PROFILE EFFECTS. In tokamaks operated at high current, the beta limit generally
increases with the internal inductance; g < 4/; is reported from DIII-D [1]. This is characteristic
of the "first stability" regime of high-n ballooning modes. The pressure profiles that are
optimal for MHD stability are rather broad with peaking factors (PPF = py/<p>) typically
around 2. (Experimentally, the highest beta values tend to occur for more peaked pressure
profiles, which may be in the second stability regime in the central region due to negative shear
[3D). At high poloidal beta, the bootstrap mechanism broadens the current distribution, which
is destabilizing for the n = 1 free boundary kink mode. On the other hand, for current profiles
with low shear in the central region, the high-n ballooning modes can enter into the "second
stability" region. This transition is favoured by D-shaping and high q. The possibility that also
the external kink mode of toroidal mode number n = 1 could reach second stability was
suggested in [4]. Figure 1 shows the results of an attempt to test this, using the ERATO
stability code. The figure shows g-factors vs. internal inductance for the free boundary stability
of strongly D-shaped equilibria with broad current profiles, 0.5 < /; < 0.8 and 1.8 < go <5 and
peaked pressure profiles, 3 < PPF < 4. In this paper, we use the following definitions for beta,
poloidal beta and internal inductance

2
_ 2ug<p> _ 2ug<p> = <B>
ﬁ == B2 ) ﬁp = 2 > li= 2 B (1)
shE <Bp>; <Bp>;

where <e> means volume average and <Bp>s =Wg Ip/ L, with L the plasma circumference,
denotes the line average on the surface. The moderate g-factors in Fig. 1 show that the free
boundary n = 1 mode does not reach second stability for equilibria of this type, even for very
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high qo. Nevertheless, Fig. 1 shows some reminiscences of second stability, e.g., g increases
with decreasing inductance when the pressure profile is peaked. Thus, for highly shaped
equilibria with peaked pressure and broad current profiles, the I;-dependence is opposite to that
found in the standard regime of high inductance and broad pressure profiles. When the data
points in Fig. 1 are plotted vs. the pressure peaking factor we find that for PPF > 3, the g-
factors decrease strongly when the pressure is further peaked.

26 —Wg . 8 d
“Iu} B% k=258=08
g [o g
24 0O ", 1 6
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g s S &
22} A ° . P ® 4 3
A
; A L ]
R A 2 \/'\\
o o 9
k=16,8=03 ;
1.8 ;s 0 N A
0.5 0.6 0.7 I 08 V.40 0.60 § 0.80
FIGURE 1. g-factors vs. l; for peaked pressure  FIGURE 2. Optimized B vs. bootstrap
profilesand A= 3, k=25, 6=0.6. fraction f for different cross sections.

III. NUMERICAL RESULTS. A beta-limit study for bootstrapped tokamaks has been
carried out with a partial optimization of the profiles. Profiles are specified for the surface
averaged toroidal current density I*(y) = <jy/R>. Then, the pressure profile is chosen so that
the parallel bootstrap current [computed from the formulas of Hirshman [5] with Te = Tj = TZ
=1, and 1| = d(log T)/d(log n) = 1.5] is a fixed fraction of the total parallel current for all vy,
except in the center where a cut-off has been applied to dp/dy. The resulting pressure peaking
factor is generally between 2.5 and 3. The total bootstrap current is computed as

<jps*B>
e ] B2 s - 2
¢ = const

The current profile has been varied over a restricted set with I* = 0 at the edge to find an
optimum for the beta limit. With the pressure and current profiles related so that the bootstrap
fraction is (almost) independent of vy, the optimal current profiles are broad, in particular, for
strongly shaped cross sections. It appears that the geometrical effects of shaped cross sections
on the g-profile favour broader current profiles, and this is advantageous for the bootstrapped
tokamak. The numerical results are shown in Fig. 2 as Byax vs. the bootstrap fraction f =
Ips/Tp. The curves represent three different cross sections, one JET-like with elongation k =
1.6 and triangularity 8 = 0.3 and two DIII-D-like (k = 2.5 and two triangularities & = 0.6 and
0.8) all at aspect ratio 3. The figure shows that D-shaping has a clearly favorable effect. The
results indicate that operation with a high bootstrap fraction should be of interest in strongly
shaped machines such as DIII-D and TCV, while this scenario gives very low beta limits in
weakly shaped machines such as JET.
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IV. THEORY. Analytical arguments [2] can be applied to the numerical results to
understand the dependence on shaping. The equilibria can be characterized by two figures of
merit which determine the beta limit of the bootstrapped tokamak. These are the Troyon coeffi-
cient g = B[%] / Iy and the bootstrap factor cyg, defined by writing the bootstrap fraction as

I
f= 2 =cpel2B, . (€)
p

The definition (3) is motivated by the following considerations. To lowest order in inverse
aspect ratio, the bootstrap current density is

jbs = ¢ &(W)/2 Ry (dp/dy) ; (4a)

where ¢ = [2.44(T¢+Tj)n' + n(0.69T,'-0.42T;)]/p. In the numerical examples, Te=T; and n =
1.5, so that ¢=0.9. Assuming a flat g-profile and parabolic pressure profile, the total bootstrap
current can be integrated to give Iy = 3.27 ¢ €12 Ryq<p>/Bg, which may be rewritten as

Bl%]
Iy

- Ihs[MA]

LN = alm]By[T] (4b)

=0.2cel2 aln
5e

Furthermore, the definitions (1) imply Bp= (B[%]/‘qu) (L/2ma)2, thus (4b) gives (3) with cyg
= 0.8c (qIn/5€) (2ra/L)2. In the case of an elliptical cross section and q = constant, the
geometrical factors in cpg almost cancel because qln/5€ = (1+%2)/2 = (L/2ma)2. Consequently,
Cps should be independent of ellipticity and approximately equal to 0.8c. Of course, in general,
Cps also depends on the pressure and current profiles. Taking the square of the Troyon law the
beta limit can be expressed as B[%]Bp < (gr2n ax/4) (L/2ma)2. In combination with (3), this
gives the following beta limit for the bootstrapped tokamak

BI%] < €2g)  (cos/4D) (L2ma)2. ©)
It also follows that there is a limit to the bootstrap current set by MHD stability
IsN <€l2g  (cpy/4) (L/2ma)’. (6)

For weakly shaped cross sections, Eq. (6) gives rather low values of the bootstrap current.
Examination of the numerical results in Fig. 2 shows that for each geometry and self-similar
sequence of I*-profiles, gy,x and cpg are approximately constant for bootstrap fractions f
between 50 % and 70 %. Thus, the 1/f scaling for the beta limit in (5) holds quite well and the
results can be summarized by giving g,y and cps. These are quoted together with B at70 %
bootstrap fraction, /j and I in Table I for equilibria of different cross sections, with profiles
optimized as described in Sec. II. Table I underlines the favorable effect of shaping on the beta
limit of bootstrapped tokamaks. Note that even modest variations of g affect B significantly
because g is squared in (5). It appears that g is slightly reduced by ellipticity but increased by
triangularity. For the bootstrapped current profiles with <jps*B> = f <jeB>, g reaches the
highest values for rather low /; . The optimal current profiles are flatter the more shaped the
cross section is, as seen from the values of /; in Table I Furthermore, g decreases if the
pressure profile becomes too peaked, say PPF > 3.
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K 4 Cbs g B [%] Tps,N 5
1.6 0.3 0.82 2.23 1.6 0.50 0.72
2.0 0.5 0.82 2.63 3.2 0.84 0.64
2.5 0.6 0.83 2.68 4.7 1.24 0.56
2.5 0.8 0.80 3.06 6.2 1.39 0.56

TABLE I. Characteristics of beta-optimized equilibria with 70 %
bootstrap current in different geometries at aspect ratio 3.

The bootstrap coefficient cy is insensitive to the equilibrium profiles, although broad

profiles give somewhat higher values because of the &51/2/Bp weighting in (4a). As seen from
Table I, cyg is also almost independent of the shape of the cross section and is close to the
simple analytical estimate 0.8. (cpg increases somewhat with the peaking of the density relative
to the temperature, which has been held fixed in this study, although this dependence is weaker
at low aspect ratio.) The profiles of pressure and parallel current <jp*B> and <jeB> for the
case k = 2.5, 8 = 0.6 (with 70 % bootstrap current and B = 4.7 %) are shown vs. s = y1/2 in
Fig. 3. The current profile is nonstandard and very broad. It is clear that this type of profile
may be difficult to maintain and control in steady state.

8
<j*B-tot> i 100%p
3
2 q
0 0.5 .o 148 o8 05 . 1.0

FIGURE 3. Profiles of parallel current <jeB>, pressure and q vs. s = Y2 for an equilibrium

with 70 % bootstrap current, B=4.7 %, k=2.5, 6= 0.6 and A = 3 (see Table ).
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ON THE OPTIMIZATION OF A STEADY-STATE BOOTSTRAP-REACTOR.

A.R.Polevoy*, A.A.Martynov+, S.Yu.Medvedev '
(*) - RRC "Kurchatov Institute", Moscow, Russia
(+) - Keldysh Inst. of Applied Mathematics, Moscow, Russia

INTRODUCTION: According to [1] , a ocommercial fusion
tokamak - reactor may be economically acceptable only for low
recirculating power fraction Ty = Pyp/P, < 0.2. This
restriction corresponds to high bootstrap fraction Opg = IBS/I
> 0.9 to sustain the steady - state operation mode for high
plasma densities <n> > 1.5 1020 3, fulfilled the divertor
conditions. This paper presents the approximate expressions for
the optimal set of reactor parameters for r « 1, IBS/I -
based on the self - consistent plasma simulations by 1.5D ASTRA
code [2]. The linear MHD stability analysis for ideal n = 1
kink and balooning modes has been carried out to determine the
conditions of stabilization for bootstrap steady state tokamak
reactor BSSTR configurations.

ASTRA TRANSPORT MODEL: To reveal the proper parametric
dependencies, the reduced version of 1.5D ASTRA code [2] has
been used. In these calculations we used the prescribed
electron density profiles: N, = neo(1 - xe)an, with x = r/a,
@g> = 1.5 - 2 10°°n™3, 0 =0 and a = 0.5 (ITER standard). All
other parameters were calculated self-consistently: the heat
transport with ion and electron heat fluxes Q.= YnvT, xe-xl—
XO(1 + axxe), =0 - 2, thermal alphas particle flux: P
Dvn, + vn,., with D = 1 m/s, V= 2rD/a s Ny = Ny = (n - 2 Z
nz)/2, plasma current transport with neoclassical oonduotivity
by Hirshman .

PLASMA CURRENT: The bootstrap - current distribution was
calculated by Hirshman formula [3] together with the bootstrap
fraction, induced by fast alphas [4]. To provide the flat gq
distribution near the magnetic axis we use the deuterium NBI
with a square footprint cross section of 1 me, neutral particle

energy of E_ = 1.3-2 MeV, the input power P., = 75 - 95 MW and
b CD
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tangential radius R - a < Ry < R according to [5] .

PARAMETRIC ANALYSIS OF A BOOTSTRAP - REACTOR: Using for @
the parametrical dependence: B = g I/aB, where g " 107° is
treated as a variable parameter, one obtains, according to [6]1,
for fusion power and neutron flux density:

Pous” BB = 40 ap kR (g T B app)? s )

FN = 0.8 Pqu/S ~ 0.04 Pfus/ aR (+ 1),
with Opp= nDT/ne _ the fuel fraction in the hot core, Oy = 1 =
the profile dependent parameter. All the variables are in
practical units: I[MA], BIT], PIMW], a,R [m]. Using the same {
dependence for the energy confinement time, one can obtain: Tgx
11 g k I B R a/Py 4 with Py v = Py + Pop ~ Prap = Pa(1 + r),
Pd, = 0.2 Pfus’ PCD _ the auxiliary heating power, PRAD
radiated power. Then, substituting Ty into the JET - DIII-D

= - i . = = 1.03 ,1.48
elm— free H- mode scaling law : Ty = TH-8F = 0.106 T R /

P%646 we can reveal the approximation for the plasma ocurrent:
I x28a (& (147)ap) /R H dpp, @)
with H = T/ gp ~ the H - mode enhancement factor.
The bootstrap fraction Opg has rather complicated dependence on
q, T, n profiles [7]. In a bootstrap - reactor with the proper
seeding current the q profiles appeared to be similar, with
qo/q95 ~ 0.5, so according to [7]1, the bootstrap fraction can
be described by known approximation [8] at least for peaked
density profiles a, = 0.5: Opg = 0.7 B (a/R)O'5 ap , with a
poloidal beta f_ x 25 & k B a/I and o_ — the profile dependent
factor a, % 1 for o, = 0.5, and Op % 0.72 (x (a/R)O'35 see [8])
for flat density profiles. Thus
g B & 1.3 agg/(k (147) a R ap) " H ajony (3)
substituting (2), (3) into (1) one can obtain:
R 2 10 43 (1 HF /72)"1/3a2/3( (1+1))
noF Opg~ (OO
To minimize the magnetic field on the coil with any prescribed
neutron shield thickness A : B, = B/(1 - (a + A)/R), we obtain
from (3) in contrast with [9], that the optimal minor radius for

bootstrap reactor:

-2/3_ (4)
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ax (R-A)/3 . (R/a ~ 3) (5)

The magnetic field minimum is realized for f maximum
corresponding to Troyon limit:

g = &pp (6)
Taking into account the limits ﬁp + 1i/2 < R/a and Bomay = 12 -
16 T, we obtain the set or equations (2)- (8), which determines
the operational limits for the steady - state bootstrap tokamak
- reactor.

R/a > 2(dpg/0.85a,)° (7)

Bc < Bo max” (8)

MHD STABILITY: Linear analysis of the ideal MHD stability
with a free boundary has oconfirmed the result [9], that low n
ideal kinks can be stabilized by placing a conducting wall at
1.2 times the plasma minor radius (an/aW = 1.2). This enables
also to increase the Troyon limit to gTr"‘ 0.04 and operate with
reliable B0 values, Bo < 12 T. The distance to the conducting
wall can be increased if one increases the edge shear by the
counter-current-drive at plasma periphery [10].

BSSTR'CONFIGURATIONS: Some BSSTR configurations with Opg =
0.9, B, <12 T, app, = 0.85, H=1 (Tpx 1.9 - 2 L, ITER-POWER
were determined by solving the set of Egs. (2) - (6), taking
into account the restrictions (7), (8) (see TABLE 1), and
verified by 1.5D transport simulations.

SUMMARY:

1. BSSTR optimization depends on the densi»ty profile and
fuel dilution. It is possible to achieve the steady state
bootstrap operation in configuration, suggested in [1] for H-
mode (Ty x 2 T, ! [6]), pure plasma (n.,/n_~ 0.8-0.85)
with pgaked dgngTi;E;? Ppox'woiizfp;ile n ~ (1 xe)o'gi)', eple.cilrlg the
conducing wall at a, = 1.2 a.

2. It is possible to achieve the BSSTR operational regime even
for a flat density profile in high aspect R/a > 4 (high ﬂp)
configuration.

3. Forn ~ (1 - 1(2)0‘5 the optimal aspect ratio for BSSTR is
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R/a x 3, for flat profile BSSTR aspect ratio is restricted by
ﬂps <1 (R/a > 4).
4. The value of plasma current I at the flat top is determined
by plasma dilution App because of scaling degradation: g "
P_1/2, P~ ﬁ%T (Eq.2). It is difficult to provide burn control
for Q» 1 (r«1).

TABLE 1
F [MW/m®] k °  RIm] alm] I[MA] B[T] g%
2.9 1.61 T+75 2.8 14.5 6 4
T 1.61 10 2.9 12.8 7 3
2 1.8 9.6 2.8 13.4 6.9 3
1.6 1.8 13.34 3] 11.35 8.1 3

Italic: Flat density profile ng = const
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ALFVEN GAP MODES IN ELONGATED PLASMAS
L.Villard, J.Vaclavik, S.Brunner, H.Liitjens, and A.Bondeson

Centre de Recherches en Physique des Plasmas
Association Euratom - Confédération Suisse
Ecole Polytechnique Fédérale de Lausanne
21, av. des Bains — CH-1007 Lausanne/Switzerland

1. Introduction. In the context of the potential destabilization of Alfvén eigen-
modes by fusion particles in tokamak reactors'~3, it is crucial to develop a qualitative
and quantitative theoretical prediction of the behaviour of these modes. Experiments
are being planned at JET to excite gap modes using saddle coils. The aim of this paper
is twofold. First we investigate the feasibility of gap modes excitation with saddle coils
in typical JET type equilibria (single-null, up/down asymmetric configurations). Second
we derive expressions for the wave-particle power transfer (in particular fast particles
such as fusion alphas) that are ready to be used in global calculations of the damp-
ing/growth rates. Previous works on this type of instability® were theoretical analytical
estimates of local growth rates.

2. Antenna excitation of gap modes. In order to compute ideal- MHD up/down
asymmetric equilibria, modifications have been made on the CHEASE code?. In the
actual version, plasmas with a separatrix cannot be computed and the computational
boundary only a?proa.ches it. The equilibrium quantities are transferred to the global
wave code LION®. The LION code solves the weak variational form of the wave equation
with a linear finite hybrid element discretization. It computes the continuum absorption
(in a non-perturbative way) and electron Landau damping due to parallel dynamics and
to curvature drift in a perturbative way. The plasma is surrounded by a pure vacuum
region enclosed by a perfectly conducting wall. In the vacuum region, the saddle coils

are modelled by a thin current carrying sheet D(Z) = 0. The antenna current is written
as

7.=8(D)VD x Va
a(f, ) = zan(a)e‘("""“"), an(0) =an 6, <0<0,,

where 0, and 6 define the poloidal positions of the toroidal sections of the saddle coil and
¢ is the toroidal angle. The coefficients g are obtained by making the toroidal Fourier
decomposition of the actual saddle coil currents. The axisymmetry of the equilibrium
allows us to compute the plasma response separately for each n. First the solution of
the wave equation and the coupled power P,(w) are computed with o, = 1 for each n
and for various frequencies w. To obtain the coupling impedance of a particular toroidal
antenna (or antenna array), we evaluate

Rw) = % (E IZPn(w)) :

where I,, are the Fourier coefficients of the antenna current and I, is the total antenna
current amplitude. It is planned to have up to 8 saddle coils in the JET torus. Each of
the coils extends almost 7 /2 in the toroidal direction. With different relative phasing
of these antennas, different Fourier coefficients I, are obtained. It is thus possible to
select the dominant toroidal wavenumber n of the excited TAEs. An example of antenna
coupling calculation is shown in Fig.1. The plasma parameters are By = 3.45T, Ry = 3m,
@ =1.05m, k = 1.63, n, = 5 x 10°m3(1 — 0.952)°%, g = 1.1, ¢, = 3.34, I = 5.0MA.
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B = 3.9%, Bpor = 0.78. Only the top saddle coils are activated. The dotted line in Fig.1
corresponds to the case of 2 top saddle coils at opposite toroidal locations with currents
in phase opposition (+-), and the continuous line corresponds to the case of all 4 top
saddle coils with currents in (+-+-) relative phasing. The 2 (+-) case excites mainly
n = 1 modes but no n = 2 mode, wheras the 4 (+-+-) case excites mainly n = 2 modes
but no n = 1 mode. It will therefore be possible to distinguish between TAEs having
neighbouring frequencies but different n’s (e.g. the n = 1 TAE at f = 161.7kHz and
n =2 at f = 164.5kHz). The JET saddle coils excite both TAEs (f = 80 — 250kH z)
and EAEs (f = 250 — 450kHz). Some of the eigenmodes couple rather poorly to the
saddle coil antennas. For example, let us compare the modes labelled (a) and (b) on
Fig.1. These are n = 1 modes. Fig.2. shows their respective eigenmode wavefield
structures. The mode (a) has a rather large m = 1 component from the magnetic axis
up to the ¢ = 1.5 surface where it has strong gradients. The mode (b) has a more global
structure and a comparatively larger amplitude near the edge. The mode (b) has the
same phase from the magnetic axis to the outer (low lield side) edge wheras the mode
(a) has a change of phase near the ¢ = 1.5 surface. The two types of modes are also
seen for n = 2 and were also seen in circular plasmas®. Which mode is the most easily
destabilized by fast particles is a question that will need careful further studies. The
“internal”-like mode (a) is probably more sensitive to the fast particles in the center,
whereas the “external”-like mode (b), if destabilized, could be more effective in expelling
fast particles from the center to the outside. The damping of these modes will probably
be affected in a different way by the different parameters. The “internal” mode may be
more ion-Landau damped for sufficiently high T; plasmas, wheras the “external” mode
may be more sensitive to electron-Landau damping for cases where v4 ~ vy in the outer
region.

3. Damping and growth rates. To evaluate the growth rates v of the waves
calculated by the LION code, it is necessary to establish a relation between the total

time-averaged power P absorbed by hot species and the given EM fields (E, B): v = — P
/2W, where W is the total energy of the wave. Working in the Alfvén frequency range,
it is convenient to describe the evolution of the species using the drift kinetic equation
(DKE). The equilibrium distribution functions of the guiding centers for electrons and
ions are taken as local Maxwellians (functions of 1 = poloidal flux). The a-particles are
described by a slowing-down distribution®:

C(¥)
v* + v3(¥)

where H is the Heaviside function and v, the birth velocity of the alphas.The fluctuating
distribution function is then evaluated for given EM fields from the linearized DKE

F=N(4) H(vo —v),

using a perturbation method. The parameter b, = B,/| Bo |, where B, is the poloidal
component of the magnetostatic field, and the parameter | vy |[/ALw, where vg is the
magnetic curvature drift, A\, the wavelength perpendicular to Bo and w the frequency
of the EM fields, are considered small. Integrating the resulting distribution function
over the guiding center phase space, one can evaluate the total time-averaged power
exchanged between the particles and the EM fields”. As the EM fields are provided by
an ideal-MHD calculation, the component of E parallel to the magnetostatic field is zero
and must therefore be obtained from a more general model. This can be done using the
quasi-neutrality condition for electrons and ions. For the electrons and ions, we obtain:

2 2
- W Vth
P = ﬁeo/dsx P2 exp —z2 X (laapec{ealz + ) y
1l

ﬂj_ . E —tw ﬁu
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1 fwo = = o
Qelectron = T (Z—V Ei+ ﬂJ. g EJ.) )
v

T. W = e . TN »
Qion = T;I—Z(zﬁz 'E.L+,HJ.'EL)—10)(1+T‘)B"

T. w -
+(1+=+2(— BL-Ey,

kyvens

where wj, is the plasma frequency, 2 the cyclotron frequency, k) the parallel wave number,

20 = w/kyvu, BL= (Vx E’”(,)J_, ?||o=§o /Bo and Z = Z(w/|kyj|vene) the dispersion func-
tion. For the a-particles we also consider the contributions due to the inhomogeneities
of equilibrium:

_a 2 O vi ~ o2
_ 2 wpa P 2 .
Piomo = T eo/fz—lklllng {[—lvpla o + ZvPIo] BL-E
~ = = = ~ |2
+2wvlloSm (B”ﬂ_L ‘ E*) + 1 |BL - E —iw B) } ’

e ]

2
w2, C

i 7l'260 3 " {( 4 Qﬁ) — .-»
Pinhomo = T%m/d zv 518 vp[o+v,,2 BL-E

+ (w’l + {T) (BB —iw B)} 6. w8,

&l
2. o3\"
w  v(v2—v
where I, = / dv—(*p)—
ol v34 03
and V' is equivalent to |V1|d/0% except that it operates only on density and tempera-
ture.

4. Conclusion. It was shown that saddle coils can be used to excite low n TAFEs
and EAEs in typical single-null JET plasmas. Toroidal mode number selection can be
done by different phasings of the antennas. Some of the eigenmodes couple weakly but
may be important to study. In the future, the expressions developed for global growth
and damping rates will be used in the global calculation of gap modes.
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Fig.1. JET fat. Top saddle coils
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Fig.1. Coupling resistance of saddle coils . 2 antennas with opposite phasings
(dotted line), 4 antennas with (+-+-) phasings (continuous line). Up-down

asymmetric JET equilibrium with R/a=2.77, k=1.63, qp=1.1, 94=3.34, }=3.9%,
Bpoi=0.78, Bo=3.45T, I,=5.0MA, ne=5.1019(1-0.95s%)1 /2 m3,

CRPP
LION 1

Fig.2(a) Fig.2(b)

Fig.2. Level line plots of n=1 TAEs Re(Ep) wavefields (radial displacement) for
the cases (a) and (b) corresponding to Fig.1.
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LINEAR AND NONLINEAR STABILITY OF TOROIDAL ALFVEN
EIGENMODES USING AN HYBRID CODE

G. Vlad, S. Briguglio, C. Kar* F. Zonca and F. Romanelli

Associazione Euratom-ENEA sulla Fusione, C.R.E. Frascati,
C.P. 65 - 00044 - Frascati, Rome, Italy.

INTRODUCTION In the gaps of the continuum Alfvén spectrum discrete, global modes
induced by toroidicity (the so called Toroidal Alfvén Eigenmodes or TAE) have been shown to
exist.[1] These modes can be destabilized by the resonant interaction with the parallel motion
of the energetic ions, as alpha particles produced in fusion reactions. The TAE stability is
determined by the competition between such a driving mechanism and the coupling with the
Alfvén continuum which provides a damping. The numerical study of the effect of high energy
particles on MHD modes requires the solution of the fluid equations for the bulk plasma and
of the kinetic equations for the energetic particles (from which the name of ”hybrid codes”).
In this paper we will present the hybrid code and we will present results regarding the MHD
non-linear saturation. The non-linear interaction of two Fourier components of the mode with
poloidal and toroidal mode numbers respectively (m,n) and (m + 1, n), which oscillate in time
at a frequency wp ~ O(w4) (w4 is the Alfvén frequency), leads to a perturbation of the poloidal
flux function 6% with mode numbers (m = 1,n = 0) slowly varying in time, which, in turn
modifies the gap structure. When such a modification is sufficiently large, the global mode
interacts with the continuum, leading to saturation.

FLUID MODEL The reduced, resistive magnetohydrodynamic (MHD) equations[2] ex-
panded to the third order in the inverse aspect ratio ¢ = a/R and assuming a low-B[0(€?)]
bulk plasma has been assumed.[3] This is in fact the lowest order to which the toroidal cor-
rections enter the equations. A cylindrical coordinate system (R, ¢,Z) has been used, and the
subscript L denotes components perpendicular to ¢. The magnetic field can be written as
B= R,,ﬁlﬁ x Ve + (Io + 7) Vo + O(€®)By , and the perpendicular component of the velocity

7. = (R*/R,) VU x Vo + O(e®)va, where ¢ and U are stream functions, R, is the major
radius of the vacuum chamber, I, = R,B,, B, is the vacuum magnetic field at R = R, and
I~ él, Substituting the above expressions for B and #, in the Faraday’s law, using the
resistive Ohm’s law and taking only the poloidal component, the following equation for the
evolution of the magnetic stream function is obtained:

% R (.= L= B, U ) 4
5= 7 (Fvxd-90 + 220 3, 1 o(uan,, 1)
where 7 is the resistivity. The toroidal current is given by J, = — % A*tp where A* is the

Grad-Shafranov operator. Note that vg and I enter only at the fourth order in . Upon applying
the operator ¢ -V x RZ... to the momentum equation, the following equation for the evolution
of the velocity stream function is obtained:

*Permanent address: Saha Institute of Nuclear Physics, AF/1, Bidhanagar, Calcutta - 700064 India
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where p = %;-g, B=%5%+7 YV, V2 = &R + 3922;-, the dependence on the density
gradient has been retained explicitly and the pressure of the bulk plasma has been assumed to
be zero. As a boundary condition we take a rigid conducting wall at the plasma edge.

The term which depends on the energetic particle pressure tensor ﬁH in Eq. 2 is calculated
by solving the gyrokinetic equations at each time step using the fields (the magnetic flux function
% and the stream function U) obtained from the evolution of the reduced-MHD equations.

A previously existing code[4] which solves the O(e?) reduced-MHD equations has been
modified in order to solve the O(€®) equations. The code is written using the toroidal coordinate
system (r,8, ¢), with r being the radial coordinate (r = 0 corresponds to the geometrical centre
of the vacuum chamber), 6 and ¢ being respectively the poloidal and the toroidal angles. The
code uses finite difference in the radial direction and Fourier expansion in the poloidal and
toroidal directions. It uses a semi-implicit algorithm where all the linear terms that couple
with the cylindrical part of the equilibrium (that is with poloidal and toroidal mode number
m = 0,n = 0) are treated implicitly.

GYROKINETIC MODEL It is worthwhile to perform the numerical computation of the
energetic particle contribution in the gyro-centre coordinate system. In this system, indeed, the
characteristics of the Vlasov equation, which yields the time evolution of the energetic-particle
distribution function, correspond to the gyro-averaged single particle equations of motion. The
time evolution can then be followed without taking care of the details of the gyro-motion, i.e.
using time steps much longer than the gyro-period.[5] The gyro-centre coordinates are obtained
from the usual guiding-centre ones through an infinitesimal transformation, which makes the
fundamental I-form of the system (from which the kinetic equations of motion are derived)
free of gyro-phase dependence.[6] The optimal ordering for the energetic particle component
is obtained by imposing the resonant condition between the mode frequency and the energetic
particle transit frequency which yields vy = v4, where vy is the hot particle thermal velocity.
In addition, the magnetic drift frequency must be smaller than the ion transit frequency in
order to avoid detuning of the wave-particle resonance. Therefore the hot ion Larmor radius is
ordered as pg = €a, which yields wgy/w = €. On the basis of such an ordering the electrostatic
potential is ordered as egp/Ty =~ 1. The gyro-averaged equations are then obtained in the
form

| I
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dp ey <~ P : - A) ™ paj| ﬂﬁ MQg. =
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Here R is the gyro-centre position, M is the exactly conserved magnetic momentum and p
corresponds to the canonical parallel momentum; the fluctuating fields ¢ and a) are calculated
at the position of the gyro-centre and are related to the stream functions calculated by the fluid
part of the code by p = — %U and g = Egln-ﬁiﬁ The hot-particle pressure tensor
components can be written, in terms of gyro-centre coordinates as

MQy
my

9

(6kj — bibj) + ( = —)2 bkbj] x Fp(t,2)6 (5— I-é) , (4

- 1
g (%) = m—%{/dﬁz[ m}'{
where d°Z includes the Jacobian of the transformation from canonical to gyro-centre co-
ordinates. The phase-space distribution function Fjy is determined, at each time step, by its
weighted-particle representation, using the so-called §f algorithm.

NUMERICAL RESULTS The dynamics of the Alfvén continuum has been studied in detail
to verify that the code describes correctly the physics contained in the fluid equations. Thus
a preliminary, linear study in which the kinetic term is neglected has been performed.[7,8] In
particular, it has been verified that the radial structure of the shear Alfvén continuum is well
represented. Also it has been verified that the time dependence of the velocity stream function
for the continuum oscillations, behaves asymptotically as Um () & =4t /t + O(1/¢2).[9] The
€ terms will modify significantly the structure of the cylindrical Alfvén continuum. The toroidal
coupling gives rise to ”gaps” in the Alfvén continuum, resolving the degeneracy between the two
cylindrical continua associated with the poloidal mode numbers m and m + 1, at the specific
radius r = ry where k|, = —k||m41,n- It has been shown that, inside the gaps, the so-
called toroidicity-induced (global) Alfvén eigenmode (TAE) can exist.[1] This is a marginally
stable mode in the ideal limit, with a normalized real frequency given by wiwa = 1/3 £ O(e),
for n = 1,m = 1,2 (the Alfvén frequency is w4 = va(r)/R). The TAE is clearly observed
by the numerical code, and the eigenfunctions have the expected radial profile. The effect
of finite resistivity on the evolution of the TAE mode has been also studied analytically and
numerically.[7,8] In the regime 7 << €3, the damping 7 scales linearly as a function of resistivity,
¥~ (1;//52). In the regime n >> ¢3, the damping is a function only of resistivity and scales as
y ~ i3,

The interaction of the TAE with the Alfvén continuum can occur at the edge of the plasma
column if a density profile which decreases towards the edge is chosen. Analytical expressions
for the damping rate of the TAE induced by the interaction with the Alfvén continuum are
known only in the high-n limit.[10] In the low-n limit, the damping rate is expected to scale
approximately as y ~ |Ln|™%with & ~ 1+ 1.5 and |L,| being the scale length of the density
gradient where the interaction with the Alfvén continuum occurs. A similar scaling is obtained
by the numerical code.[7,8]

NONLINEAR SATURATION In order to analyze the effects of nonlinearities, we take p =
0o in Egs. 1 and 2, and we retain only the three components of each field 1, U with mode
numbers (m,n) = (1,0),(1,1),(0,1). The nonlinear coupling (forcing scheme) is then Fpo—
forced by Fy; x FT1, Fiq — forced by Fpq x Flo, Fy1 — forced by Fy o x Fy 1, where Fan
is the generic field. Typically the nonlinear effects are important when the (1,0) component
of the perturbations significantly modifies the equilibrium (i.e. the toroidal O(e) corrections
to the cylindrical equilibrium). Hence the nonlinear effects are expected to be important in
the ”gap region” (where k|11 + kjj2,1 = O(e)), along with the effects of toroidicity (linear),[10]
and when U =~ vgae®/? and 6 = P —thyg & Bae®/?. For sufficiently high perturbations,
the TAE mode coalesces with the "nonlinear Alfvén continuum”, and undergoes a nonlinear
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continuum damping, in analogy to what happens in the linear case. The results of the numerical
code has been compared with the predictions of a simple analytical model.[8] This model
predicts the saturated amplitudes of the perturbed quantities to scale as Uy,; ~ Uzy ~ vaae®/ 2
Sty ~ bta,1 ~ Baed?, Uyg ~ vaae®, 6310 ~ Bae®. The term proportional to the pressure of
the high energy particles in Eq. 2 has been modelled with an ”ad hoc” growing term 5 U with
71 being a numerical coefficient. In fig.1a we plot the time evolution of the total (kinetic plus
magnetic) energy of the different Fourier components for a case with € = 0.05,g0 = 1.1,¢o = 1.9.
In fig.1b the numerical saturated amplitudes versus ¢ are shown, together with the predictions
of the analytical model.[8] The numerical results show a scaling of U1 o €25, Uy o« €,
Up,0 o €3, close to the expected analytical predictions.
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THERMONUCLEAR INSTABILITY OF FMS MODES IN TOKAMAK
Gorelenkov N.N.,Polevoy A.R.

" RSC "Kurchatov Institute"

INTRODUCTION: In recent deuterium experiments on tokamaks Ion
Cyclotron Emission (ICE) with frequencies up to 500 MHz have
been observed (see [1,2] and the references therein). The
spectrum of the oscillations presented regular structure with
oscillation amplitude peaked at deuteron cyclotron frequency 1
harmonics (W = luJBD). The signals of ICE were proportional to
the neutron emission which indicates that the ICE could be
driven by charged fusion products. Observed bursts of high-
frequency (1 ® 1 — 10) oscillations in JET, appeared with some
delay after the sawtooth crash [1] and coincided with Da signal
on the plasma periphery, which could be explairied by the finite
time of heat wave generated at sawtooth crash and spread from
the plasma center to the periphery. In ref.[2] observed ICE was
associated with fusion proton driven Fast Magnetosonic (FMS)
waves. In this paper we discuss the problem of FMS eigenmodes
excitation by D-D fusion protons generated with superali’ven
velocity Vp =2.4 1090m/s.

1. In order to calculate increments and thresholds oi’ FMS.
instability we made use the neoclassical proton distribution
function fp which was the numerical solution of drift kinetic
equation. The numerical code included the finite drift radial
excursions of protons, radial unhomogenity and sawtooth
evolution of proton source. )

The typical time scale of the processes of interest is
much greater than the bounce period Ty= 10_63. In this ocase the
distribution function is kmown to be a function of integrals of
motion [3-5]:

u= V1°/2B, J=e U(R,2)/2Mm 0" VI R
were [,J - adiabatic invariants, €ps My~ Qha;'ge and mass  of
proton, ¥ - poloidal magnetic flux, B - magnetic field, R -
major radius, V",VJ_ - parallel and perpendicular components of
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proton velocity. Neoclassical kinetic equation from [3-5]:

3 jy3
3 e U 1+V2/V atf at
(o =P 1% + (9 2] gy —B-—DBiwm=0,
vaeav 2'n:mpc Tpe ad at 1)

was solved numerically by integration over the characteristics

with fp— distribution function, Tpe=0.01 T3/2[keV]/(n 10_20m_3)

- protons slowing down time on electrons, V,= 0.1 Vpow’Te_rkEﬂ'.
The first term in (1) corresponds to the Coulomb friction. The
second term in (1) corresponds to the change of integral J
during the slowing down, S is the source of fusion protons.

To estimate the instability inerements for JET experiments
we used in our calculations plasma parameters similar to those,
reported in .{4]: Ry= 2.96m, a=1.2m, BO=2.8T, Tq -z 10 k_e’;f, Toi=
18keV, Ti =1 Toi’e(‘l—'li/'llc) s D= 0.3 10 cm 7, n.=
noe(‘l—?I'/'I!o) -1, elongation k = 1.8, ¥ - flux at the boundary.
We simulate the sawtooth crush events by mixing of the plasma
pressure all over the zone 0<r<1.4 T, with a safety factor
q(r1= 0.6a) = 1 [4], and further heat wave propagation to
plasma perj.phery. The calculated distribution function fp in
the point R = 3.9 m, Z =0 for the sawtooth period Tgp = 100
ms, and time of heat propagation 15 ms are shown in Fig. 1. The
proton density in this point is npa 3.4 1080m_3. Protons have
substantially wide drift trajectories 1in radial direction
comparable to the minor radius. Very complicate structure of
fp, resembling The Babylonian Tower, is caused by periodic
proton source increasing due to heat wave propagation after the
sawtooth crash and by different slowing down time for different
f£lux surfaces. There is also a "loss cone" at the boundary
between co passing and trapped particles with negative V“ %
This well pronour}ced fp anisotropy with afp/av > 0, and afp/avII
# afp/av might induce the instability of FMS eigenmodes.

2. Following to [6] the eigen mode spectrum and
localization was determined in a hollow oylinder -approximation
for JET plasma paramete?rs. FMS eigenmodes appeared to be
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localized in a narrow zone near the plasma pefiphery R1< R < R2
between reflection points R1, R, with k (R )=k (R2) 0. Their
spectrum fulfilled the quantization condltlons-

fRzRe kR(w,k",R)dR =T (m+ 1/2), R kq, =1,
R "

with 1,m - toroidal and radial mode numbers, ® = Wy the
eigenfrequency. To estimate an order of magnitude of these mode
inorements, we calculated the proper values for Mazwellian bulk
plasma and computed proton distribution function. According to
our calculations the mode, has been obtained in experiment (a
55 MHz) might be identified as FMS - eigenmode, exited by
Cherenkov resonance thermonuclear protons. The localization of
this mode appeared to be the same, as it was obtained in the
experiment [1] Ry 3.9 m, Ry, x 4.1 m.

The increment of instability calculated numerically in WKB
approximation [6] is of Oﬁger 7 /W x ni(kRpL)eva/(ani)’ where
Pr, ~ proton gyroradius, T—QT /m nﬁ— the density of protons
produced by heat wave n! a~ n_/10. For chosen parameters 7. /7e <
0.1 with 7 - the electron Landau damping. However for more
precise calculations the real experimental measurements of
plasma evolution and the more accurate method for increment

simulations are required.
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On the Kinetic Theory in a
Strong Magnetic Field

Aldo Nocentini

Dipartimento di Scienze Matematiche dell’Universita,
P.le Europa 1, 34127 Trieste (Italy)

Abstract: The collision integral for binary collisions between like particles whose
dynamics is dominated by the presence of a magnetic field is calculated in the case of
a spatially non-uniform plasma. Heat transport coefficients are derived.

The theory of collisional transport in tokamak plasmas (“neoclassical transport”)
is based on kinetic equations where the collision term takes into account binary
coulomb collisions only. In current tokamak experiments the (electron) Larmor ra-
dius is of the order or even smaller (in particular, in the outer part of the plasma
ring) than the Debye length. In this case, drifts become important during particle
interactions involving electrons (“drift” collisions) and, therefore, the effect of the
equilibrium magnetic field B on the (electron) collision process and, hence, on the
(e — e and e — %) collision term is significant.

The first derivation of a collision term for binary coulomb collisions in the pres-
ence of a strong magnetic field, self consistently including the Debye shielding effect,
is due to Rostoker (1960; see also Rostoker and Rosenbluth 1960). Rostoker’s result
applies to a spatially uniform, multispecies plasma, for any Larmor radius. The mag-
netic collision term obtained in this way is much more complicated than the coulomb
collision term. For this reason, on the one hand it has not been used, on the other
hand many papers have subsequently reconsidered the problem in various simplifying
limits. Rostoker’s result itself is severely limited by the assumption of spatial unifor-
mity. In fact, an important aspect of “drift” collisions is that they generate diffusion
in physical space, rather than in velocity space, and this aspect cannot be seen in a
uniform plasma (see for example Nocentini, 1986).

In this paper the collision integral for e — e collisions in the presence of a strong
magnetic field is derived by using Dupree’s method to solve the equation for the
two-particle correlation function in a spatially non uniform plasma. The spatial non-
uniformity is treated by developing the one-particle distribution function around the
point where the collision integral is calculated. By “strong magnetic field” we mean
that the electron dynamics can be described by drift equations.

A plasma embedded in a strong (Larmor radius much smaller than Debye length),
uniform magnetic field, pointing in the z-direction, is considered. For electrons (only
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e-e collisions are considered), the drift equations of motion are assumed. The coordi-
nates of the Gibbs space are (the notation is standard):

r, = {zivyi’zi}v Ui = Vzi, Hi = mvit/zB

and the equations of motion are:

. c i : . € .
r1;= EE(') Xep, o Fi=ui, U= EE’(")’ fi =0,
where
E® = z:ﬁ(ii)7 EG) — —v,80), &) —

The equation for the 1—particle distribution function f(ry,us,p:) = f(1) reads

7] 7]
{8t+u18 +BE><e V1+ E’ }f(l)

+co +o0
=-z%{ [ d2y(1,2lt)ﬁ("2)><g,}—ii{/ d29(1,2]1) E$P}, (1)

m 6u1

where ¢(1,2|¢) is the 2—particle correlation function and E the macroscopic electric
field.

The equation for the 2—particle correlation function is closed by using the usual
assumptions: negligibility of the 3—particle correlation function, pulverization (weak
interaction limit) and negligibility of the effect of the macroscopic electric field on
correlations. It reads

{gt+ 136 +uzz £ }g(l 2) +
[ Bee9rxe} i+ 5l [T, B xe ) i) +
+={[ ;wdag(z, ypp) 2, 2f jds o(1,9) B0} 2O

= B x e (% - W) [ £)] - SBD (- - e 0N CINE

This equation is solved by using Bogoliubov’s (adiabatic) hypothesis and by ex-
pansion in power series of the small parameter |V f/f|. No details of the derivation are
reported here. The resulting collision term is obtained as a series of terms which de-
pend on derivatives of the 1-particle distribution function in velocity and/or physical
space. By keeping only the two leading terms, as far as velocity and space derivatives
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are concerned, the kinetic equation reads

of of ¢ e, Of
o tvo, T e Y+ DEg =
4dmetlnApr ( O |- 7] 0
= me {51; [f(bu)af(bu, .u) - f(lyu» /‘)a.f(ﬁ,u)] +

T gyl _
+ ﬁYL/_w d—[f(LU')ZLf(LM,#) = flz,u, m) ¥ f(z, u’)]}, ®3)

Ju—w|

where Apr = Ap/rr, and Q, rp and A\p = (T/4we?N )}/? denote respectively gyrofre-
quency, Larmor radius and Debye length of the species under consideration. The bar
indicates integration over u. The logarithm comes from imposing the Larmor radius
as lower cut-off for the impact parameter, on the basis that collisions with smaller
impact parameter are not drift collisions as considered here.

The first part of the collision term describes diffusion in (parallel) velocity space.
It agrees with the zero-Larmor-radius limit of the collision term given by Rostoker
(1960). The second part describes direct diffusion in space due to the displacement of
the guiding center of particles during drift collisions. The corrections of these terms
due to the spatial non-uniformity of the distribution function have been neglected
because higher order in the expansion parameter. Nevertheless, they can be important
in the cases where the lowest order terms vanish (as far as the first term. is concerned,
a case of this kind has been discussed by Psimopoulos and Li, 1992). The second
part of the collision integral is itself smaller than the first one by two orders in the
small parameter of the expansion. Nevertheless, the contributions of the two parts to
the diffusion properties in physical space of the plasma are comparable in magnitude.
This is due to the fact that the second part contributes to diffusion in physical space
directly, while the first one causes diffusion in velocity space, and only indirectly in
physical space.

The second part of the collision term is now considered in more detail. By taking
the appropriate moments of eq.(3), the transport coefficients of various quantities,
directly induced by drift collisions, can be determined. For example, the equation for
the density of the kinetic energy related to the gyro-motion, £ 1, reads

08, 0 c 2netlnApg
2 T E[X_L Ve L NT, v +V-{&L B Exe,} = i vV,

A [ b (o) 2 ) S0 TP ),

oo Ju—u|

where V() and V(21 are the macroscopic parallel “velocities” of particles and gyro-
heat, respectively. For a local maxwellian with spatial-dependent (perpendicular)
temperature (by imposing as lower limit of integration in |u—u/ | the critical value of
the velocity difference, usp1/Az/Ap (where Az is the Landau distance of minimum
approach) above which two particles moving along two magnetic field lines whose dis-
tance is Ap overtake each other) its left hand side is the (perpendicular) divergence of
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242w et N%InA InApr
mzﬂzum

Y__LTJ.v
which corresponds to a perpendicular heat conductivity (for the gyro-kinetic energy)

L _ 3lnADRTJ_N _ lnADR &
X om0 44 XL

where x§ =4.7TN T./ meQ27, is the classical perpendicular heat conductivity of elec-
trons (InA denotes the Landau logarithm). This effect was already discussed in a
preceding paper (Nocentini 1986), but the heuristic calculation of its magnitude given
there is not correct.

The parallel transport coefficient can be obtained by considering the stationary
kinetic equation, where on the 1. h. s. a local maxwellian with z-dependent density
and temperature is used and on the r.h.s. the linearized collision operator for colli-
sions between distribution functions near to local equilibrium is used. In the absence
of a macroscopic electric field this equation reads

dN du?, uB dT, (uz _ﬁ) du?, }

“fM{Ndz+u3hdz T Vet e

4metlnApr N2B 2 uB (2,1) 0 2u2/u?, —uB
= —_— 1 —an h 2 /TJ-
m?2 muZ, T\ u?, (TJ_ BV 0u{e O }

By multiplying this equation by (uB—T')u and integrating in velocity space we
get

yan _ _ mhug  uj N dTy
4/2metinAprN 2T, dz’

Hence, the parallel conductivity of the gyro-heat reads

(W M u oo InA A
I ™ 4\/2retinApr 2 InApg 17

where xﬁ’ = 3.2 N Te7./m. is the classical value of the parallel electron heat conduc-
tivity.
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X-POINT EFFECT ON NEOCLASSICAL KINETIC THEORY.
E. R. SoLANO and R. D. HAZELTINET,
Fusion Research Center, Institute for Fusion Studiest,
The University of Texas at Austin..

Traditionally, neoclassical transport calculations ignore poloidal variation of the
poloidal magnetic field. Near an X-point of the confining field of a diverted
plasma, the poloidal field is small, causing guiding centers to linger at that
poloidal position. Indeed, the poloidal transit frequency approaches zero near
the separatrix, so that v* becomes locally large for any plasma temperature. The
problem is solved in general first, and then a model poloidal flux function with
an X-point is utilized to show that the plateau diffusion coefficient can change
considerably (factort of 2). It is shown that ion rotation is unaffected by the X-
point, when correctly interpreted.

The drift kinetic equation:

) VB of VE
gVt - v(1-§2)—g—£+ e%”fﬁ C(f) - vp.Vh, (1)

The first term in equation (1) represents streaming of the guiding center
along field lines, the second term represents the mirror effect, the third
represents the induced toroidal electric field (loop voltage), the fourth is the
Coulomb collision operator and the last one represents the VB drift . Here v is
the velocity of the guiding center, £ is the pitch angle (&= v”/v), the subscript ||
indicates the component of the vector parallel to the magnetic field, v[; is the
radial component of the first order drift velocity, E, is the parallel component of
the induced toroidal electric field (loop voltage), and fg is the zeroth order
solution to the kinetic equation, a Maxwellian distribution function, with only
radial variation.

Linearity of equation (1) allows recasting the problem as a set of
equations of the form [1]:

Vii- V gne - Cl(gne) = on feo
with different sources an, which would be functions of 8, v, & and fo.

In the large aspect ratio approximation, the mirror force is ignored in first,
order, and v;; can be assumed to be independent of 6. In fact, that is a definition
of the plateau regime: the transit frequency is much faster than collisions, which
are much faster than the drift frequency. As an example, we consider
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&V, f - C(f)=- vp.Viy (2)
To further simplify the problem, we use a Krook collision operator, C(f)=v f.
Given a poloidal flux function ¥, the magnetic field can be written in
symmetry coordinates as B= IVE + V{xV¥. Here 0 is the poloidal angle
(geometric), ¢ is the toroidal angle, I= R Bt . With such deflnltlons equation (2)
can be rewritten as

Vo of 1on (v 3\1 0T ed®| Bp.VOoR
__P__ b AN 4 ST O
=-7— -5 fo
W BieggatlaN “*“BR[n o (vﬁ, 2)Ta\y Taw] g 00
Collecting all the terms in the rhs that are independent of 6 in S, we have:
A v_B S, 3¢Rb )

% "EvBp.ve & 20
And the solution of this equation is:

5, 00 [ po 2RD
f(6)= - & f e 20 a9
with  p(6)= ——_[deL Y u(8) =y u(e).
kv Bp.VO &v
A change of vanable from @ to u(8), and a Fourier decomposition of the
integrand as a function of u, with o= 2xl/u(2r) , allows computing the above
integrals:

f(8(u))

5 [ w(Bp.Ve 3R/
tvow Jor (B 90

.S g jew Z (a) sin(oyu) + by cos(oyu) ) du=

Ev 0¥
8 afo Z [a|(ysm(a,u) a,cos(a,u))+b,(a,sin(alu)+ycos(a|u))]
TEvow 4 a2

In the plateau limit: lim 2 Sy —> 7 d(Evay) = ( 5) 8(E) . Only the part of

v-0 &v 72+ a2
the f even in & will be relevant to future calculations. It is:

f(u(8))= s—Q Z ”(2") 8(€) [ & sin(oqu) + by cos(eyu) 1.
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Fig. 1: Characterization of example flux function
From the knowledge of the complete distribution function f (based on
similar calculations, with all sources), the transport coefficients can be
calculated. For example, the particle diffusion coefficient is:

LomEem o2 @inpe | Ty alnpy(f_do Y
o2 (GBF‘ V”‘e) (a\y *ZTe av |("B,.ve

Or, more conveniently, we can compare it with the traditional circular plasma
1

N
Bp.Ve Bpo

result, with = constant:

Vb olnpe __Ti_dlnp;
I'o=- 4 R Ppol Bpol P Ne Vihe Faly +ZTe ¥ )

I'x  (u@m)¥ z a|2+bj2
o ( 2n ) el

This result was previously obtained [2,3], although we arrived at it
independently. lts importance appears not to have been appreciated in the
particular case of a diverted plasma, which we discuss next.
Example: As a model of a poloidal flux function with a separatrix, we have

r\2 r\2 2 2 2 2
¥(r,6) =¥o (5) [2 + (5) cos 2(-)]=‘P0( (%) + (%) )(2 * (%) - (%) )
Here, ris the polar radial coordinate, and it varies as a function of 6. A plot of the

flux contours of ¥ and its q profile is shown in Fig. 1. In this case the Fourier

series only has odd sine terms, and converges very quickly. For instance, at
Y/¥=.9, ay=.4, ap=0, ag=.17, we have:
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Ix_ (uen)y 3 a2
o (21I:] |2 it

lon Rotation: The DKE is invariant under the transformation f — f + f o with
fg=2 y”,u"/\,tZh . To resolve this degenerate problem the mirror force term (next

order) needs to be included in the ion DKE :

v”'Vg - Cg= - vp.Vfo - M(fq)

In plateau regime, the solution is indepehdent of the flux surface geometry:
1 D

U”= gﬁl{ﬁ g—\;+ 1.5 aa—:; + ?—r— 5—‘; ]'-%vm
So, the parallel rotation velocity is a function of ¥, the poloidal flux at the
LCFS. It is not a function of either the local or the flux surface averaged Bg or of
g. There is no infinity problem: simply, the more poloidal flux between the
magnetic axis and the last closed flux surface, the slower the parallel rotation.
Only in that sense is U”"of order pg/L"

Adding the poloidal components of perpendicular and parallel rotation:

g .11 aTe Bogl

PI="2B 3¢ B

The poloidal rotation speed is not a function of ¥y. Because §p°|No becomes

small near the X-point, the poloidal rotation (using the usual cylindrical
coordinate definition of poloidal) is a function of : it is slower near the X-point.

Comments: standard collisional transport theory [2,4] is already applicable to
the X-point case. Trapping will be affected, so collisionless transport may be
modified. The transition between plateau and collisional regime happens at
lower v in the presence of an X-point.
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Transport coefficients in magnetized plasmas.

D.Bennaceur and A.H. Khalfaoui
SERST/CDTA, laboratoire Interaction Laser-matiére
2, Bd Franz Fanon, BP 1017 Alger-Gare, Algiers-16000, Algeria

This paper presents a theoretical analysis on transport
coefficients of strongly coupled, fully ionized, classical and
magnetized plasmas.

The plasma under consideration is a continuum of volume Q
containing N electrons, N/Z ions and an electron density n=N/Q
which exhibits 3N (high frequency branch) and 3N/Z (low
frequency branch) characteristic frequencies ws(a) of
longitudinal oscillations (s=ze,i).

The high frequency branch corresponds to electron plasma
oscillations and the low frequency branch are the ion sound
waves.

The motion of electrons in strongly coupled plasmas is affected
by the continuum oscillations‘(many—body interactions).

The plasma oscillaticns are quasi-particles or plasmons which
obey Bose-Einstein statistics.

The electrons interacting with the plasma as a whole can emit
and absorb the quasi-particles (plasmons and ion sound waves)
with éenergy hws(a) and momentum hd /1/, so the perturbed
distribution function is relaxed in the process.

The oscillation frequencies are those of a classical plasma

/2/.
The transport equation is written as:

af _ _ af

at field - at coll (1)
The collision term for the e-e and e-i interaction is:

s s o
af B af B 1 3 2)
ot |coll ot |les T T T '
S=e,u c c

where
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2 2
_ a®|u_(a) | .
97 = 2 = N [F (K1 - £ (By)]
It es 8ﬂ’zm n k T w (*) e °© °
” s's'B s'4
SCE"-Erbw ) + f(BX[1 - f (R')] 6(E-E -hw ) [1 - 2ED 3.
s o o s >
®(k)
_f1
= = , s=e,i . (3)
es

]U (@) |® is the square of the Fourier transform of U <(r)> which
is a shielded Yukawa potential, Nq is the dlstrlbutlon of the
plasmons, fo is the Boltzmann distribution of the electrons, f1
is the linear perturbation function of the electrons and & an
arbitrary function proportional to the energy E of the
electron: & = G.C(E), (we assume spherical energy surfaces: E =
hzk72m). The relaxation time 7. for both interactions is taken

to be l/T =X 1/T
szsg,i

With the assumptions, hw « E, [§'|,_:[E] nd isotropic
scattering, U (Q) is bounded in the interval (g, q Y, as is the
limit wave veetor, and T, is evaluated analvtlhally as:

" 1,72 3,2
7 (E) = (573/3) mA E - (1)
87 n e (Re(se) + Ri(si))
o B A 2P
A _ _ A 2y s
Where Rs(gs) - Zs(l 2/5 Cant 4 2;1 (2v + 4) (2v)! sz el s
s=e,i.

Bzv are the Bernoulli numbers, 25 = hw (a )/k T, Z =-1 and Z =Z.

The LHS of equation (1) for a magnetized plasma can be written

Bs:

af
af = o E - u /%)
3t Jriewa = 5w {[ B 2 Jor - ez}+
» a f s —2
e (va B) 7’y - =iy _ ’, _ IE (5)
n ¢ - av - Tc i Tc ) Tc o

E is the electrical field, ¢ the chemical potential, éT, the
Lemperature gradient and B the magnetic field.
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Expression of & /4/:

N
TV
c > 25 > e
3 = —————, {K + T (0 A 2y + Tcwc(wc.K)} i (6)
(1l +7w)
c ¢
with & = [- B -oH EEL].$T - eZ and @ = EE— is the electron
T aT c me
gyrofrequency.
As a function of perpendicular and parallel components

relative to the magnetic field, ftis given by /5/:
'y -» 2
f=-Te (-ek of /O + 9T 8f /OT).V + T e (-eﬁlafo/aE +

VT, 87, /0T) (v A D) - tlp (-e(E. .3 Yo7 /0F +

(&_.91.)0f /0T)(D %) , A2

where ¢ = 1/(1 + Tiwz),

In the direction parallel to §, we have acalzﬂ and Q:TC(;.A).
There are no effects of the magnetic field on the parallel
‘components of the transport coefficients.
The transverse effects: a;.l =0, are such that:

P = 2
f=- TP (-eﬁL of /OE + ﬁTLafo/aT)_v + Tl (-ez‘J~ of /OE +

§Tl Bf/OTY (V A &) . (8)

In the Boltzmann theory the electrical current and energy

'fluxes are given by:
3

3= -ef 24235 (3 ()
h

3 2
mnv - -

VL (). (10)

. d
4. = J2
The heat current @ = QE + (u/T -8u/8T) 3.T/e.
Using the result for fx into (8) and (10), we obtain:

P
hB

B, =3, /0, +8, ¥ T+R BAJd+N BT (11)
_ T +

B, =783, -K, ¥ T+ NTBAJ+L BT (12)

Although, all the complete set of the transport

coefficients can be deduced from the present model, only the

pelectical and thermal conductivities are reported here,

fhich are:



-
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oL = ezK°1[1 * mj(Koz/Ko1)2] 182
_ 2 2
K, = (K, /TH(1 + P sz/K21K01) B
2.2 4 .2 2 2 2
(e Kii/oL)(l + QE Kozxiz/K11Kmq 2 (145
where

3 . ;
K, = J2 dh§ T, ¢ (v*/3)(-0f_/0E) E.

For weak magnetic fields: w:T: « 1, (13) and (14) become:

o~ 8ne®A_(k T)*?/(n* %n) (15)
K > 32nA_k_ (k. T)°%/(n* %0y | (18)
where A, = (572/3) n'"*/(8mne*[R_(2_)+R (2,))].

And for strong magnetic fields:wjrz» 1, egs. (13) and (14) are:

o, 37" *ne®A_(k_T)*?/ 4n (17>
R > 8nk, (k, )™/ (3" 2 no® AL (18)
For arbitrary magnetic fields, the coefficients K. . are

ij
evaluated numerically.
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2/ Yu.L. KLIMONTOVICH and V.P. SILIN, Usp. Fiz. Nauk. 70, 247
(1860).

/3/ A.H. KHALFAOUI, IEEE Transactions on Plasma Science Ps-12,
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/4/ A. HAUG, Theoretical Solid State Physics, New York,
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/5/ Y.T. LEE and R.M. MORE, Phys. Fluids 27, n°5 (1984).



IV-1371 8-25

PARTICLE AND HEAT TRANSPORT IN A PARTIALLY
STOCHASTIC MAGNETIC FIELD

M.N. Bussac, CPHT, Ecole Polytechnique, 91128 Palaiseau (France)
L. Zuppiroli, IGA, EPFL 1015 Lausanne (Suisse)
R.B. White, PPPL, Princeton N.J. 08543 (USA)

Particle and heat transport in a low collisional plasma confined by a partially
stochastic magnetic field are analysed. We show that the particle diffusion is ambipolar, but
that the electronic heat diffusitivity x, is enhanced, such as near stochastic threshold
Xe = X; ~ D Ymyme (y; is the ionic thermal diffusivity and D the particle diffusion
coefficient of both species).

We present an analysis of particle and heat transport in a low collisionnal plasma
confined by a magnetic field partially stochastic. We assume that the plasma supports
magnetic fluctuations of the level which is low enough to preserve undestroyed magnetic
surfaces. The stochastic layers where the magnetic field lines wander around the islands as
described in reference [1], are separated by K.A.M. Tori. Then near stochastic threshold
the magnetic field geometry could be modelled as one dimensional and self similar with
alternating laminar and stochastic layers (see Fig. 1). The width of a stochastic layer at the
n'™ scale is A, where A, describes the largest scale and Ay corresponds to the smallest
scale, that is the ion or electron Larmor radius.

In such configurations the particles experience magnetic field lines which are either
stochastic or confined to magnetic surfaces. A particle can jump from one magnetic field
line to another as a result of a collision and therefore explores the whole microstructure of
the magnetic field.

In a previous paper, [2], we have considered the case where many collisions, with a
frequency v, were necessary for a particle of velocity v ~ v, (v is the thermal velocity) to
explore a stochastic zone of width A, namely A >>Dg v, /v, (D, is the diffusion
coefficient of the magnetic field line).

In the present paper we instead consider the different situation where during the time
between two collisions, a particle explores a whole stochastic region A , namely
Aﬁ << Dg va/Vv. The probability of particle presence within a stochastic domain becomes
almost uniform after a filling time which is negligibly short with respect to v''. The

probability (per unit time) of a particle escape from a domain A scales as v a; /A, . In the
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laminar regions, the particle diffuses according to the neoclassical laws, provided that the
layer thickness is larger than a few Larmor radii, a .

We begin by treating single species (ion or electron) transport and by ignoring the
electric fields arising from the electron-ion interactions. The transport results from
neoclassical diffusion in the laminar layers, and particle free streaming in the stochastic
layers. The latter acts as a short-circuit for the diffusion. Moreover, the particle flux and the
energy flux, are constant through the whole plasma sheet Ay they are equal to the fluxes
imposed at the sheet boundary. Therefore one expects for each species a density (or
temperature) profile similar to that of figure 1, curve 1. Experimentally one relates the flux
to an apparent gradient on the whole plasma sheet A. If o is the fraction of stochastic
layers at a given scale, the total thickness of the laminar layers is A (1-o)N. Therefore the
apparent gradient is related to the real local gradient n' or T' by n'ap =n' (1-a)N,
T'ap =T (1-o)N. The apparent diffusion coefficient can be now written written as
D, =D,/ (1-a)N, where D, ., is the neoclassical diffusion coefficient and N is

ap
determined by the coarse-graining (1-o))N ~ ap A, then Dap ~D, .o Bofap Vag Ay2.

To simulate this phenomenon, we use a Chirikov-Taylor model, with a stochastic
parameter € = 0.98. In Fig. 2 is shown the ratio of the numerically measured collisional
diffusion D to the classical value Dy=v aZL/Z, for a probability 1/100 of a collision each
time step. The result clearly confirm the 1/a;, dependence of D/D,; for small a.

When ions and electrons are taken into account, one can show that the effect of short
circuit in the stochastic layers is correct only for the heat diffusivity problem. Indeed the
ions average the microstructure on an ion Larmor radius scale, which is larger than the
electron Larmor radius scale at the origin of the microstructure. Therefore, in the stochastic
layers of width A_, satisfying a, <A <a, (where a,; are the electron or ion coarse
graining scale, i.e. Larmor radii or banana width), a constant electron density in the layers
A_is not compatible with an ion density gradient n'; = dn,/ dx. For constant electron

density the resulting electric potential @ due to the ion density gradient would reach a value
2(
ff&~(i—l) T'41155 1 violating plasma stability, ( Ap is the Debye length). Thus the
D

n
electron distribution will rearrange itself in such a way as to maintain an electron density

gradient in these stochastic layers. This is possible if the electrons are in Boltzmann
equilibrium in an electrostatic potential @, n, ~exp (e®/T,). Moreover, the equilibrium
distribution function f, has to satisfy the Vlasov equation.
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Expanding f. = {0 (E, f)+(k) 1 (V, ), where E = 1/2 mv? - e® is the particle
Ao

energy, we obtain vy (B. V) {9 (E, ) =0 which yields f, ~ exp (— “,’2—2 + e(?}ﬁ )
2 th,e ¢

and B . V T, = 0.Therefore the electron temperature should be constant in the stochastic
layers, as shown in Fig. 1, curve 2, but not in the laminar layers where T = T (x),

B. —V’ x =0. But the plasma configuration supports an electronic density gradient
everywhere. The electric neutrality condition determines the radial electric field, n,=n; ~
exp (e®@/T,) and (e®"/T,) = n'/n,.

Note that the particle motion along a field line in the stochastic layers is a random walk with
a bias due to the electric §'o().

Therefore the ion density and temperature profile are determined by the neoclassical
transport in the laminar layers, and by free-streaming mixing in the stochastic layers of
width A, > a;, where n'; = T'; = 0. The electronic density adjusts to the ion density profile
through the radial electric field @' ~ (n'y/n) (T /e) [Fig. 1, curve 3].

Then in a partially stochastic magnetic field, the ratio between ion heat diffusivity X; and
: Ay/a;
Xix;/D ~ Ym; /g, wehereas the electronic heat diffusivity is enhanced , ~ Xe neo Bo/2e) ~

particle diffusion D is equal to its neoclassical value D ~ D, eo A0/2; Xi = X neo
X;- If the turbulent scale A, is of the order of the ion coarse graining a; [4] the ionic heat
diffusivity and the particle transport are neoclassical, while the electronic heat diffusivity is
Xe ™ m; / me xi neo*

In conclusion, in a low collisional plasma v, << Vine / R) confined by a partially
stochastic magnetic field near stochastic threshold, one expects the electronic and ionic heat
diffusivities to be of the same order, and larger than the particle diffusion coefficient. In the
ohmic regime one gets : X, ~ x; ~ D Ym; / m,.

[1] M. Hugon et al.,, proceedings of the 7 International Conference on Plasma
Physics (Kiev 1987).

[2] M.N. Bussac and L. Zuppiroli in Theory of Fusion Plasmas p. 187, J. Vaclavick,
F. Troyon et E. Sindoni (Eds) SIF Bologna 1990.
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Compatibility of Drift Wave Models for Tokamak
Transport with Experimental Results

J. Weiland and H. Nordman

Institute for Electromagnetic Field Theory and
EURATOM/NFR Association

Chalmers University of Technology,

S-41296 Goéteborg, Sweden

The dominance of toroidal effects, as seen in gyrokinetic
simulations, is discussed in relation to the compatibility of drift
wave models for transport with experiments.

Although several experimental observations seem to be in
agreement with predictions from drift wave models regarding
transport, several questions seem to remain although solutions
have been suggested.l:2 A recent very useful tool in the transport
work is toroidal gyrokinetic simulations. The most striking feature
seen in these is the dominance of toroidal effects.3# In particular it
was found* that the commonly observed growth of x; with radius in
experiments is due to toroidal effects in the gyrokinetic simulations.
The systematic inclusion of toroidal effects in drift wave models
causes problems because the magnetic drift frequency is
comparable to the mode frequency and this in general requires a
kinetic description linearly as well as nonlinearly.S It is not until
the last year, with the toroidal gyrokinetic simulations, that it has
been possible to treat the nonlinear kinetic problem in toroidal
geometry. These simulatioris have now verified the result of our
fully toroidal fluid model that the radial growth of Xi is caused by
toroidal effects. This has not been seen in previous kinetic models
which all linearize in velocity space and it was recently pointed out
that nonlinear effects in velocity space may effectively deactivate
kinetic resonances,> thus making a fully toroidal fluid descriptionS:’
the most relevant one, next to the gyrokinetic simulations.
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The strong influence of toroidal curvature on ion temperature
gradient driven modes has been observed by several authors. In
particular a regime where the density gradient scales out and only
the temperature and magnetic field gradients determine
stability8-13 has been found to persist over most of the plasma
region.!0 An essentially symmetric fluid version of the collisionless
trapped electron mode with the same strong dependence on
toroidal effects was found in Ref.6.

The radial growth of Xi in our model is, as mentioned above, due to
toroidal effects. These enter linearly by a reduction of the
growthrate for large L,/Lp and nonlinearly through pinch fluxes.
An important ingredient in the model is the estimate of the
saturation-level as a balance between the linear growth and the
main nonlinearity. This leads to the saturation levell4.15

Te  kxpskyes N

where ky and ky are to be regarded as inverse correlation lengths
and y is the main growthrate. The use of (1) in quasilinear diffusion
coefficients®7:15 Jeads to

Y /k?
oy “

P

where or is the typical real eigenfrequency. This type of diffusion
coefficient which includes a non-Markovian reduction of the
transport when or >y was recently rederived!6 by using a

memory-function in a transition probability approach. In this
derivation also the nonlinear corrrection to wr was obtained. Since,
due to toroidal effects, or/y increases with Ly/Lg also the non-
Markovian effects contribute to a realistic radial profile of y;.

In a recent reduction!? of the general expression for Xi in the limit
Ly/LB>>1 a fairly simple expression was obtained
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- O(l f‘) Ti 'Z_ftAx
=C 91 3 ;3
Xi e (3a)
= )
+— | +
(m, 31) T
where
a2 P T
kyps Lp eB (3b)
-2 1+(5/3 —(:),)'le}l
Ay=2eqi0 = (3c)

(& -5/3)*

and ETj=‘IL;ri , a)='0)/(')De:
B

Here the strong pinch flux in the inner region is clearly displayed
(we note that erj—e towards the axis). It was also found that (3)

may give xi~(ni—nnh)” % as seen also in Ref.18. The pinch fluxes in
our model may also lead to net pinch fluxes when the scale lengths
Ln, LTj and LTe become sufficiently different. The consistency of
these effects with experiments has recently been demostrated!® by
the reproduction of the electron energy pinch in DIII-D20 in our
code.
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TWO-SCALE DESCRIPTION OF A TURBULENT
TOKAMAK PLASMA

E. K. Maschke
Ass. EURATOM-CEA sur la Fusion, D.R.F.C.
Centre de Cadarache, Saint-Paul-lez-Durance, CEDEX (France)

Abstract
We consider plasma states, which are relatively far from a static
axisymmetric equilibrium state due to applied sources.

I. INTRODUCTION

In recent analysis of tokamak confinement [1] it was found that
the behaviour of local confinement (for fixed beta and collisionality)
shows Bohm-like scaling, whereas most theories predict gyro-Bohm
scaling. The authors conclude that this indicates the presence of
long-wavelength fluctuations that scale like the machine size.

There is increasing experimental evidence that large-scale
perturbations of the magnetic and electric fields are permanently
present in tokamaks [2,3]. Such a situation should be considered as
rather natural since the radial profiles of the physical quantities
(temperature, current density etc.) are maintained by external
sources (heating, current drive) whose radial distribution can often
not be controlled experimentally.

Transport theory for tokamaks often proceeds by first
determining growth rates from equations linearized about a given
axisymmetric equilibrium, and then by calculating nonlinear
saturation levels and the corresponding transport under the
implicit assumption that the turbulent state is still sufficiently close
to the original axisymmetric equilibrium state.

The observed presence of large-scale stationary perturbations
(e.g. steady magnetic islands) leads us to consider an approach in
which finite perturbations of the electromagnetic field can be taken
into account. Such an approach is possible if the turbulent state of
the plasma is characterized by two well-separated spatial scale
lengths. Thus, we shall consider situations where the plasma shows
on the one hand large-scale phenomena having low poloidal mode
numbers and relatively large radial extension, and on the other
hand small-scale (electric and magnetic) turbulence with poloidal
and radial wave lengths of the order of the ion Larmor radius.
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II. EQUATIONS FOR LARGE-SCALE PHENOMENA

In the present paper we assume that the large-scale phenomena
can be described by one-fluid MHD equations. We also assume that
the turbulent state is quasi-stationary (e.g. quasi-periodic).
Averaging the magnetic field over time and over the toroidal angle
¢, we obtain a time-independent axisymmetric reference field Bo,
which allows us to define an appropriate flux coordinate system
1,0, , where r labels the magnetic surfaces of B,. We then use a
general representation of toroidal MHD in terms of scalar potentials
[ 4 ]. The magretic field and the fluid velocity are written in the
following (exact) form:
B = (AU)Vy - V(oU/a¢) — VyxV¢ | V =V||Bo/By + \4a3
with V 1xBo =Vdy, —vg x Vo + (Au)Vo - V(0u/a¢)
Here ®vy is essentially the electric potential, a is related to the
compressibility, the quantity u is usually negligible.
As shown in ref. 4 , the MHD equations can be replaced by a
completely equivalent set of evolution equations for the scalar
potentials introduced above. For small inverse aspect ratio € << | $
reduced MHD equations of various complexity can be used. The
simplest system, which has the same ideal MHD stability limits as
the full MHD equations [6], has the following form (assuming
constant density for sake of simplicity).

Aptdy =w with Ap* = (I 2/R2)V (R2/1 2)Vp and I = RB,

aw I2R, R4 2Ry R2
ol w,o a —_—
ot R4 {13 v} B R4 { 7 »P1l
B 2t Ry jt |

* R4 [aC D +3 {w.gH + piApw + Smom
dy Ry oDy .
3= 1 wovl+ Y + NAp*y + Eq , with Ap* = R2V.R'2Vp
dp Ry
3t = 11 POVI-Vayg+ Sy, 4= -x1 V) p —xV)p

The evolution equations contain local transport coefficients, as for
instance the effective heat conductivity, which have to be
determined taking into account the small-scale turbulence. The
latter depends strongly on the large-scale fields which we shall
simplify as follows.
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Let us assume the externally applied heat sources are such that
some low-m magnetic islands exist in the plasma due to tearing
instability. For instance, let the m/n = 2/1 mode be linearly
unstable and saturated to a finite amplitude. This mode is localised
about a magnetic surface of the reference field B, where the
safety factor is qo(rp 5) = m/n . The toroidicity leads to "satelite"
islands on magnetic surfaces where qo =3 and qo =1 The
perturbed flux function W can be represented as a Fourier series

y(r,0,0) = Zyy yyy (r) exp(iue + vo)
Now two different situations may arise.
(i) If the above perturbed field has everywhere well-defined
magnetic surfaces (for sufficiently weak perturbation), we
approximate y near a surface where qo =m/n, by y; =yo() +
Ym,n(™) exp i(m6 + n¢). This field, the helicity of which varies as
one moves from the neighbourhood of one of the considered
rational surface to another, may the be used to calculate global
confinement properties (see, e.g., ref. 5) . In addition, one may
calculate particle trajectories and micro-instabilities locally in the
field y; , assuming a Maxwellian particle distribution function
depending on space through ;. This problem ressembles that of a
stellarator. possessing good magnetic surfaces. The lack of
symmetry of the field wy; may lead to stochasticity of the particle
trajectories and thus to enhanced transport.
(i) If the above perturbed field has regions where the field lines
have stochastic behaviour (e.g. near the separatrix of a magnetic
island), strong modifications of the local heat and particle transport
occur and will react on the large-scale perturbations. A problem of
self-consistency arises, which requires numerical calculations. Also,
the problem of micro-turbulence must be formulated to take into
account the new structure of the magnetic field.

III. SMALL-SCALE PHENOMENA

The various transport coefficients occurring in the above
macroscopic equations depend strongly on the small-scale
turbulence, the theory of which is still incomplete. Here we discuss
only some general aspects which will guide future numerical
studies.

Among the transport coefficients, the resistivity in the presence
of magnetic turbulence has recently been studied [7], and it was
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found that for tokamak conditions it may change by a factor of 2 or
3 compared to neo-classical values. Such a change will probably not
give rise to strong modifications of the macroscopic behavior, so
that it should be sufficient to use the neo-classical resistivity in the
MHD equations (n = Nne )-

The viscosity tensor has been extremely simplified in the above
MHD equations. The effects of viscosity on the velocity fields may
be significant, but the general structure of the magnetic field is
probably not strongly modified by more realistic descriptions of the
viscosity. :

The heat transport coefficients are strongly modified in regions
where the magnetic field is stochastic. For the case of time-
independent ‘magnetic perturbations, the magnetic diffusion regime
of Rechester and Rosenbluth leads to Keff >> k| (see ref. 8). The

corresponding enhanced thermal transport will be essential for the
macroscopic behaviour.

CONCLUSION

In our approach, we consider that the state of the plasma is
determined by the external sources, which may drive the system
relatively far from a static axisymmetric equilibrium. Assuming
that the resulting turbulent state is characterized by two well
separated wave-length scales, we have sketched a theoretical
procedure which uses this feature systematically. A more detailed
account and numerical applications will be given elsewhere.
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PLASMA TRANSPORT IN TOKAMAKS

E. Minardi

Istituto di Fisica del Plasma, Associazione EUR-ENEA-CNR,
Via Bassini 15, Milano, Italy.

1- Introduction

To any macroscopic magnetic or electrostatic plasma equilibrium (a
static solution of the Vlasov equation) characterized by a known
inhomogeneous distribution of the current density or of the charge density
(with given boundary and geometrical conditions) one can associate a
functional of these  quantities with the properties of entropy, as are
conventionally defined in the classical thermodynamics of the macroscopic
systems /1/. The existence of this functional provides the basis for the
thermodynamics of the Vlasov equilibria, in general non-maxwellian and non-
uniform. A significant insight into the physical meaning of the functional
and of its variations is gained from its relationship to the variation of
the action and to the Hamilton principle in the lagrangian description of
the motion of the underlying system of particles /1/.

When the system can be considered as isolated, as is the system
constituted by the plasma and a perfectly conducting current-carrying shell
enclosing it, the most probable state should correspond to the maximum of
the entropy. In contrast, the magnetic configuration of an open system, as
is the case of a tokamak subject to ohmic and auxiliary heating, cannot be
described by the maximum of entropy. Nevertheless, we can investigate the
constraints imposed on a stationary magnetic configuration introducing the
condition that the time derivative of the magnetic entropy (called entropy
production in the present context) vanishes. Although this condition can be
violated in practice, it could constitute a useful reference in making
comparisons with the experiments.

2- Isoentropic states and magnetic stochasticity
The entropy production is given, in the case of the tokamak, by the
following relation (Minardi and Lampis, 1990)

ds 1 E = == ,
= = ~J[—2A3+E3 +pA]dV (1
dt T s

where T is a (negative) generalised temperature, E is the axial inductive

electric field, pp is the auxiliary power density, ﬁ(r) is the axial current
density and p is a free parameter, related to the arbitrariness of the gauge
(see /1/) which will be determined later, according to a specific
equilibrium. We shall call "isoentropic" a state of the tokamak where
magnetic entropy is not produced in the confinement zone. A family of
isoentropic states, labelled by B, is given in cylindrical geometry, by the
solutions of the equation

Aj+p? = —;,sz?}\ (A S r<s) (2)
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with the boundary conditions j(s) = jg and j(ls)=§ . Here r=sA and r=s are
the boundaries of the confinement zone defined by the following conditions
on the safety factor q(r):

& AsB sB
=g(As) = ——— =1, = = 3)
4= als) = e B 8 BIBL™ Ty :

In the following we shall neglect Ej with respect to Par, assuming intense
auxiliary heating. Also we shall take a one-fluid approximation of the power
balance and consider that the j(r) profile is ohmically relaxed with
j(r) o« ET3/2(r)/A(Z) where A(Z) is related to the Spitzer resistivity (2
uniform). Assuming provisionally that Pa is uniform, the comparison between
the power balance d(rqge)dr = par and the isoentropic condition (2) gives

: 1/2 2
de ErAj ~m T(r)) 2 _ 3E
% T 2ucTr ( & 2FTA(Z)

where T is uniform (e.g. 'i‘=T(0)) and m is arbitrary (only m=3/2 will be
considered) .

Let us compare y. with the form of %e following from marginally stochastic
/2/ or fully stochastic /3/ magnetic fluctuations

wk

2
q_R’ %e ® QRv.Ib (5)

Xezve

where Ve is the thermal velocity, w is the islands width, k the wave number
of the island structure and the summation is performed over resonant modes.
The two forms scale equivalently in the limit kw~1 of strong magnetic island
pumping /2/.

Under conditions of marginal stochasticity we can presume that the
magnetic fluctuations in different parts across a partially ergodic region
are partially connected, irrespective of plasma gradients. That is, the
magnetic fluctuations, particularly under the conditions of self-
organization considered by Kadomtsev /2/, do not depend exclusively on local
plasma conditions, but are subject, through space interconnection, to the
global physical conditions in the whole partially ergodic region. Thus it
seems reasonable to assume that the island width is sensitive in leading
approximation more to the average values of the plasma parameters across
this region, than to their local values. For instance, let us suppose that
the magnetic stochasticity diffuses into the region g>1 from the mixing
surface g=1, considered to be the source of permanent seeding of the
braiding magnetic field. TIf the coefficient of the anomalous magnetic
diffusion is sufficiently large with respect to the thermal diffusivity, the
gradient of the fluctuation amplitude may be lower than the thermal gradient
(uniform magnetic braiding).

The electrons, in contrast to the lines of force, are pointlike
localizable entities (classically) whose thermal velocity can only depend on
the local temperature. In this picture the space dependence of Xe should
mainly occur through ve~T(r)1 2 rather than through the magnetic
fluctuations b2. Now this behaviour is just the same as that of the
expression (4) of the diffusivity (considering n as uniform). Thus the
assumption above should be considered as an idealization which corresponds
to the isoentropic state.
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3- Inhomogeneous Power Deposition
In the case of pp uniform, the expression

~ " "
nye =—&=1FTT1/2(1+£+I—T—J (6)
T2 2T T

is equivalent to (4) (with m=3/2). We retain this form also in the case of

inhomogeneous pp. In accordance with the assumption above on Xer ©9. (6) can
be split into two separate conditions

1 _~1/2 n, T :T")
r) = — FTIT o = M i o WL IR TUR 7
Xe (X) -y (r) ;N > o7 P (7)

Since Aj is still related to de by (4), the expression (1) gives

ds 1
— == r) - p(r))dav (8)
o = 2 (eat) - B(o)
r
where P = ZJ par dr /r?. The time dependence of the entropy is then a

consequence of the inhomogeneity of the power deposition. The density
profile now depends on the temperature profile through (7). When only terms
linear in T' are retained, this expression is somewhat related to that
analysed by Becker in Asdex /4/. Clearly an additional (convective) term is
needed in the equation of the particle transport in order to be consistent
with (7).

4- Profile Resiliency

We consider a simple case of inhomogeneous power deposition where Pa(r)
is concentrated in a region 0<r<c with c lower than the mixing radius As.
Inserting g given by (4) in the power balance equation and integrating, one
obtains

2 a .
. . i r r J Js Y 2
= -49L|1n= —|l—]1-=+>(1nA 9
J(r) Js Jz(ns) +ln(s)lnx[ j+2(n )] (9)

where j = j(sA) = cB /2mR, j(s) = j5 and y is related to p? and pa as follows
2 2 e
Y = 25 [parar (10)
Ej o

We can now proceed to the integration of the equation for the p(oloidal field
d(rBg)/dr=4nrj/c with the two boundary conditions (3). Since only one
integration constant is available we obtain a relation between the

parameters of the discharge. This relation, denoted by L(A,qg, Js /3.,v) =0,
does not depend on p and on pp. When the value or the form of pa(r) changes,
the variation can be taken up by a change of pz with y fixed, according to
the relation (10). Thus the current density profile, characterized by

Ye A, s, 3s /3 and by L=0, remains invariant when pp varies. The condition L=0
is the mathematical expression of the profile resiliency. Note however that
this condition does not exist when one of the two conditions (3) is relaxed,
e.g. when g>1, as could be the case in the absence of sawteeth.
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The profiles of the current density are typically triangular (or
trapezoidal, depending on the value of A) or slightly concave in the
interior of the confinement region. They do not differ essentially from
those predicted in the homogeneous case /1/. The density profiles are
concave and tend to be flat.

5- Scaling of the Confinement Time and Isoentrogic Condition
The same mathematical structure as above persists when the second term
of eq.(2), which corresponds to the ohmic heating Ej, is retained. We

combine the isoentropic condition L=L(k,q5,js/§, ps,pA/EE) =0 with the
Kadomtsev scaling of Xe for high power magnetic island pumping (kw~l). For
2<Pp/P<10 (P and P are the auxiliary and ohmic power respectively, in
the region r<s) the isoentropic condition implies a dependence PA_O'SO of
the confinement time <. Assuming uniform braiding we have

2 i 1/2 — s 2
40,1
(ﬁ) eSO e | Bj(s) = ijBé(x:)rdr = £,B2(s) = 12\2(5) (11)
a R Bg m; s? o cs

This leads to the following scaling of the confinement time

T o P;O.SO 50.125 IO.875 [?.432 Rl.SO m(i).22 a—0.312 p~0-125 Z0.06 2 < PA/PQ < 10) (12)

The dependence with respect to Pay n; I, compares very well with that of
ITER89-P /5/ which is 7 « PA"O'SO n0.1 10.85, In the case PA/PQ>10 one

obtains 1 « p,~0.60 n0.20 10.80 which is less Precise with respect to
ITER89-P than the scaling (12).

We conclude by observing that, once the scaling of Xe 1is known, a
scaling of the confinement time follows on purely dimensional grounds
without solving explicitly the power balance equation, apparently without
the need of isoentropic ideas. But it can be seen immediately that this
procedure assumes implicitly the invariance of the profile (and implies also
constraints on the boundary conditions) under the change of the quantities
occurring in the scaling law. Now it is pPrecisely in the frame of an

and it is just the constraint that needs to be explained. It is at this
point that the isoentropic condition plays its role, so that, in the context
of this condition, the scaling law acquires the status of a "state law",
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THE RADIAL CORRELATION LENGTH OF ELECTROSTATIC TURBULENCE
F. Romanelli, F. Zonca,

Associazione EURATOM-ENEA sulla Fusione
C.R.E. Frascati, C.P. 65,00044, Frascati, Roma, Italy

The most important discrepancy between mixing-length estimates of the
anomalous thermal conductivity and experimental values is in the radial
dependence. This can be traced back to the estimate given for the radial
correlation length Ly of the turbulence, which is assumed to scale as the ion
Larmor radius and therefore monotonically decreases toward the edge. In this
paper the radial correlation length of electrostatic turbulence is estimated both
for moderate to high magnetic shear values (s=rq'/q, with q the safety factor),
which characterize the outer part of a discharge, as well as for low s values,
typical of the region around the magnetic axis.

In a two dimensional system the electrostatic potential & can be expressed
as a superposition of different poloidal harmonics, ®=Xp®p(x)exp[i((mo+p)6+n{-
ot)] where n is the toroidal mode number, {(6) the toroidal (poloidal) angle, ® the
mode frequency and x=r-ro the radial variable, with ro being a reference radius
and mg being defined by q(rg)= mg/n. Within the context of the ballooning mode
representation[1] it is  assumed that neighboring poloidal harmonics @®p have
similar shape, simply shifted by an amount 1/nq’ which corresponds to the
distance between neighboring rational surfaces. The global mode structure is
given by a superposition of harmonics with similar shape and modulated by a
slowly varying envelope function A(x), defined by @p(x)=A(x)®o(x-p/nq’). The
radial extent of A(x) determines the effective range of toroidicity-induced
coupling between different harmonics. An eikonal representation is usually
employed for A(x) [A(x)=exp(iJdx'nq'6k(x")]. The solution of the global eigenmode
problem is thus accomplished in two steps. At the lowest order, the determination
of the eigenmode structure along the magnetic field lines of the usual ballooning
formalism corresponds to deriving an expression for the shape function @®o. At the
next order the envelope A(x) and the global eigenvalue are obtained. This fact
allows us to construct the global structure as a superposition of local solutions.

It is convenient to illustrate such a procedure by considering the
quasineutrality equation in the fluid approximation. Defining the Fourier
transform of the function ®g as ®o(x)=Jd0 ¢o(0)exp(-i6nq'x), the following
differential equation is obtained

252,
0ti“0%¢o 1/t 820102 9, @D . _
o2 362 +[1_<D'Ti +(kgpi)=(1+s4(0-6k) )-——(m cos0+s(0-0k)sind)]9po =0 (1)
®

with @p=-2ckgTi/(eBR), w*Ti=-ckgTi/(eBLT), Lt-1=-d In Tj/dr, ©=Te/Tj, oti=vt/qR,
B being the equilibrium magnetic field, R the major radius, Vti=(Ti/mi)1/2 the
thermal velocity and pj=vj/Qi the ion Larmor radius. The usual low-B equilibrium
with circular magnetic surfaces is employed here.
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With the boundary condition of exponentially vanishing solution for 18]— oo,
Eq.(1) determines a one dimensional eigenvalue problem, leading to a local
dispersion relation of the form

F(o,x,0) Ax) =0 . (2)

The derivation of Eq.(2) is the final result which may be obtained from the usual
ballooning mode formalism at the lowest order. At next order we need to solve the
pseudo-differential problem obtained from Eq.(2) with the substitution Ok=-
i(1/nq')a/3x. With the explicit form of Flo,x,0k) it is possible to find an

F around 6y and XT. After solving around the turning points, connection formulae
are obtained to match the eikonal solutions of Eq.(2). A global solution can be
constructed following standard WKBJ theory. Imposing the boundary condition
A0 as Ixls oo, such a procedure yields the following global dispersion relation[2]

or
Ojdek nq' x(0k) = 7 [ 1+B] (3)

with x(0) being determined from Eq.(2), 1 being an integer and B a numerical
constant which depends on the topology of the phase Space trajectories. To be
specific, B=1/2 for the case of closed trajectories and B=0 for the case of open
trajectories.

We now apply the above formalism to the solution of Eqgs.(1)-(3) for s>1 and
s<l respectively. The poloidal wavelength will be ordered in both cases as
kopi=eT 1/4, with eT=LT/R. It is convenient to begin the discussion from the
moderate shear limit[3]. In this case the eigenfunction has a moderate ballooning
Structure which can be determined within the strong coupling approximation.
The associated ordering corresponds to balancing  parallel jon compressibility,
curvature, inertia and adiabatic electron response on the connection length scale
6=1, yielding :

oD 292 ® 5 )
o "“’*TimD(1+m*T_i) + 1q+2 cosbk 1=0 (4

Equation(4), which is valid up to O(STI/Z), can be solved by making a Taylor
expansion around I=ro and keeping the linear terms in r-ro. Such an
approximation is valid if the term JF/dr does not vanish in the region of interest
and the eigenfunction is sufficiently localized around I=ro. The turning points are
located at 0x=0,r. From Eq.(3), the resulting dispersion relation for the 1=0
eigenvalue is

202 (%) S(rg)
t0*Tio®Do' | TorTig) * lg(re) =0 )
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The eigenvalue is given by w=(-iT@*Tio®Do5(r0)/2q(ry))1/2, where the subscript o
means that each quantity has been evaluated at r=ro. The radial correlation length
Ly can be estimated as the distance between the turning points,yielding Ly=2
Re(xT) with

< 01/2 4172 1/2—dIn [Q(O)T;'/r]/dr 129,12
Re(xm)= 212 QI/2 Cem 12 g rerdyan2 = 2 o722 (©

with ap being the minor radius. The resulting Ly is much larger than the pj and
scales as the macroscopic dimention of the device. Note also that the shear
dependence is algebraic xr= s-1/2,

In the low shear limit (s<<1), the eigenfunction becomes broad and the
strong coupling approximation can no longer be applied. In this case, two
branches exist, a toroidal and slablike branch[4]. The eigenfunctions belonging to
the toroidal branch exhibit a fast variation, along the equilibrium field, over the
connection length scale with a superimposed slow variation over a secular scale.
The other branch, which exists also in slab geometry, is characterized by a
variation along the equilibrium magnetic field dominated by the secular scale,
with superimposed small oscillations on the connection length scale. The optimal
ordering for the toroidal eigenmodes, as given in Ref.[4], is obtained by balancing
parallel compressibility and adiabatic electron response on the scale 6=1, yielding
m=(1:co*pi(oﬁ2)1/3. For the case of the slablike branch the ordering is obtained by
balancing inertia, parallel compressibility, and adiabatic electron response on the
secular scale rather than on the connection length scale, yielding
m=(‘cw*pik9piwti)1/2. In order to determine the radial mode width, the explicit
form of the. local dispersion function must be found. This, however, is not
straigthforward as in the moderate shear limit, because a regular perturbation
theory fails to give any 6k dependence of the dispersion relation at all the orders
in s. The reason is that the toroidal coupling tends to vanish faster than any power
in s, since each poloidal harmonic tends to become localized with respect to the
distance between mode rational surfaces. Thus it is convenient to solve Eq.(1)
using a variational method. To this aim a quadratic functional can be obtained by
multiplying Eq.(1) by ¢, and integrating between +e and -eo. Appropriate trial
functions can be obtained from approximate solutions of Eq.(1) using asymptotic
techniques. Starting from the toroidal branch and considering, for the sake of
simplicity, only the case of modes propagating in the ion diamagnetic direction,
the following local dispersion relation is obtained

w3 1_1

o —— A 1/2¢ 01 =0 7
2Tm*Tithi2 g-8¢ cosfk (7)

with s=-su)a)])/w[i2 evaluated at r=ro. The eigenvalue is given by o= (-
tm*Tiomti02/4)1/3ez”‘/3. The radial variation of the function F is associated to the
first term of the r.h.s.. If no point exists at which 0F/dr=0, it is possible to expand
around a generic point r=ro, keeping only the linear term. The mode is localized
between the turning points at rotxT with XT=3L1/8€1/2£ andl1/L1=-
(a/Br)[u)3/(21:w*Tiu)[iz)]. The most important difference with respect to the
moderate shear case, is the appearance of the exponential factor. Such a term is a
measure of the toroidal coupling strength between different harmonics. As a
result, the radial eigenmode width (and therefore the radial correlation length
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L;=2Re(xT)) decreases exponentially as exp(-c/(gs)), with CxeT1/3(k9pi)'4/3(qr)‘

being of order unity for kgpi=(eT/qt)1/4.Such a fast dependence cannot be
recovered by a regular perturbation expansion, because the dependence on the
parameter & is not analytic for e=0. For the slablike branch the following
dispersion relation is obtained which generalizes that of Ref.[4]

3
TO*Tjotikgpis(1+2¢2)1/2

3
€ €
F=1+i - ——3e-1/8c 01 = 8
+i +(512sc4 402)6 cosfk =0 (8)

with 20‘=-i(co/(oti)kepjs(1+2q2)1/2. Note that the function F has a minimum located
at r=ro. Upon expanding around Io and defining the length Ly by 1/L02=d2/dr2[-
im2/10)*Timtikepis(1+2q2)1/2)], the eigenvalue tuns out to be
m=ei7‘/4[tm*'ria)[ikepis(1+2q2)1/2)]1/2, and the mode is localized between ro+xT
with xT=(2£)1/4(L0/nq'o')1/21(1-82/128625)1/46'1/320. Again the radial correlation
length Ly=2Re(xT) decreases exponentially as s—0.

If the radial correlation length becomes smaller than the distance between
mode rational surfaces there is no longer any coupling between different poloidal
harmonics. Such a transition occurs at nq'xT=1. Since the radial dependence of xT
comes mainly from the exponential factor, the latter condition can be written as

epl/3
~%(kgp)#/3(qr)1/3

1

rq (9

with o being a numerical factor of order unity and kgpi=(eT/q1)1/4,

In conclusion, the shear dependence of the radial correlation length L; is
very different in the case s=0(1) and s<<1. For moderate shear values the radial
correlation length is comparable with the equilibrium scale length and has an
inverse algebraic dependence on s, Lr= (a/)1/2. For low shear values the radial
correlation length decreases as exp(-c/(gs)), with ¢ being of order unity. On
applying a mixing length estimate the above results predict a strong reduction of
transport for s<1 and, in particular, close to the magnetic axis. This is in
agreement with several experimental findings which seem to indicate very low
level of transport near the plasma center [5] or when sawtooth activity is
stabilized using RF current drive [6].
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GENERALIZED ESCAPE-PROBABILITY METHOD IN 1 _1I
THEORY OF NONLOCAL TRANSPORT BY ELECTROMAGNETIC
WAVES.

APPLICATION TO GLOBAL HEAT TRANSPORT IN A TOKAMAK

A .B.Kukushkin
RRC “Kurchatov Institute®, 123182 Moscow Russia

1.Introduction. Heat transport by electromagnetic (EM) waves, both transverse (i.e.
photons) and longitudinal waves (i.e. plasmons), in the wide range of parameters (which
includes, in particular, magnetically confined thermonuclear plasmas) is characterized by
its nonlocal (non-diffusion) nature which manifests itself in nonlocal correlation of plasma
temperatures and, correspondingly, non-diffusion law of heat propagation. Mathemati-
cally, the non—diffusion behaviour is expressed by the fact that the original equation for
heat transfer which is, in general, an integral equation in space variables, cannot always be
reduced to a differential diffusion-type equation in those variables. Such a reduction leads
to an infinite diffusion coefficient in case of unbounded media or medium-size-depen-lent
diffusion coefficient in case of bounded media, so that the very concept of diffusion coeffi-
cient appears to be meaningless.

The phenomenon of nonlocal, non—diffusion transport has been revealed and thoroughly
investigated in the theory of radiative transfer in resonance atomic lines (RTRAL) in the
late forties and early fifties in the pioneer works by Biberman, Holstein and Sobolev (BHS).
Further advances of their analytic approaches are known in literature as “escape probability
method. (see, e.g., [1]).

Extension of the BHS-approach to emission/absorption by plasma electrons gives uni-
versal formulae for total power losses by a bounded media due to emission of electromag-
netic (both transverse and longitudinal) waves in the regimes of nonlocal (non-diffusion)
heat transport, which, in particular, generalize Trubnikov’s formula for synchrotron losses
to the case of arbitrary emission/absorption process and inhomogeneous non-stationary
plasma. The results suggest a qualitative model for the global heat transport in a tokamak.

2.Generalized escape—probability method and universal formula for total
energy losses. Let us consider the transfer of EM energy which is described by equation

for the intensity J(¢,7,t), where ¢ = {w,#,(}, w, % and ¢ are EM frequency, wave vector
and polarization, respectively, @ = k/k. Here x(¢,7,t) is absorption co ficient. Q(¢,7,1)
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is the source function, N, is ray refractive index, v, and 7, are the group velocity a .d its
direction. In a medium with dispersion the substitution of the dependence k = k(w, 7, ()
from the dispersion relation is implied.

In case of radiative transfer by emission/absorption of EM waves by plasma elect rons,
the quantities @ and & contain averaging over electron velocity distribution (EVD). There-
fore the source function Q may implicitly depend on the intensity J via corresponding
distortions of the EVD, caused by radiative transfer. If these distortions are small then Q
doesn’t depend on J, and eq.(1) appears to be a closed equation for energy carriers. The
multiple reflection at the medium boundary (e.g., tokamak wall) prevents from straight-
forward use of the analytic solution of €q.(1) in the form of the integral over ray path.

Another example of the reduction of transport problem to a closed equation is the
Biberman—Holstein equation for accumulators of energy, namely excited atoms, in the
theory of the RTRAL for complete redistribution in photon frequencies (see, e.g., [2]).

In both above-mentioned cases the energy transport appears to be characterized by
the following general features.

(*) The dominant contribution to energy loss stems from those long-free—path energy
carriers (photons or plasmons) whose long flights are of medium’s size Lg in length ,or
greater, Lo/(1 — R), for the case of reflection at boundaries, R is reflection coefficient (for
the RTRAL, these are the photons in line wings). ]

(**) Each of the variables of the total phase space {T'} = {4, 7} manifests one of two
limiting forms of its evolution (“redistribution“) along the trajectory of energy carrier
from its birth to its death (by convertion into medium’s heat); either no redistribution
(“independent“ variables) in which case for each value of thisvariable the energy transport
takes place independently (e.g., w, for absorption/emission by free electrons with fixed
velocity distribution, and 7, for the RTRAL) or complete redistribution in which case for
each of those variables the transport equation may be properly averaged.

The whole set of first-type variables we shall denote as T;nq and the second-type, I'.,q.

The properties (*) and (**) enable us to obtain finally the following general result for
total power losses:

% = /dI‘ind (1 + unc/l/uc)_l /drcr-i Q(F) ’ (2)

Here, v,y is the rate of such an absorption of EM energy by the medium, which converts
transported EM energy into medium’s heat (temperature), (this is the quenching of atom
excitation by, e.g., medium particle’s impact for the RTRAL, and the absorption of the
photon(plasmon) by plasma electrons for the radiative transfer in continuous spectrum),
and v, is the rate of free escape of EM energy out of the medium. Both quantities vg,,
and v, are averaged over I',,.4.

For the RTRAL, we have Fina=7 and v, =< T(7) > /t,aq, where < T(7) > is Holstein
function averaged over the angles of photon escape, t,q4 is radiative lifetime of excited
atom, and we thus arrive at the well-known result of the RTRAL theory. Therefore formula
(2) may be interpreted as a generalization of escape-probability methods to “he case of
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heat transport via emission/absorption of (transverse and longitudinal) EM waves by fi. .
electrons with fixed velocity distribution.

Note that formula (2) covers both limiting regimes of energy loss, volumetric (Vgue <
Vesc) and surface 10ss (Vgue > Vese). In the latter case, the intensity of escaped EM field is
close to the equilibrium Planck distribution with some effective, space-averaged tempera-
ture, the heat transport inside the medium being characterized in corresponding domain
of phase space by diffusion-type regime of radiative thermoconduction. Nevertheless,the
total losses in eq.(2) are determined dominantly by those part of the total phase space
T in which the process of energy transport has essentially nonlocal character, namely the
non-diffusion regime of free escape. The latter statement just constitutes the essence of a
“generalized escape-probability “(GEP) method which enables us to obtain eq.(2) within
the framework of principles (*) and (**).

3. Heat transport by plasma waves. Contrary to the RTRAL theory, nonlocal
character of the transport by plasma longitudinal waves and its possible role have been
realized much later starting from the paper by Rosenbluth and Liu [3]. For the transport by
transverse waves (i.e. electron cyclotron radiation) in inhomogeneous plasma, the concept
of non-diffusion transport has been fruitfully exploited by Tamor [4].

The straightforward analogy between heat transport by plasma waves and the RTRAL
was traced in [5] where the non-diffusion law of heat propagation by Bernstein modes was
also obtained (approximately ¢ o v contrary to the standard diffusion law ¢ o 2 ).

The existing analytic descriptions have the character of the fit of numerical results and
pertain to (a) specific mechanism of emission, namely cyclotron radiation, and (b) sp scific
profiles of temperature and density: homogeneous, the well-known Trubnikov’s formula [6],
or tokamak-like, formula [7]. The required analytic description may be obtained from our
general result (2) for a specific case of tokamak geometry under following, usually satisfied
conditions, namely not too large aspect ratio, non—circular (in particular, elongated) cross—
section and multiple reflection at plasma boundaries (e.g., for transverse waves the latter
is assured by highly reflecting tokamak walls, (1 — R)<0.1). Neglecting the mixing of
different modes in reflections at the boundaries, we have I'ing = {w, ¢} and eq.(2) reduces
to the form:

dB _ [V [ d2 Q(4,7) L4V [dD x(4,7)
e dw iy = = )
dt ; f Lm0 7 a0, [(7,d5,) (- R(6, 5.)

®3)

where 75 (w, {) = Vgue/Vesc is the effective (dimensionless) optical length which describes the
trapping of plasmons/photons. Here V and S, are plasma volume and surface, respectively,
and R(¢, S,) describes the dependence of reflection coefficient on wave parameters (first of
all, frequency). The comparison of formula (3) with the results of numerical calculations
[4,6] and formulae [6,7] shows good agreement in the regions of applicability of these results.
The GEP method allows also to obtain a universal analytic description for spatial profile
of wave energy balance and for arbitrary degree of mixing of different waves at plasma
boundaries, for both stationary and non-stationary cases.
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4. On the global heat transport in a tokamak. The application of 1L.: GE »
concept to global heat transport in a tokamak, within the general frameworl. of not.-
diffusion transport by longitudinal waves [3,5], suggests a qualitative modcl whic'. exploits
the fact of the strong coupling of essentially nonlocal and local characteristics of a plasinain
eq. (3) for total power losses, namely, the coupling of space-averaged emission /ubsorption
coeficients and the coefficient for the reflection of plasma waves at plasma boundary. In
this model, (i) the global energy transport is conducted by the long-free-path quanta of
longitudinal EM waves (plasmons) which are responsible for such a strong coupling due
to their multiple reflection (either from plasma boundary or from gradients of density and
temperature inside plasma volume) and appear to be the main carriers of energy whereas
plasma energy is invariably accumulated mainly in plasma particles, and (i1) nonlocal
formation of temperature profile is guided by local behaviour of reflection coefficient R.
Here, the quantity (1-R) takes into account the transforming of longitudinal waves intd,
e.g., (freely escaping) photons. Such a model suggests the possibility of an effective control
of plasma global (nonlocal) parameters via a proper control of the reflection of plasma
Wwaves in, presumably, edge plasma. From this viewpoint, the L-H transition may appear
to be stimulated by a sharp change of the reflection coefficient due to, e.g., increased
gradient of poloidal rotation of tokamak plasma or increased stability of magnetic surfaces
which are responsible for the reflection of most significant energy carriers.

Analytic and numerical analysis of heat transport by longitudinal waves across mag-

REFERENCES
1. Rybicki G.B. In: Methods in Radiative Transfer (Kalkofen W., Ed.) Cambridge Univ.
press, Cambridge, U.K, (1984).
2. V.A.Abramov, V.I.LKogan and V.S. Lisitsa, In: Reviews of Plasma Physics, Eds. Leon-
tovich M.A. and Kadomtsey B.B., Consultants Burcau, New-York, Vol.12, 151 (1987).
3. M.N.Rosenbluth and C.S.Liu, Phys. Fluids 19, 815 (1976). '
4. S.Tamor, Fusion Technology 3, 293 (1983); Nucl.Instr. and Meth.Phys.Res., A271, 37
(1988). .
5. A.B.Kukushkin, V.S.Lisitsa and Yu.A.Savel’ev, JETP Lett., 46, 448 (1987); Proc. Int.
Conf. Plasma Phys., New Delhi, India, 3, 897 (1989).
6. B.A.Trubnikov, In: Reviews of Plasma Physics, Ed. M.A Leontovich, Consultants Bu-
reau, New-York, Vol.7, 345 (1979). ~
7. S.Atzeni, B.Coppi and G.Rubinacci, Report PTP-81/7, MIT (1981).
8. M.Bornatici, R.Cano, O. De Barbieri and F.Engelmann, Nucl.Fusion, 23, 1153 (1983).



IV-1395 8-31

GUIDING CENTER DIFFUSION INDUCED BY
STOCHASTIC vB AND CURVATURE DRIFTS

J. E. Vitela and M. Coronado
Instituto de Ciencias Nucleares
National University of Mezico

04510 Mezico, D.F.

I. Introduction.

. Turbulent processes ocurring in the plasma seems to be the origin of the anoma-
lous transport observed in tokamaks. The transport induced by stochastic fluctu-
ation has been studied by consideration of the diffusion of guiding centers due to
the stochastic electric drift or the motion of the centers along fluctuating magnetic
lines.! However the diffusion induced by the stochastic VB and curvature drifts has
not received special attention because it is believed that these diffusive processes are
too weak in comparison with other processes. The treatment of stochastic VB and
curvature drifts requires the development of a formalism to treat fluctuation with
both time and space dependence. In a recent paper’ a mathematical approach to
deal with these type of fluctuations has been presented, and here we apply these
results to a model for the magnetic field turbulence and evaluate the diffusion of
guiding centers due to these drifts.

I1. Mathematical Approach.

To apply the results from Ref. [2] we assume a uniform magnetic field Bo in the
Z-direction with stationary and homogeneous stochastic fluctuations, b(z t) that are
in addition Gaussian with cylindrical symmetry.>® The guiding center equations we

consider are

dz b, Vi O | a
VR S A E (b /B
dt Il B, Wy ay (b‘/BU) a (b / 0) (la)
d B VI V’
Z=Vg+ —i—(b /Bo) + —(b /Bo) (1b)
T , T
V B-drift curvature
drift
d
;;— =V (constant) (1c)

where w, = 2qBy/mc, and the parallel and perpendicular velocity, Vj, VL, are taken
9 P I Il
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constant. In this case the 9 correlation functions

Bij(€,7) =< bi(,0)b;(&, ') > 2
with €= #' = # and 7 = ' — ¢ reduce to only four functions By, B, and Bs, since
Bo&Z + B Bokz&y Boéz&: + Babe

Bij = Boy€s Boé + B Boy€: + Bty ) (3)

Bobabz + Bals  Pobaby+ Bsby Bobl+26s¢ + P1+ B2

being o, /1 and B, even functions in £2, ¢, and 7, while B3 is even in £2 and 7 but
odd in £,.

The diffusion coefficients perpendlculal to the average magnetic line is compose -
of the following terms,
1) Diffusion resulting from the motion of the guiding center along the field lines,

ie. V) g/Bo:

oY = [ s =n @
2) The diffusion appearing from the VB-dnft:
(2) Vil 9(B1 + B2 : aﬂo 03
Dy’ = /d 2BZ T ou +VI|2 T’ +2Vl| ot ez, (5)

3) The diffusion resulting from the curvature drift:

412 62
@) _ Vil (28
b= / ar Biw? (3112 >g=g,, i
4) The diffusion due to the correlation between the VB and curvature drifts:
¢t 2VEiV?
(4) —— L) Vil i /33
D} /D dr Bl [/50 V5, thip, Q)

where £ = (€4,€,€.), € = (0,0, Vj7), u = (€2+€2)/2 and v = 5,/1". Here [, and [
are the perpendicular and the parallel correlation length of the magnetic fluctuations.
The correlation time is designed by ..

III. A model for the correlations.
The condition that the magnetic fluctuations are divergence free reduces the
number of independent f; functions from four to only two. By choosing $; and §;
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as the independent functions and giving an analytical form for them we can evaluate
the diffusion coefficients DS‘_’). In this paper we consider the particular case

Br=Aeap(=s?) , B =B eap(—s?) ®)
where s? = (€2 + £2)/12 + £2/12 + 12 /72, We also write B3 = f,[‘%, where f; is now
T Yy L zlY c

an even function in ¢,.

The two coupled partial differential equations for By and fs resulting from V-b= 0
can be solved to yield

Bo = (%) -7 {G(Z,w) s 1)G(g,w) —-2(e — 1)? [G(%,w) - G(3,w)]}

o A . 3 5

b= () - ve e ), ©)
1

where G(n,w) = 7(n,w)/w", with y(n,w) the incomplete gamma function, and

w= (E+)/3 + ff/lﬁ The correlation functions, fB;, are determined in terms
of A, R = B/A, € = n*(R + 1), where 5 = I1/1), and the correlation time and
lengths. The additional conditions imposed on Bj, by the fact that 8., By, and B,
have a maximum at f =0,implynp <land R+1>0.

IV. Diffusion coefficients.

The diffusion coefficients can be written in terms of effective correlations func-

tions as
4AVED
DS_I) /fl (r)dr , D(Z) 23214" / fa(r)dr
(10)
24Vt t 24V2EVZE gt
3) _ Il (4) _ L7
D}’ = wZBglﬁ /0 fa(r)dr D’ = _—wngli /0 fa(r)dr
where

A = copl—(i+ 1)

Fa() = 8l(e = G2, ) = (e = DG(S, & eap(£2)

A =124 sl + 1) (1)
Fi(7) = 36(2,11) - Zeap(—11) + (e~ DI3G(2, ) ~ 4C(S, 6 Jeap(—t2)
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with t. = 7/7; and t, = 7/7. The effective correlation functions fj(7) depend only
on €, 7. and 71, where 71, = [j/V}. All diffusion coefficients depend on A, which is
proportional to the strength of the magnetic fluctuations. As may be expected the
diffusion due to VB and curvature drifts depend on the correlation lengths and they
show an explicit B;* dependence, however a further dependence on By can be hidden
in the correlation time and lengths as well as in A. The diffusion due to V B-drift,
D » gets larger as I reduces and the diffusion produced by the curvature drift,
D f ) , increases as I gets shorter. These diffusion coefficients have a very sensitive
dependence on the guiding center energy. Further, assuming ions and electrons have
the same energy, the VB and curvature diffusion coefficients show a dependence on
the mass of the particles only through the dependence on the parallel velocity V) of
the effective correlation coefficients. On the other hand as follows from Eq. (11), the
perpendicular diffusion of particles caused by their motion along field lines, i.e. DS}),
is much larger for electrons than for ions.
A numerical evaluation of the diffusion coefficients can be made by considering
Te ~ 3% 107 %sec, I} ~ lem, bi/By ~ 107*, T,,T; ~ 25¢V and By ~ 5KG. We
assume | ~ 100/, and in order to satisfy the additional conditions on the proposed
correlation functions we take the lowest value allowed for by, this is by /By ~ 6x 1073,
Using these parameters and choosing Vi ~ VoL ~ Vikerma we find for times, ¢ > 7., 7,
that the diffusion coefficients in Eq. (10) for electrons are: DS_I) ~ 4 x 10%2cm?/s ,
gg;/l)g}) ~25, D(fiz{)Dﬂ_lilr)v 10710 arld D((J;))/D((l:)) ~1077; s_iinilarly f(o;; ion(?)we get:
L ~5em?/s , DIV/D}’ ~ 3 x 104, DY /Dy’ ~2x107* and D’ /Dy’ ~ —1.
We can then conclude that in the case Iy > 1y together with 6B > 6B, (not in
tokamaks) the stochastic VB-drift may play a leading role in the diffusion induced
by stochastic magnetic fields.
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A DYNAMICAL MODEL FOR THE IGNITOR EXPERIMENT

A.Airoldi "and G.Cenacchi *

° Istituto di Fisica del Plasma, CNR, Milano (Italy)
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Introduction - The goal of Ignitor is to investigate the conditions under which fusion
performance can be achieved in a D-T tokamak experiment characterized by high
magnetic field and plasma current. The reference data of the machine involve a
plasma current reaching up to 11MA and a toroidal field up to 13T /1/. Plasma
confinement and performance may be limited by magnetohydrodynamic activity
along the rampup phase; it is therefore important to carefully program the current
rise. This paper presents dynamical simulations of the plasma rampup and flattop
phase, carried out using an enhanced version of the free-boundary equilibrium-
transport code JETTO /2/. The plasma discharge is followed along the current rise
from 3 to 11MA, with a toroidal field growing from 7 to 13 tesla. Different plasma
growth scenarios have been analysed to optimize the global plasma performance,
taking into account MHD stability constraints. The effects of the current ramp rate
and geometry are discussed. The importance of the density rise, as far as both the
average value and the profile are concerned, is also pointed out, confirming the
conclusions drawn from previous simulations relevant to the flattop phase /3,4/.

Simulations - The evolution of current, density and temperature profiles in Ignitor
has been analysed using an advanced equilibrium-transport code where a splitting
technique is applied /5/. In the equilibrium package the MHD equilibrium problem
is solved as a free-boundary problem consistent with the currents in the poloidal
field coils. The flux-surface formulation of the Grad-Shafranov equation is adopted,
using a radial coordinate p , chosen to label the magneti es, which depends
upon the toroidal magnetic flux ® linked to them: p = ./®/nB, , where B, is a
reference constant representative of the toroidal magnetic field. In order to estimate
the currents producing a desired magnetic configuration, calculations have been
carried out with another equilibrium solver for some “key” plasma configurations,
taking into account the constraints of the design /6/. The coil currents required by
other equilibria are computed by linear interpolation between the “key” values. For
attaining the desired plasma geometry during the ramp different sets of coil currents
are required depending upon the rate of current rise, which affects the current den-
sity profile. The plasma current step for equilibrium computations has been as-
sumed to be 0.5MA and the toroidal magnetic field is the one associated with the
plasma current according to the design. Plasmas started from small major radius
have been considered.

The equilibrium flux-coordinate is also used in the transport package, where
flux-surface-averaged transport equations for temperature, electron and ion densi-
ties, and current density are evolved in time. The anomalous thermal diffusivity
follows the Coppi-Mazzucato-Gruber ohmic model with an additional term based
on the ubiquitous modes /7/, entering when additional power is involved. A fraction
of this term is also added to the Chang and Hinton expression for the ion thermal
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diffusivity. Neoclassical resistivity is used. Sawteeth are not considered. The pri-
mary ion species consists of a (50%-50%) mixture of deuterium and tritium ions.
Their depletion resulting from fusion reactions is assumed to be negligible until ig-
nition. Two impurity species are explicitely treated. The a particle production is
considered just as an auxiliary heating source for electrons and ions. During the
ramp the particle average density is raised at a constant rate controlled by a given
parameter. An inward particle diffusion is also introduced. A volume averaged
electron density of 10®%m~3 and an average temperature of 700 eV are set for the
initial 3 MA configuration.

Results- Two main scenarios have been analysed for the growth of current and
magnetic field. They are shown in Figs 1 and 2, where the small markers indicate the
time when equilibrium evaluation is updated and the big markers indicate the time
when external currents are supplied according to the design constraints. The the-
oretically accessible region in the ( 4, gy, ) space /8/, empirically checked in existing
tokamaks as JET, ASDEX, JT60, has been taken into account as a constraint for
achieving satisfactory performance.

For both scenarios the influence of the density growing has been studied by try-
ing many variations on the inward flux (controlled by the parameter a;,, ). Table
I includes the main data of four reference shots.

Table 1

Shot 1 2 3 4
dl/dt (MA/s) 2.0 2.0 2.5 2.5

i () 4.0 4.0 3.2 3.2
Mttt i 2.0 2.2 2.0 22
[ <n.> at t=0. (10%%cm) 1.0 1.0 1.0 1.0
<n,> at ty, (10%cm=3) 5.1 5.8 6.7 6.7
q(0) at 1, 1.1 1.1 13 1.3
q(Vs) at ty 33 3.1 3.1 34
<T.> at ty, (keV) 2.4 2.4 2.0 2.1
T.(0) at ty, (keV) 6.7 5.9 5.5 5.1
ton — o () oY) 2.3 23 | 26
tarr — b (5) 0.4 0.6 0.5 0.7
Pa at ty, (MW) 156] 165 18.6 18.6
P, at t, (MW) 2.1 1.8 14 1.3

The quantities in the Table are self-explanatory; t; indicates the time of the begin-
ning of flattop and #,, the ignition time. The trajectories in the ( / , g, ) plane for
shots 1 and 3, whose difference is the dI/dt rate, are very similar and within the
stability region. On the other hand, by enhancing the inward flux, the ( 4, gy )
trajectory shifts towards the instability region, as shown in Figs 3 and 4. Moreover
the ignition time increases with density peaking. These results confirm that the
density evolution noticeably influences the plasma performance. Partial particle
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penetration produces an inverted density profile during the density rise (see Figs
5,6), as observed in JET. The energy confinement time during the ramp phase has
been found to increase with the inward flux. We recall that in Ohmically heated
plasmas the energy confinement time grows steadily during the current ramp, when
the plasma density is also increased and drops slowly during the current flattop, as
the fusion heating becomes significant. The examined shots, chosen between many
simulations with different density conditions, point out that the flattop phase can
be reached with a magnetic field line parameter ¢(i) kept above one over all the
plasma cross-section. These favourable conditions should be exploited by trying to
achieve ignition shortly after rampup, before sawtooth oscillations develop. The
delay in the growth of the q <1 region increases with the inward flux and the current
rise rate assumed (see Table I). The q profile evolution during the ramp phase for
shots 1 and 3 is shown in Figs 7 and 8. Also the plasma geometry has an influence
on the global performance: if the coil currents are adjusted so as to guarantee the
nominal plasma cross-section, ignition can be attained within a shorter time and
with a lower average temperature than in the case of smaller dimensions.

The results show that a careful control of current ramp rate, plasma dimensions
and density allows to reach the flattop with / inside the stability region and the
safety factor above one over all the plasma cross-section.
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ABSTRACT. For DT fusion reactors with prescribed alpha particle heating power Py,
plasma volume V and burn temperature < T; >~ 10 keV specific relations for the
thermal energy content, bootstrap current, central plasma pressure and other quantities
are derived. It is shown that imposing P, and V makes these relations independent
of the magnitudes of the density and temperature, i.e. they only depend on P,,V
and shape factors or profile parameters. For model density and temperature profiles
analytic expressions for these shape factors and for the factor Cj, in the bootstrap

current formula Iy, & Ch,(a/ R)%ﬂPI, are given.

In the design of next-step devices and fusion reactors, the fusion power is a fixed quantity.
Prescription of the alpha particle heating power and plasma volume results in specific
relations which can be helpful for interpreting computer simulations and for the design
of fusion reactors.

Transport simulations of ITER |1,2| with volume-averaged density < n >~ 102° m~3
and temperatures < T, >~< T; >~ 10 keV have shown that the simplifying assump-
tions

ne(r) = ni(r) = n(r) = nogn(r) 1)
Te(r) = Ti(r) = T(r) = Togr(r) 2)

are good approximations in the case of low impurity levels |3|. Furthermore, the
deuteron and triton densities may be set equal (ng = n¢ = n/2). In the region where
the fusion power is produced, the ion temperature was found to vary between 10 and
20 keV. In this temperature range, the DT fusion rate coefficient can be represented

by
< ov >pr= Csz 3)

with Cy = 1.08x 10724 m3s~1(keV)~2. Assuming that the energy of the alpha particles
is totally deposited in the plasma, we obtain for the alpha particle heating power

Py = 1C;E.2R [ n?T?2xrdr (4)

Here, E, = 3.5 MeV is the alpha particle energy and R and a denote the major and
minor plasma radii, respectively. Substitution of Egs. (1) and (2) in Eq. (4) yields

Py = 1C5E.V(noTo)? f 5)
with the plasma volume V = 272 Ra? and the shape factor

fi=23% [§ (gngr)?rdr (6)
From Eq. (5) it follows that

P,
noTo = z(c,—E"W)

so that the central plasma pressure py = 2n¢Tj reads

po(MJIm=3) = 0.82f] % [P;g(n':wz] i 5

3
2

)
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It depends on the o particle heating power, the plasma volume and the shapes of the
density and temperature profiles, but is independent of ng and Tp.

The thermal energy content is given by

Wi = 6xR [ nT2nrdr = 3VnoTo fa 9)
where
fa=2% [ gngrrdr (10)
is another shape factor. Elimination of noTy by means of Eq. (7) results in
1
& (P \?
Wi = 6}?—"2 (W?:“) (11)
and, in readily applicé,ble form,
Win(MJ) = 1.231§—[V(m3)Pa(MW)]% (12)
5
For the model density and temperature profiles
Qpn
gn=(1-5) (13)
ar
or=(1-13) (149)
the integrals in Eqs. (6) and (10) are determined analytically, yielding the shape factors
h = satenm (15)
I T (16)

The factor required in Eq. (12) thus reads
ii‘ — [2(entar)+1 3 (17)
A

antar+l

It is a rather weak function of «,, and ar, whereas both f; and f1% sensitively depend
on these parameters. Rectangular profile shapes g, = g7 = 1, i.e. ap = ar = 0,

correspond to f;/ fl% = 1. For more realistic profiles represented by ap = 0.5 and
L
ar =1 (like those assumed for ITER |1]) one obtains f,/fZ =0.8.

According to Eq. (12), the thermal energy is proportional to the square root of the a
particle heating power. When P, and V are prescribed, Wy, no longer depends on ng
and Ty but rather is determined by the shapes of the density and temperature pro-
files. Consequently, in transport simulations with P, and V imposed only the radial
dependences of the electron and ion heat diffusivities Xe(T)/Xeo and xi(r)/xio are im-
portant for the thermal energy content during the ignited state, but not Xeo and X;o.
They determine, however, whether ignited operation is possible. For the approximate
evaluation of Wy, by Eq. (12), it is sufficient to know the readily accessible quantities
P,,V,a, and ar.

With the help of Eq. 7(12), the volume averaged density consistent with a prescribed
burn temperature < T' >~ 10 keV can be calculated. Replacing Wy, by the usual
expression

Win=3<n><T>V (18)
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results in

1
<n>(m™3) =256 x 1021f;-[P§', ?"lv;’ ] 2 zﬁm (19)

1
Another quantity entering the reactor design is the allowable divertor heat load Pg;y,
which is equal to the sum of the heat conduction P.onq and heat convection Pony at

the separatrix. If it is necessary to restrict Py, to a fraction v of the alpha particle
heating,

Pyiv = 7Pa (20)

this can be achieved by significant bremsstrahlung and impurity line radiation within
the separatrix. A typical figure for ITER is v = 0.5. With the global energy confinement
time defined as

TE = _‘LP,.,.KPe_.,..u 1)

one thus obtains

ru(e) = 1.23#; [%;’TWL)]% (22)

This requirement for the energy confinement has to be met by the reactor plasma when
the divertor heat load is prescribed.

With P, and V imposed, specific relations for the non-inductive current drive by the
bootstrap effect result. As the reactor plasma is collisionless (electron collisionality
factor v.e &~ 1072), the neoclassical bootstrap current valid for the banana regime is
apalﬂied |4,5|. With the approximations of Eqgs. (1) and (2) the bootstrap current density
reads:

oa(MAM™?) ~ 1.60 x 1072~ 4 54 [—2K13T*3—'; + (1.67K13 — Ka3)n L (23)

with T in keV, n in m™® and r in m. Here, ¢ is the inverse aspect ratio /R, B; is the
toroidal magnetic field in 7' and K33 and K»3 are dimensionless transport coefficients
in the banana regime |4|. Setting K13 ~ K9 = 2.30 and K,3 ~ Kég) = 4.19, which is
a good approximation for the low v, values, leads to

jos(MAM™?) ~ 1.60 x 10~2¢~4 g4 ( —4.60T2 — 0.35ng—{) (24)

It is evident that the main contribution is caused by the density gradient. The ratio of
the On/Or and 8T /Or terms is somewhat reduced by the experimental fact that density
profiles are broader than temperature profiles. Very flat density profiles like those in H
mode plasmas of open divertor tokamaks are unfavourable since the gradient is shifted
to the periphery resulting in high edge currents.

Substitution of Egs. (1) and (2) in Eq. (24) yields

iss(MAm™?) & 1.60 x 10722} gy Ty ((— 4.60g7 %2 — 0.350, %2 ) (25)

Eliminating the factor noTy by means of Eq. (9) and applying the model profiles of
Egs. (13) and (14) results in a formula for the bootstrap current which does not underly
a burn temperature restriction

Iba ~ Cba (%) 5ﬂpIp (26)
with
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Cha % 0.5(ctn + a7 + 1)(4.60arn + 0.35ar) [} (5)% (1-3) " ha () (27)

Here, f, is the poloidal beta value, I, is the plasma current and k is given by h = ¢/qa
with g, being the cylindrical ¢ value at r = a. For o, = 0.5,a7 = 1 and h = (r/a)3/?
a factor Cp, ~ 0.44 is obtained.

Specific expressions for the a particle heating and DT fusion rate can also be given.

The cumulative alpha particle heating power (integrated over a cylinder of radius r)
reads

Po(r) = $CsEo2xR [ n?T?2nr'dr! (28)
with Py(a) = P, (see Eq. (4)). Substituting Egs. (1), (2) and (5) in Eq. (28) yields
B = £ & [ (gnoryr'ar (29)
For the model density and temperature profiles it thus follows that

o (r) by
PP: =1_(1_%;_) 1 (30)
The density of the DT fusion rate is given by
Sa(r) = 10m2T? (31)
so that one obtains correspondingly
Sa(r) = 7 527 (9n97)* = Sa(0)(gng1)? (32)
with
Sa(0)(m~3s7) = 1.77 x 1018 L B0 (33)
With the model density and temperature profiles, Eq. (32) yields

2\ 2(antar)

£3=0-9) (34)

Prescription of the alpha particle heating power and plasma volume makes the thermal
energy, bootstrap current, central plasma pressure and fusion rate independent of the
magnitudes of the density and temperature, i.e. they are functions of Py, V and profile
shapes only. The formulas given in Egs. (8), (12), (19) and (33) have the advantage
that they merely require a knowledge of P,,V, f; and f,. They also hold in flux surface
coordinates if f; and f, are expressed in such coordinates. Applying the bootstrap
current formula presented in Egs. (26) and (27) is also easy if ap,ar and h are known.
The calculated values of Wy, and p, are found to deviate by a few per cent from the
predictions of transport simulations. This difference results from the approximations in
Eqs. (1) and (2), especially from setting ni,Ti, = noTp in Eq. (5).
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MODELLING OF A HEAT PINCH UNDER OFF-AXIS HEATING IN TOKAMAKS

Yu.N.Dnestrovskij, S.E.Lysenko
Russian Research Center "Kurchatov Institute”, Moscow, Russia

1. INTRODUCTION. Recently in some experiments with ECRH [1,2] and ICRH [3] off-
axis heating the structure of the electron thermal flux Fe have been

determined. The results of these experiments are not in the coincidence with each
other.
Usually the electron flux is written as:

Fe=—nxe~6Te/6r (1)
But the existence of the profile consistency effect leads to an idea that the
flux can contain the second convective term
I =-ny +8T /8r+nvT (2)
e e e e

referred as the heat pinch. It is possible to distinct between (1) and (2) in
experiments, using a well localized source of off-axis additional heating, for
example, ECRH. The experimental results could be described by the effective heat
diffusivity

eff

X, =T
If the heat pinch in the flux (2) overcomes within some region r

/(n+8T _/8r). (3)
e e

1<r<r2, then
eff

x (r) <O, r1<r<r2. (4)
e
The condition (4) is sufficient for the existence of the heat pinch, but it is
not necessary. The heat pinch could be detected also, when elsewhere x:ff>0,

using the detailed analysis of non-stationary discharges with off-axis heating.
It was shown on T-10 [1] that under off-axis ECRH the x: value reduced by

several fogi. But the problem of the heat pinch existence was unresolved. The
negative X values have been observed on DIII-D [2] under off-axis ECRH

(ch=1'25MW) at the low density n=2.2x10'°m™>. The structure of the flux (2) was

confirmed. On JET [3] the strong on-axis and off-axis ICRH has been conducted
with the power PIC=1OMW. The experimental results were similar to obtained ones

in [1]: with off-axis heating the flat Te(r) profiles were maintained during a

long time and the heat pinch was absent.

In the present paper we try to resolve the contradiction between [2] and
[1,3] by means of the canonical profiles model, including the heat pinch and
the forgetting effect, which destroys the pinch.

2. MODEL. The canonical profiles model with forgetting [4] was modified for the
correct description of Tei(r)’profiles. The usual energy balance equations for

the electrons and ions and the equation for the poloidal field were solved. The
plasma density n was assumed to be known from the experiments. The thermal fluxes
have a form:
_prheo _an _PC )
rk—rk +Fk +Fk (k=i,e) (5)
o

where FEe are the neoclassical fluxes,
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5 rT
an an aT k .
k PC PC
r, ==, —, ' “=-nx z.. F: iz . ), (6)
k k ar k k a2 Tk k “pk
a2 a3 Tk a2 3 pk Zpk
e e = — — In = =exp |- ! 7
Zoy 7 1nT v Zge T 1n—, Fk(zpk) exp[ 222 ] (7)
F o5 ke Pre ok

Here Fk is the forgetting factor [4], 20k=20k(r) is the influence zone width of
the canonical profiles. The x:" and x:C values are calculated in [4], ch and P

denote the canonical profiles of the temperature and pressure
-3
* (8)

The comparison with experiments showed that 7k~1, 6k~3/2. The real Te i and

P, profiles during the on-axis heating are more peaked than the canonical ones,
e,

-7
2,2, %k _ 2,2
ch(r)/ch(O)—(Hr /aj) . pkc(r)/pkc(o)—(lﬂ /aj)

therefore sz<0 and zpk<04 Under off-axis heatihg' these profiles are more flat
than the canonical ones, therefore ZTk>0 and zpk>0. So we have to introduce two
functions ng and z;;, which describe the influence zone width:

z' (r)>0, if z_ >0, (off-axis heating)

g T Y 4 2 Bk (9)

zOk(r)>0, if zpk<0 (on-axis heating)
The functions z:k(r) and z;k(r) should be found from comparison with
experiments. Eq. (6) for the flux l";c can be rewritten as

PC pc_ Tk

)
T (sz)— - szexp[ (ZTk+zn) /(ZzOk)]. (10)
where
2, 0 2, 2. v
z =(a”/r)—ln(n/n ), n _(r)/n(0)=(1+r"/a%) ~, v=8 -7, . (11)
n ar ¢ (o J k ‘k
The curve I'°(z_) at z =0 is qualitatively presented in Fig.1. If z' <z, the
k Tk n Ok Ok

threshold value (Fic) for off-axis heating in several folds smaller than one
max o

for on-axis heating. It means that the plasma under off-axis heating "easy
forgets" the canonical profile. After start of the strong off-axis heating the
deviation z " would be greater than 20k and the heat pinch will be destroyed.

P!

The Eq. (10) for the flux and Fig.l yield that two stationary solutions may
exist, corresponding to the peaked and flat Te profiles. They are marked in Fig.1

as (1) and (2). Realization of these solutions depends on the process history.
After the pulse impact on plasma (ramp-up or ramp-down the power, pellet
injection and so on) the bifurcation from one solution to ahother is possible.
Let us consider the scenario of the step-wise power ramping with the step
value 8P and its duration 8t. The model shows that the critical values 6Pcr

and the derivative chr/dt exist. Only if the conditions
SP<8P __, . 8P/8t<dP__/dt (12)
cP cr

are satisfied simultaneously, the temperature tends to more peaked profiles
(solution 1 in Fig.1) and the heat pinch is maintained: In other cases the
solution 2 would be realized.

It is possible to propose the alternative scenario for the heat pinch
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maintaining. At first we use the mixed on- and off-axis heating, when the
main part of the power is deposited far from the center and only 15-20% of
power deposited near the center. After reaching the steady state the on-axis
power is disconnected. The plasma becomes slightly colder, but the tempera-
ture profile should be peaked (the solution 1 in Fig.1l is valid). Such
experiment is crucial to verify a valildity of the proposed version of the
canonical profiles model.

3. MODELLING OF EXPERIMENTS WITH OFF-AXIS AND MIXED HEATING. The model

contains internal parameters and functions. For the off-axis heating the most

important is the function z, (r) in the region between the plasma center and
e

the power deppsition zone. We shall assume that z;e(r) has a slight radial
dependence, so the parameter to be determined is z;e(O). The modelling of the
experiments [1-3] have shown that z;e(O)Ezozl.S and slightly depends on the
plasma parameters. At on-axis heating 203(0)~5—6 [4].

The results of modelling the off-axis ECRH on DIII-D [2] are presented
in Figures 2 and 3 for different zo values. For all cases in the region
0.3<r/a<0.45 the pinch is not destroyed and x:"<o.

'Fig.4 shows the evolution of the experimental [3] and calculated electron
temperature profiles with P1c= 10MW, I=3MA, B=2.8T, the equivalent minor

. ®_ % e i a2
radius a =V ab =1.37m. We suppose that PIC=7MW, ch=3M”' but variation of the
relation PTC/P:C only slightly affects the calculations results. The At

denotes a time from start of heating. We see that during a long time the flat
Te profile is maintained. The heating power profile is shown also. Fig.5

presents x;“ profiles at At=0.5s and 1s. Note, that behavior of T_ profile

under ICRH on JET is determined by strong applied power. When inequalities
(12) are not satisfied, the solution 2 from Fig.1 is realized and the heat
pinch is destroyed. As a result the flat even the hollow Te profile is

exists. For detection the heat pinch on JET one needs to use other heating
scenario.

The most favorable conditions for the heat pinch detection on T-10 are
attained under ECRH _of the . .dense plasma. The results of calculations are
shown in Fig.6 for n=5.8x10"°m>. For mixed heating with P=1MW(off)+0.15MW
~(on) the Te profile becomes more peaked than the canonical one (curve 3) and

the thermal flux elsewhere directed outward. After disconnecting of the on-
axis power the electrons in the center slightly cool down (curve 1), the
solution 1 from Fig.1 is realized and the heat pinch is occurred. After- start
of off-axis heating with the same power PEC=1MH (curve 2) the pinch is

destroyed because the solution 2 from Fig.1l is realized.
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Drift Wave Turbulence in the Transcollisional Regime
B. Scott, Max-Planck-Institut fiir Plasmaphysik, Garching, Germany

A fluid model for electrons is derived, which extends the usual two-fluid
collisional treatment to regimes of arbitrary collisionality, and matches
the zero-Larmor radius collisionless model at zero collisionality. The
scheme is calibrated by computation of drift-wave evolution in a shear-
less slab and comparison to identical computations using drift-kinetic
electrons. The fluid model is then extended to sheared magnetic fields.
Linear waves, known to be damped at large and zero collisionality are
found to be damped for arbitrary collisionality. Turbulence in the two-
dimensional slab, known to be self-sustaining at large collisionality, is
found to retain this property for arbitrary collisionality, although some-
what weakened. The physics of the interaction between parallel and
perpendicular (drift) electron dynamics is found to be of the same char-
acter, whether collisional or Landau effects provide the dissipation.

|. Introduction

It is a well known problem with collisional fluid treatments of tokamak edge turbu-
lence that the electron mean free path is longer than the connection length of the field
lines, which formally invalidates the theory. Moreover, for the parametric regime usually
encountered, the collision frequency for electrons, v., is commensurate with frequencies
near the upper range of those measured. Interpreting these measurements as indicative
of drift-wave dynamics, with the known dispersion relation, one faces a situation in which
the longer and shorter wavelengths are in different collisionality regimes: the former are
deeply collisional, but the latter are at least “transcollisional”: w ~ v, for wave frequency
w. This regime becomes still more important when it is realised that the usual situation
during the transition from L- to H-mode operation is also included.

In a search for a reasonable model to treat this regime it would be unwise to take
a collision-free approach, as is often done. Models are available at both extremes of the
collisionality: the collisional two-fluid equations (Braginskii 1965, Hassam 1980) and the
zero Larmor radius collisionless model of Hammett and Perkins (1990). The former is an
asymptotic expansion in inverse collisionality; the latter is obtained by matching the results
to the known properties of the plasma dispersion (“Z”) function. This paper extends the
matching process to arbitrary collisionality through computation of drift-wave dynamics
using drift-kinetic electrons and cold ions, and requiring that an appropriate fluid model for
the electrons re-produce the drift-kinetic results. Once this is done, turbulence simulations
are carried out with the transcollisional fluid model, in order to see whether the recently
discovered nonlinear instability of drift-wave turbulence (Scott 1990, 1992) carries over
into that regime. The overall result is that it does, but over a more restricted range of
temperature gradient values. Contrary to the expectations of this author, the decrease
in parallel thermal conductivity experienced at lower collisionality leads to weaker, not
stronger, turbulence.
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Il. The Transcollisional Model and its Calibration

Since the focus is on electron dynamics, the ions are taken as a cold fluid which pro-
vides inertia (Scott 1992). The model produced herein can be incorporated into gyrofluid
treatments to relax their restriction to adiabatic electrons (Dorland and Hammett 1993),
at a later time. Due to the expense of kinetic computation, the calibration of the fuid
model is performed for linear drift waves in a shearless slab: the parallel gradient, k).
is taken as constant, and parallel ion motion is neglected (re-incorporation of this in the
sheared case is straightforward). The directions are z, down the gradient, y, electron drift,
and £, the magnetic field at a resonant surface. “Shearless slab” is equivalent to evaluation
of the sheared slab at a reference distance from the resonant surface, so that k| is constant.
In the linear, drift-kinetic model for electrons, the governing equations are

%Vi(b = —-‘UTV” /d3,ww"(f - f0¢'), (1)
a 2 ) )
8_,: - ‘(Cs/L")“’Ta—j —wrVy(f - fod) + :—35(1 - c?)a_f, 2)

where wr = 14 n.(w? — 2), 9. = L,/Lp, ve = 2rnAe! /m2v, w is the electron velocity in
the ion frame, ¢ = wj/w is the pitch angle cosine, and ¢ is normalised to T/e, x and y to
ps = c(M;T)/?/eB, and w to vy = (2T/m.)!/2. In these units the background Maxwellian
is fo = 773/2¢=%" In the shearless slab, Egs. (1,2) are re-expressed in wavenumber space
with one Fourier component (in which 8/8y — ik, V2 — —k?%, and Vi — iky, with &
and k) constant), and solved ab initio: at t = 0 ¢ is set to 1078 and f to fy¢, with the
¢-dependence to be excited by wr.

Since the collision model in Egs. (1,2) is the Lorenz one, the fluid equations in the
collisional regime are taken from Hassam (1980) and not Braginskii (1965). In the colli-
sionless limit they are assumed to approach those given by Hammett and Perkins (1990).
For this reason parallel viscosity is neglected (it is negligible along with electron inertia in
the collisional regime), and one is left with the following system, which is to be valid for
arbitrary collisionality:

d

77 V18 = VeV)(newy —vy), (3)
%=—£—1%—nv|11’||, (4)
%%T = —%’rzez—i% = VeVy [on + a (o = pewy)] + w VT, (8
%v” =-VeVin+(1+a)T-¢]- \/TEVe(Uu = Heu), (6)
%u" = —uV.Vy(aT + ¢) + \/T;Ve(:vn — Reuy)), (7)

where V., = (T/m.)'/? and pe = (me/M;)'/? (note the difference between V. and vr
above), nys is the number of degrees of freedom, k| is the thermal conductivity, and
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« is the thermal force coefficient. These last three quantities are those whose changes
track the transition between collisionality extremes: In the collisional limit a = 3/2.
K| = 16/m(V2/v.), and ny = 3 (Hassam 1980); in the collisionless limit « = 0. K| =
V2/m(Ve/ Iknl), and ny = 1 (Hammett and Perkins 1990). No change to the momentum
transfer was assumed, since the collisional slowdown process does not depend on the mean
free path. It remains only to provide the transition. To this end, Eqs. (3-7) were solved
in the same way in the same situation as Eqgs. (1,2) above, taking care to run at like pa-
rameters, e. g., kjvr(Lp/cs) = 4 means kyVe(Ln/cs) = 2v/2. The details of the way one
effects the transition from kyVe > ve to kyVe < ve are somewhat arbitrary; it was chosen
to do it via a roll-over of the form (1 + ax?)~'/2, with the constant a adjusted to get the
best matching. This was settled at

3/2 2|V, 82z 2
o = —— :‘\3” = N T ‘n.f=1+_.). (8)
V1+ 322 7 [k | V1 + 12842 14 22

where & = |k V. /v.|. Final refinement of this procedure is still in progress.
I P prog

IIl. Turbulence in the Sheared Slab

Making the foregoing transcollisional fluid model nonlinear in this electrostatic treat-
ment is straightforward: simply replace each (9/dt) by the ExB advective derivative:
(d/dt) = (8/0t) + 2 - (V¢xV). In the sheared slab the parallel gradient becomes Vi =
z(0/dy), the V4 operator becomes (8/0z)% + (8/8y)?, and in nonlinear cases there are
several Fourier components, coupled variously through the ExB advection. In the linear
regime stability was tested by multiplying the density gradient term by (14i74), and allow-
ing the external drive y4 — 0. It was observed in every case that the growth rate vanishes
before 74 reaches zero, proving that the linear waves are damped for all parameters.

Turbulence runs were initialised with adiabatic electrons in a broad-band, random-
phase initial state for ¢, with n = ¢ and T = v = u = 0. The initial amplitude was
2.0ps/Ln. The computational domain was = € [—20,20] and y € [0,27/ko], where k¢ =
0.05. The grid in  used 129 points, unequidistantly spaced, and 85 harmonics of ko were
carried (see Scott 1992 for further details).

In the case of collisional drift wave turbulence, the turbulence is “self-sustaining”:
although all linear waves are damped, fluctuations at two separate scales, k! and A p, are
able to act coherently, greatly increasing the efficiency with which the free energy available
in the density and temperature gradients is tapped (Scott 1990, 1992). Here, Ap is the
hydrodynamic layer width-the distance from the resonant surface at which kg V2 [ve & wy.
where w, is the diamagnetic frequency of the wave whose ky is ko; more precisely defined.
Ap = 0.51(ve /wx)(me/M;)(Ls/Ln)?, and it takes values of 1-3p, in tokamak edge regions.
The self-sustainment may be alternatively termed a “nonlinear instability”. It was open to
the criticism that the large change expected in the dynamics of parallel dissipation caused
by a lowering of the collisionality might invalidate it. Specifically, collisional thermal
conduction is a purely dissipative process, while resonance with parallel motion through
the inertia is reactive. It was then asserted (Scott 1992) that while this is so, it merely
results in the replacement of v, by w, in Ap: there is still a hydrodynamic layer for the
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Fig. 1. Results for the collisionless case, with n. = 0.2. (left) Density
fluctuation amplitude, in terms of ps/L,. (right) Spectra of free energy
source (T'y) and sink (I'_) rates, showing the net surplus at kyAp ~ 1
and deficit at longer and shorter wavelengths.

same reason and with the same physics as before; it should just have a new definition.
Ap — (me/M;)(Ls/Ly,)?. To test this, a particular run was taken in the pure Hammett
and Perkins (1990) collisionless system: Eqs. (3-7) with ve = 0 and @ = 0, ny = 1, and
k) = V2/m(Ve/ |k||J). A realistic mass ratio was used, g = 1/42, and Ly/L, was 10. The
time dependence of the fluctuation amplitude in saturation and the spectra of the source
and sink rates of the energetics are shown in Fig. 1. These figures and other features of
the mode structure are very much like those of collisional drift wave turbulence (see Scott,
1992, for the most detail), confirming the assertion that the parallel electron dynamics has
the same role, irrespective of the collisionality regime. Although further investigation of
the transcollisional system, Eqs. (3-7), is at this moment still in progress, it is reasonable
to expect that the physical interactions responsible for the mode structure in saturation
act in the same way in all collisionality regimes, and that the only differences will be in
the quantitative amplitude and transport scaling.
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Toroidal Gyrokinetic Simulation of Tokamak
Turbulence and Transport

S. E. Parker, W.W. Lee, H.E. Mynick, G. Rewoldt, R.A. Santoro, and W.M. Tang
Princeton Plasma Physics Laboratory, Princeton University, ‘
Princeton, New Jersey, USA 08543

Recent developments in both nonlinear §f methods for gyrokinetic simulation!, and
massively parallel supercomputing now make it possible to simulate a sizable fraction of
a tokamak plasma using realistic physical parameters. As a first step in utilizing these
advances, a three dimensional electrostatic toroidal gyrokinetic simulation has been devel-
oped. Here, the code is used to investigate the nonlinear evolution of the ion temperature
gradient (ITG) driven instability and the associated turbulence and transport. The ITG
mode has long been considered a plausible candidate to explain the anomalous jon heat
transport above neoclassical values in tokamak plasmas?. In these simulations, the ions are
fully gyrokinetic, including trapped particles. The electrons are treated as adiabatic which
permits a moderate size timestep (simulations with kinetic electrons are feasible, but the
timestep would need to be smaller by the factor v /vs;). The simulation is efficiently run-
ning on massively parallel supercomputers (currently the CM-200 and CM-5) which allow
simulations of relatively large systems (e.g., a & 100p; minor radius, Az = p;). Large scale
runs have been made with one to eight million particles usually with one to two particles
per grid cell, and with a cpu time of 2-3 microseconds per particle per timestep on a full
64K processor CM200. Fine grid resolution is needed in the toroidal direction because the
mode structure is helical (elongated along the magnetic field lines i.e., k) < kL), resulting
in a smaller number of particles per grid cell relative to slab simulations.

The parameters for the simulation are as follows: 1 million particles, a 128x128x64
grid in (z,y,%), with a perpendicular grid cell size Az = Ay = p,, and a time step
of Ate,/Lt = 0.45, e7 = Lr(ro)/Ro = 0.075, 1/Ln(r0) = 0, T; = T., a = 64p,, and
Ro = 892p,, g0 = 1.25, Aqg = 3,1 = 20p,, 70 = %a (7o and [ are defined below), ¢(ro) = 2,
§= g% = 0.75 at ro. The local parameters at r = rg are similar to the TFTR perturbed
supershot experiment?, except for the aspect ratio. Another connection to the TFTR plasma
is the nonlinear fluctuation spectra taken from the simulation as shown in Figs. 1(a) and (b),

!S.E. Parker and W.W. Lee, Phys. Fluids B 5 77 (1993).

2W.M. Tang and G. Rewoldt, to appear Phys. Fluids B 1993

3M.C. Zarnstorf, et al., Proc. of the 13th Int. Conf. on Plasma Phys. and Contr.” Nucl. Fus. Res.,
Washington D.C., 1990, Vol. 1, p. 39.
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which resemble the recent beam emission spectroscopy (BES) fluctuation measurements 4.
Let us elaborate. In the initial phase of the run, we observe a clean linear growth of the
most unstable toroidal harmonic and the associated 2D eigenmode in (r,0) with a ballooning
type mode structure [see Fig. 2 (a) and (b)]. Linear comparisons with detailed eigenmode
calculations of Rewoldt and Tang? show agreement to within 15% in terms of real frequency,
growth rate and mode structure. In the steady-state, both long and short perpendicular
wavelengths are enhanced with the spectrum peaking around k,p, ~ 0 and kgp, ~ 0.1 — 0.2,
and the ballooning structure reduced, but still prevalent [see Fig. 2 (d) and (e)]. Broad
scale (i.e., many modes are present) turbulence with a fluctuation level of || /T < 1% is
observed. Fig. 2 (c) and (f) show the excited poloidal and toroidal harmonics (m,n) at the
q(r = %a) flux surface, for the linear and nonlinear phases. The size of the circle indicates
the amplitude of the modes. A downward shift in the dominant (m,n) from the linearly
most unstable mode is observed. The dominant eigenmode grows linearly and saturates at
a level of e|¢(r = 9,0 = 0,n = 4)|/T. = 0.03, which is in the range of the mixing length
level 1/(kyLt) = 0.06, using k) =~ kg. At saturation, x; = 1.6p2%¢,/ Lt taken at r = To,
then drops to a steady-state value of x; = 0.2p2c,/Ly; for comparison v/k? = 0.5p2c,/L7.
Figures 1(a) and (b) are the kg and k, spectra taken at the turbulent steady-state of
a run with @ = 64p,. These measurements were made over the half annular region of
0 €[-n/2,+n/2], r € [$¢,2a] and % € [-7,7]. The region has approximately a 32p,
(= a/2) radial width and a 100p, (= 7a/2) poloidal length. Figures 1(a) and (b) give
S(ke) = 3" |4(kr, ko, n)|? and S(ky) = E |¢(ky, kg, n)|?, Tespectively. These measurements
n,ky n,k
show similar features as the recent BES ex;)erimental measurements in that the &, spectrum
peaks at zero and kg spectrum peaks in the range of kgp; ~ 0.1-0.2. These properties of
the spectrum have so far been found to be fairly insensitive to the choice of simulation
parameters. One notable difference between the numerical result and the experimental
measurement is that the width in the %, spectrum is broader in the simulation. One possible
explanation is that the small minor radius of the simulation causes more localization of the
modes radially, hence artificially broadening the k, spectrum. This will be tested in the
future by increasing the size of the simulation.

Lastly, let us briefly describe our simulation model. Starting with the electrostatic
gyrokinetic equations with a nonuniform equilibrium B-field®, we write f(z,t) = fo(z) +
6f(z,t), where z = (R, v, #); and expand % into its equilibrium and perturbed parts:
z = 30 4 3!, fo(2z) is a Maxwellian. The equation for the perturbed ion distribution
function éf is then! 8,6f + 2 - 9,6f = —2! - 8, fo. The particles follow their full nonlinear
trajectories, 6 f is represented by B§ f(z,t) = Zw,-b'(z - z;), and particle weight w; is then

1
evolved using! w; = — (1 — w;) [2! - 82 fo/ fo]z=z‘_’t. As usual, finite size particles are used
in the configuration space. The electrons are are assumed adiabatic (6ne = noeg/T.). A
square cross-section is used which is suitable for spectral solution of the field equation.
The coordinates (z,y, %) in terms of the usual toroidal coordinates (r,0,%) are: (z =
rcosf,y = rsinf,1 ). We assume (ky/k1)(Be/By) < 1, and neglect the variation in pi

‘R Fonck, et al., Plasma Phys. and Contr. Fus. 32 1993 (1992)
°T.S. Hahm, Phys. Fluids 31 2670 (1988).
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and p, in the field equation obtaining the familiar gyrokinetic “Poisson” equation®. For the
radial boundary condition we set the perturbed ion density to zero for > (a—4p;) within
the square cross-section. The magnetic field is fixed and specified using By, = ByRo/R,
By = rBy/Rog(r), and ¢(r) = go + Ag(r/a)?. Initial equilibrium density and temperature
profiles are used such that L;! = |Vn|/n and L7! = |VT|/T have a radial variation
proportional to sech?[(r — 7g)/l], where 7o and ! as well as the peak normalized gradients
L;'(ro) and L7'(ro) are all specified parameters. For the results presented, the particles
are loaded homogeneously and the variation in the profile appears only in the right hand
side of Eq. (4).

We have demonstrated the feasibility of using large scale nonlinear gyrokinetic simula-
tions to study the nonlinear evolution of kinetic microinstabilities. Current whole tokamak
simulations are limited to minor radii of 100-200p,. In the future, teraflop scale massively
parallel supercomputers will allow simulations with a minor radius in the range of 500p,,
which is typical of the size of present day tokamaks. Future work will include adding
a more detailed kinetic electron model (including the trapped fraction), electromagnetic
perturbations, and collisional effects. .

Work supported by the U.S. DOE Contract No. DE-AC02-76-CHO-3073. Computing

resources where provided by the Advanced Computer Laboratory, Los Alamos National
Laboratory.
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Figure 1: Wavelength fluctuation spectrum for kg and kr. (a) Fluctuation energy vs.

kg, and (b) fluctuation energy vs. k. k. and kg are in units of p;, and S is in
arbitrary units.

*W.W. Lee, J. Comput. Phys. 72, 243 (1987).
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Self-Regulated Shear Flow Turbulence in Confined Plasmas

B. A. Carreras, L. A. Charlton, and K. Sidikman
Oak Ridge National Laboratory, Oak Ridge, TN 37830-8070

P. H. Diamond
University of California at San Diego, La Jolla, CA 92093-0319

L. Garcia
Universidad Carlos III, Madrid, Spain

L Introduction
Simple considerations of momentum balance in a cylindrical plasma indicate that the
radial profile of poloidal flow evolves according to

A 1 9 ( 2505 1 sew
(3:+“)<V9(”>=73;(’ ) comate” <“"))' &

Here (‘7,‘79) and (l},ﬁo) are the Reynolds stress and magnetic Reynolds stress,
respectively; L represents a generic collisional damping; ny is the ion density; and m; is
the jon mass. The angular brackets, { ), indicate average over toroidal and poloidal
angles at a fixed radial position. It is apparent that flow evolution requires

(a) a netimbalance between fluid stresses (related to vorticity transport) and magnetic

stresses (related to magnetic-flutter-induced electron particle transport) associated
with a local (i.e., not averaged over fluctuation correlation length) ambipolarity
breakdown;

(b) a radially inhomogeneous fluctuation spectrum (i.e., local symmetry breaking);

and

(c) alocal radial wave propagation mechanism active in the fluctuation dynamics.
Furthermore, it is clear from Eq. (1) that fluid and magnetic stresses only act (up to end-
point contributions and ionization effects) to locally redistribute poloidal momentum and
cannot generate it. Thus, flow profile modification should be thought of as a mechanism
for local amplification of flow shear or flow curvature.

The need for a radially inhomogeneous fluctuation spectrum has been shown
analytically and numerically. For the long-wave-length drift wave turbulence model,1
where a radial inhomogeneity can result from self-binding effects near low-g resonances
and edge effects, the calculated Reynolds stress is nonzero only in these spatial regions.
In tokamaks, the radial inhomogeneity of the turbulence is particularly important at the
plasma edge. Tokamak edge plasmas in OH or L-mode are characterized by large
fluctuation levels? and strong radial symmetry breaking (i.e., boundaries, or just the
observation that Ar/L, <1, where Ar is the radial correlation length and L, is the gradient
scale). Thus, it is clear that edge flows will be regulated by fluctuations. Indeed, the only
real question is the mechanism for radial propagation. The possibilities include

(a) diamagnetically induced radial wave propagation in the ambient fluctuations, and

(b) seed shears (V,) and dilatations (V;), which in turn induce radial propagation.3

Here, we consider only the second mechanism.

“The submitted manuscript has been
authored by a contractor of the U.S.
Government under contract DB-
ACO05-84()R21400. Accordingly, the U.S.
Government retains a nonexclusive,
royalty-free license to publish or reproduce
the published form of this contribution, or
allow others to do so, for U.S. Government
purposes.”
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IL. Poloidal Shear Flow Amplification.

Let us consider the parallel ion flow gradient driven (PIFGD) instability, in the limits
of flat density and V  <<c,. In this instability model, poloidal shear (V;) amplification
may occur if x — —x symmetry of the fluctuation spectrum is broken and a seed shear is
ambient. A reduced set of equations has been derived in reference 4 to study this
instability in slab geometry. The equations for the fluctuating quantities are

) 2 ). . on = (o) .|= . 9’7,
(5+ Ve(x)g)(" -piVid )+ V‘nsy_-*-LnDO[VJ.(g) X Z]-Vﬂl —Doay—’;
R _ o o ,0*n -
+P.C.[V1" X Z]' V. (p2v3a )ﬂ’.ﬁg;(ﬁf Jax?z -V, =0, (V)
oV, v g . on
-a—t“+V°(x)3yl_ p.c.Vix7 -V, =—cV,i—Viy g" ) 3)
and the average poloidal flow evolution is given by
E)(Ve 2 2, O [0fion
= —(—=)-V,)- 4
o P e\ gy P i

Here, V,, =p,(dV,,/dr) is the diamagnetic drift velocity for the parallel velocity. These
equations are derived with the approximation of quasiadiabatic electrons, ® = [ 1-(D, /
V.,) 0ii/oy], where V, =c,p,/ Ly is the dian{agnetic drift velocity, p, = ¢/,
D, =171V2n, /b, Ne =L, /Ly, and k' is the average parallel wave number. In this
derivation, M, >>kJp? has been assumed. The instability source is the gradient of the
parallel velocity.

The PIFGD instability is a negative compressibility instability. In the flat density
limit (V.,=0) with no external poloidal flow (V,=0), and for low-k modes, the
instability is purely growing with the linear growth rate y = k,p,IV,,{,| /2. The parallel flow
gradient shifts the instability away from the resonant surface by a distance
8, =p,L,Vo/2c, , and the eigenfunction is radially localized by coupling to sound waves.
The radial width of the eigenfunction is W? =vp,L,/k,c,. In this limit, the PIFGD
instability does not propagate radially, and thus does not contribute to the Reynolds
stress. The addition of a shear poloidal flow, V,(x)=Vyu, with u=x— §,, reduces the

1/2 1
growth rate to y= Ic’p,|V"{,|[1—(L‘,V,,’o /e, )2] /2 and modifies the eigenfunction,
fi= ﬁexp[—(u—i& l)2 /2W2]cxp(7t+ik,y). The imaginary part of the eigenfunction shift,
8, =—y2V,, / k,(:,2 , induces radial propagation of the instability. Hence, the presence of

* the poloidal shear flow induces the symmetry-breaking effect needed for this instability to
generate a nonzero Reynolds stress. The straightforward result is that the inclusion of a
small, constant seed shear flow yields
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I B o
(+2“=0+” Vo= 2(V5)|,=02’p+"l' ®)
k T
and
EAA N ’
#u—_on(Vo’) =0, o

Thus, the seed shear is amplified, while no curvature generation occurs. It is interesting to
note that in this case, the seed shear itself induced the radial propagation necessary for a
nonzero Reynolds stress. Furthermore, Eq. (6) naturally defines a critical /i/n necessary

for the onset of amplification, |f,[" = py, [2k2p2Q?. For density fluctuation levels above

the threshold but low enough that they are in the linear regime, the gradient of the
poloidal flow increases faster than exponential

am((vi),,)
ot

2 oy
- 22 kyzp:z |"k|,=o ey _
k 7k

™

In this regime, when a single mode dominates the spectrum, the poloidal flow shear has a
radial dependence like the second derivative of a Gaussian (see Eq. 4).

To test these results, nonlinear calculations in the single helicity limit have been
performed using the KITE code.® Typical tokamak plasma edge parameters have been
used, with ¢, = 3.76 x 106 cm/sec, p, = 1.98 x 1072 cm, L, =156 cm, and an effective
collisionality p =295 sec™!. In this test of the analytical theory, the value of the gradient

of the parallel flow has been taken artificially large, V'y, = 2.65 x 106 sec-1, for the
purpose of having a large growth for the instability. These calculations have been
performed for the 8/3 helicity, using 45 components with poloidal mode numbers ranging
from m =-176 tom = 176.

The perturbations have been initialized to a very low level: /i/n, = 108, In this way,
their evolution has a relatively long period of exponential growth. When the density
fluctuations reach a critical level, (V;) grows sharply (Fig. 1). If we define the normalized
shearing rate as Q! _=.k,(Ve’) W /y,‘, there is a sudden quenching of the fluctuations
when Q > 10. Three different values for the poloidal seed flow have been considered:
V) =2.65x107 sec!, V; =2.65 sec™!, and V; = 331.25 sec™!. The nonlinear evolution is
very similar for these three initial conditions and follows the pattern just described. The

threshold in the fluctuation level for flow amplification is approximately the same for
these three values of the seed flow. This result has been illustrated in Fig. 2, where we

plotted the increment of the poloidal shear flow, (V,,’) —V;, versus the density fluctuation
level. In the three calculations, the poloidal flow amplification begins at about
|fi/ny| =8.1x10™*, in good agreement with the analytical prediction, [fi/n,|~6.1x107*.
The poloidal flow gradient steepens at about r = 0.89 a, the radial position of the peak
of the instability. The (V;’) radial profile is close to the second derivative of a Gaussian.
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During the exponential growth regime of the fluctuations, (Vo’) grows faster than
exponentially, as is shown in Fig. 3. In this figure we have plotted (V;) and ln«V;’)/Vo’),
both in logarithmic scales. It is clear that ln((l{,’)/l{,’) is well described by an exponential
dependence in time, and the detailed time evolution of (V2) is well described by Eq. (7).
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STEADY STATE EQUATIONS FOR A TOKAMAK PLASMA WITH STRONG
ELECTRIC FIELD AND LARGE FLOW

C. S. Chang* and H. Strauss
Courant Institute of Mathematical Sciences
New York University, U.S.A.

Studies of plasmas with the properties of strong radial electric field and large
rotation has recently been quite active. In order to put such studies on more solid
footings, it is important to understand and establish the fundamental physical pro-
cesses of plasmas at large mass rotation, which can be quite different from the usual
understandings we have for small rotation cases.

In the present report, for simplicity and physical clarity, we use the circular flux
surface geometry of Shafranov.[1] The minor radius of a flux surface is denoted by
r and its center is given by the major radius Ry(r). The poloidal angle relative
to the center of the flux surface is denoted by 6, and the angular dependence of
the major radius on a flux surface is denoted by R(r,6)/Ro(r) = h(r,6), where
h =1+ ecosf, € = r/Ry. Then the toroidal magnetic field strength B, satisfies
B, = B¢/h = B on a magnetic surface, where B¢g is B, at the center of the flux
surface and B = ,/Bz + BZ.

The angular dependence of the poloidal magnetic field strenth By is described by
a parameter A, By = Byo(r)(1 + €A cos ), where By is the 6 averaged value of By.
Poloidal flux %, then, exhibits the property

Vi =7 RBg =7 RoBgo[l + €(1 + A)cos6) =7 [1 + e(1 + A) cos 0]2—% (1)

and the quantity e(1 + A) = —-R{, represents shift of flux surfaces.

A physical quantity Y on a flux surface is separated into the § averaged part ¥
and the @ dependent part ¥. For a linear analysis, it is necessary to assume that
YV = O(¢Y) and € is small.

The basic set of equations we consider in the present work, in addition to the usual
Maxwell’s equations, are the steady state continuity and force balance equations:

V-n‘-}=0, (2)

Vp+minV-VV + V- - j x B = FAm™, (3)

where m.(m;) is the electron (ion) mass, n is the electron or ion density with
n = n. = n;, the electron inertia has been neglected, IT is the plasma stress tensor
corresponding to the anisotropic part of the pressure tensor, and F' FAnom represents
any possible anomalous force on the plasma including those from turbulence, beam
injection, orbit loss, and other edge effects. We assume that F4"°™ is not strong
enough to influence the force balance equation to the lowest order, but it is strong
enough to influence an averaged force balance relationship. In the present work we
assume, for simplicity, that the ions are adiabatic and the electrons are isothermal.
The plasma mass flow can be devided into perpendicular and parallel parts relative
to the equilibrium magnetic field BV = VJ_ + V" Here, the perpendicular mass
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flow is taken to the E x B drift: V) = (¢c/B)b x V¢, where b = E/B We can
consider that the electrostatic potential ¢ is approximately constant on a flux surface,
¢ = ¢(v), if we assume that the potential difference A, 4 in the radial direction across
the large V) layer is larger than the potential variation in the poloidal direction,
Ar¢ > rVyé. This condition can usually be justified in an H-mode layer since the
plasma exhibits the relation A,¢ > kT/e while rVy¢ < ekT/e. By writing V§ in
the form, V@ = vV, the perpendicular flow can be expressed as

Vi=Viés, Vi=cyVy/B=V.[1+€2+A)cosb] (4)

where &, is the unit vector in the direction b x Vb, and Eq. (1) has been used.

The parellel flow information can be obtained from the continuity equation (2)
V-nV +V- (nﬁVMB) = 0. Using the property V - B =0 and Eq. (4), we
obtainnb- Vi = =V (B/Bs) b-(nVh+ Vnh) —nVjb- V(nh), which becomes, in the
linear limit,

Vi = —(V.L/bs)(74/7 + 2e cos 8) — V||(71/T + ecos ) = —(Vo/by)[it /70 + €(y + 1) cos 9;,

where by = By/B and 7 is the ratio between the perpendicular flow and the poloidal
flow speeds, v = V1 /Vy = V1 /(Vg + bV)). A general expression for the poloidal
rotation speed Vp is then written as

Vo = (B(/B)V_L + bgv“ + bg‘”/" = Vg[l - % + E{’)’(A + 1) — 1} cos 9].

We use the plasma viscosity tensor IT of by Chew-Goldberger-Low.
From Ref. [2], we have:

2 « . P
I = —2I, = g(ﬂ| — Py) = minvlVp(m X — porf - VX),

B-VB
B : ]

3] 9 o
B-V -Tl=2B-V(F-P)-(R-P)

where X is the velocity strain
X =rb-V[(#/R)+ (27 + 1)A). (6)

The heat flow driven part of viscosity is not considered here. It is because of the
assumption that the convective energy flow due to large mass motion dominates over
the thermal flow.

For py and po, we use the analytic form of Ref. [2]:

2 D VT 9 72 L or4) o0
oD e e g TVER L Te o=V — 9P oV A2k
I 31+z73+V,,2Jr 3 2te ( 0 +2V)e™, ()
WIENE - 2 e, 3(1.2— V(18— VH?+50} -, (8)
* % 3y vp 140 2 200 + V7 S

The viscosity coefficient p5 has usually been neglected in the limit of small poloidal
flow speed. However, we find that p, is not negligible compared to y; for finite
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poloidal rotation speeds. As a matter of fact, p, becomes more significant as the
poloidal flow speed gets larger.

From the so called “vorticity equation,” which is obtained by taking cross-product
of Eq. (3) by B /Bz, it can be shown that the magnetic shift parameter A satisfies
the relation

1 8n(<p > —P)
1—~a2 B},
where £; =< B}, > /2B, is the internal inductance and o = V;/byV} is the poloidal
speed normalized to the poloidal component of the parallel Alfven speed V.

Notice that the value of A grows as ya? approaches unity in Eq. (9) and it exhibits
the Alfven resonance behavior at ya? = 1. It is obvious that for ya? ~ 1, a nonlinear
analysis may be required, including the Kelvin-Helmholtz type of instabilities.[3]. It
can be seen that the shift amount at a reasonable value of V ~ 1/4 (corresponding
to a ~ 0.1) can be twice as large as that by the B and ¢; alone in a typical H-mode
layer.

Poloidal plasma density variation due to poloidal flow can be calculated from the
parallel component of the plasma force balance equation (3):

1+A=

+ e va? (9)

VP + min(V - V) + (V- I = Ffinom, (10)

The following solutions for the sin and cos 6 components of the density variations
are obtained

acbofis (27 + 1)B. = o?]

[8. — a{a — byjiz})* + {abefia }*’

olf. ~ afa — bof}) (210 = (27 + Dhais) = 2y + Do’
[B. — afa — bofa}]” + {abops}? )

where the dimensionless parameters are defined as

T, + &T; (L
ﬂ_ sz =—ﬂe ﬂz =

fy, = ny/M=c¢

(11)

Ne

n./m=c¢

Notice that the up-down density variation 7, is driven by the viscous drag of the
poloidal flow motion. On the other hand, the in-out density asymmetry 7, is driven
by the interaction of the rotating plasma with VB. Notice also that there is a
resonance structure at “poloidal Mach number=1,”denoted by a ~ 1/B,, or by VZ ~
bg(T. + 5T;/3)/m;. Since the normalized density variation is only allowed up to unity,
a renormalization of the density variation near the resonance is necessary for a smooth
transition across the resonance layer.
From the flux surface averaged parallel force balance equation,

(B-VPy+(B-mnV -VV)+(B-V-1I) = (B - Fftm), (13)

we obtain

N =

abge [aﬁs{(l +A)(1—7y)+1} + g{ﬁl[(ny +1)e+nd — ﬁzﬁs}]

— r Anom
= mETI (BFjtmm). (14)
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This equation gives the balance between the flux surface averaged parallel plasma,
resistance force at the flow speed a and the parallel external force F4mom  For any
combination of anomalous forces (including those by turbulence and orbit loss effect),
the parallel component will have to satisfy this equation for a steady state plasma
flow.

If we multiply the poloidal force balance equation by BZ/B? and integrate over
6, the ambipolarity relation [dfj,/B = 0 anihilates the unspecified radial current
term, yielding

€ [Bufta — 050282 {1 + (A + 1)}, + 20 {(27 + D)e + A} — 2ajia,|

woid T 1 2, 2 mAnom
=, WVZ%/O dR2Ffinom, (15)

The first term in the left hand side is from the pressure force VP, the second is from
the convection force, and the third is from the viscous force. It can be easily seen
that the convective force is smaller than the pressure force by ~ Vz vd,

Both of the force balance equations should be satisfied simultaneously for a steady
state equilibrium in a tokamak. Preliminary studies of the present force balance
equations show that, in the presence of an anomalous force, a few different equilibrium
solutions are possible at large poloidal rotation speeds. The actual solution for the
equilibrium poloidal rotation speed is also function of the toroidal fow speed. It was
able to be concluded that the large negative poloidal rotation equilibrium can be
easierly obtained with a net neutral beam momentum input in the negative toroidal
direction than with the momentum input in the positive toroidal direction. Since the
orbit loss alone would yield an anomalous momentum input mainly in the parallel
direction, and the parallel plasma, force is much weaker than the poloidal plasma
force it likely that the orbit loss force alone can not be responsible for the H-mode
equilibrium.

This work was supported by the U.S. Department of Energy.
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Introduction Anomalous transport of the plasma across the
magnetic field in confinement devices has been a key lissue since
the early stage of fusion research. The L-mode confinement is
the generic feature.1v2) Recently a new theory of self-sustained
turbulence has been developed to determine the transport coeffi-
clents.3‘5) Nonlinear interactions of the microscopic pressure-
driven instability are renormalized in a form of diffusion effect
on the mode, and the renormalized transport coefficients are
obtained by using the mean field approximation. The eigenmode
equation, which contains the nonlinearly developed transport
coefficients, is solved to obtain the marginal stability condi-
tion, (l.e., the renormalized force balance eq.). The mode is
found to be destabilized by electron dissipations, i.e., the
resistivity n and the current diffusivity x(owing to electron
viscosity ue) and stabilized by ion viscosity p and the thermal
conductivity x. The balance simultaneously determines the fluc-
tuation amplitude and x itself provided that the Prandtl numbers
(u/%, pe/x) are constant.

In H-mode plasmas the facts are recognized that the radial
electric field Er(ri likely takes a large negative or positive
value near edge and that it reduces the transport from that of
L-mode.% %) Based on the L-mode transport formula, we obtain the
L/H transition condition. Furthermore, we newly extend our L-
mode theory to the H-mode one, incorporating the inhomogeneity of

E.. The reduction of x is obtained.
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Basic Equations We consider a circular tokamak with toroidal
coordinates (r,9,z). The reduced set of equations, is employed
to consider nonlinear ballooning mode. The classical viscosity,
conductivity, current-diffusivity and thermal conductivity are
retained and the electron inertia term in Ohm's law is kept. The
EX B nonlinearity is renormalized by use of one point renormali-
zation, where the isotropic turbulence is assumed. Employing the
mean field approximation, where the transport coefflcient(pk, Ak
xg) of the test mode are considered to be independent of the wave
number, we use a simple set of diffusion coefficients(u, A, %).

The basic equations consist of the equation of motion,
nlml{d(v ¢)/dt-nvlpl =B W J+BypxV(2rcosg/R)-f, generalized Ohm's
law, E+vxB= J/G—VLAJ, and the energy balance equation dp/dt= XVLP-
Notations: m; is the ion mass, n; is the ion density, ¢ is the
static potential, B is the main magnetic field, p is the plasma
pressure, J is the current and ¢ i1s the classical conductivity.
The detailed derivation was reported in Ref.[5]. The derivative
d/dt is a/at + [¢, ]1/B where [ , ] denotes the Poisson bracket.
The doppler shift of frequency is offset for the homogeneous ExB
rotation. Only the contribution of E,' to d/dt is retained.

The ballooning transrormatlong) is employed as p(r,0,) =
Eexp(—lme+in()jp(n)exp(lmn-lnqn}dn, (q is the safety factor),
since we are interested in microscopic modes. Eliminating @ and
J from basiec equation, we have the eigenmode equation for p

d d d :
“an ?:E;EXE?-E; ?+wEla;+KF]p + alk+cosn+(sn-asinn)sinn]p

[?+m51%5+MF]F[?+wElgﬁ+KF]p = 0. (1)

We use the normalizatlons r/ast, t/tAp»f» xrAp/a ai, ptAp/& -,
tAp/pooa 41/3, ATap /uoa ax, tAp=a/E3ﬁTﬁ—/Bp' rtApa?, and notation
"-n2q2/8 A= Xn4q4 K= in2 2 M-pnzqz, v is the growth rate,
s=r(dq/dr)/q, F=l+(sn—aslnn)2, k=-(r/R)(1-1/q2) (average well),
Bp=Br/qR, a=q29'/5, g=r/R, a and R for the major and minor radii,
p=2u0p/32, and g's dg/df. The parameter wE] denotes the effect
of the radial electric field shear,

wEl = tap(dEg/de)(srB)” L. (2)




Iv-1429 8-39

If we neglect WE]» Eq.(1) reduces to the transport-driven balloon-
ing mode equation for the L-mode plasma4’5). The marginal stabil-
ity condition (Eq.(1) with v=0) corresponds to the new force balance
equation in the presence of anomalous transport.

L-mode The stability 1imit of o for the least stable mode in
the absence of E (wg;=0) lIs obtained as a3/2 = f(s)/ﬁxa/zx"l.
The Prandtl numbers(p/x, He/%) are less affected by the fluctua-
tion amplitude and they are assumed to be constant to obtain

3/2
_[_R.ai 5 8
f(s)l r ar R

Xp =
where 6 is the skin depth. The characteristies of x; have been
reporteds), the expected heat flux q, vs YT for fixed vn is shown
in Fig.l. At the location denoted by *, IT/VTI = In/ynl.

L/H Transition Based on the obtained xp(Eq.(3)), we examine the
L/H transition condition. The condition is roughly estimated by
dgrg = 17’10), where d, = /EDe/Fvippz and xg = 'Pp(Te/Tl)(“'/“ +
uoTe'/Te). Taking De ~ Xy, Wwe obtain the critical condition (Te

= Ty) as

/2 m og 92 1dT/drid/2
[ __s_] 0 Uil fonieill SV (4)
F /m; e t(s) eB? PpvyT
for yn = 0. The critical temperature gradient for the onset of
the H-mode is obtained. Sawtooth triggered L/H transition can be

explained. The threshold power is also derived.

H-mode From the solution of unified equation(l), the transport
coefficients for the H-mode plasma are obtained. The radial
derivative E. ' Is estimated as E./A, where we use A ~ /pp2+u/u1.
By means of similar process we obtain xy as

-1

o 2
x=11+[ ] X (5)
L 2 (1+x/ulpp )

in a convoluted form(X = pPpEr/T). The 1g is strongly reduced
from x; for large value of Xy (Fig.2) Further theory 1s in
progress.
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THE MODEL OF THE SELF-OSCILLATING L-H
TRANSITIONS IN TOKAMAK

A.Yu. Dnestrovskij, V.V. Parail
Russian research Center "Kurchatov Institute", Moscow, Russia

INTRODUCTION.

Numerous experiments on L-H transitions performed at several
facilities allowed to observe the regime accompanied by periodic
splashes of D, intensity line and also edge temperature/density
and of the turbulence level in plasma [1,2], the so-called ELMs.
These phenomena are observed during the transition from L to H
regime as well as during the quasi-stationary H-mode [2].
According to experimental studies, ELMs effect positively the
discharge while reaching the stationary H-mode [1,2] and favoring
the impurities withdrawal from plasma [2]. The present paper
describes the model of ELMs as self-oscillating L-H transitions
on the basis of the model of L-H transitions described in [3,4].
The results of numerical simulation and the dependence of self-
oscillation characteristics on plasma parameters in particular
are given. Comparison of the results obtained with experimental
dependencies [1,2] is presented.

DESCRIPTION OF THE MODEL.

Let us start with the model of L-H transition described in [3,4].
This model describes self-consistently the fluctuations evolution
at the plasma periphery and the setting of radial electric field
at the non-ambipolar plasma flow across the magnetic field
together with energy and particle balance by the following set of
equations:

- Wy

G W vlbe gt - v ()
- Vn °E VTe 2
eVe ~ T, ( = 27;) (2)
28 -aiv, (DVa) + (3)

30nT, _ .
5B =div, (xknvT,) + P (4)
D = Gy + Cy, K =D (5)

The first and the third terms in the right hand side (1) describe
the drive and nonlinear saturation of fluctuation’s density
energy W; the second term describes the process of fluctuation’s
suppression due to sheared poloidal plasma rotation emerging in
sheared radial electric field (¢ - field potential), Y1-3 are the
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numerical coefficients. Equation (2) is an ambipolarity condition
written for the simplest case when the electron flow, determined
by anomalous transport on electromagnetic fluctuations [56], is
much larger than the ion flux. This approach is valid near plasma
edge where intrinsic ambipolarity of particle transport on
electromagnetic fluctuations can be violated because the
fluctuations momentum is lost on the wall [5], i.e. equation (2)
describes the plasma periphery region which is of the order of
several Larmor ion radii in the vicinity of the wall. Such a
simplification seems to be reasonable since as it was shown in
[4] the bifurcation of plasma parameters is the result of plasma
turbulence level bifurcation in our model, not of the radial
electric field. Equations (3}, (4) where S, P are the sources of
heat and particles, describe the electron temperature and plasma
densities evolution. The source of particles is prescribed to be
allocated at the periphery zone. The source of electrons heating
(e.g., by EC waves) is preset by the Gauss function. And,
finally, equation (5) describes the relationship between the
level of fluctuations in plasma and the diffusion D and thermal
conductivity «k coefficients; C, describes the neoclassical
transport which is not connected with fluctuations.

CALCULATIONS RESULTS.

The calculations for the T-10 tokamak configuration are done. As
an example, Fig. 1 shows time display of W and energy confinement
time 7y during self-oscillations excitation. The nature of these
oscillations could be qualitatively wunderstood from the
following.- Let us suppose that the plasma is in the L-mode and
the potential ¢ (from (2)) is too low for the stabilization of
the fluctuations so the transport coefficients D and k are large
enough. The rise of input power P results in T, increase and then
in eV9 increase (see (2)). Fluctuations begin to be suppressed in
the strong electric field that gives the confinement improvement
at the end. Thus the discharge passes to H-mode during the short
time determined by the decrement of fluctuation’s suppression and
the transport barrier is set at the edge plasma. The density
profile is steepened as a result (that is shown on Fig.2) and
then the absolute value of eVp begins to decrease (see (2)). If
the value of potential at the stationary stage is large enough
to suppress the turbulence (1) then discharge remains in the H-
mode. In the opposite case the discharge passes back to the L-
mode and the oscillations are realized.

The density and temperature profiles at the L and H stage during
oscillations are shown on the Fig. 2. It is seen from Figs.1l and
2 that the oscillations between I and H regimes are the
oscillations of the density profile and turbulence level at the
plasma edge with practically constant edge temperature which can
be seen in many experiments with ELM [1,2]. In our model this is
explained by the fact that the particle source is located at the
plasma edge and as a result of H-mode formation, i.e. decrease of
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transport on the periphery, the plasma density is first to
change.

Now let us examine in more detail what guides the availability
and duration of the oscillations obtained. The calculations show
that such oscillations exist only within a certain range of the
plasma parameters. Beyond this range plasma tends to either
stable L-mode, or to H-mode. The region where such oscillations
exist on the plane of total particle S8 and heat P sources is
shown in Fig. 3. The obtained dependence on heating power (at
low power plasma tends to stable L-regime and at a rather high
power - to stable H-regime) qualitatively satisfies, for
instance, experiments at DIII-D [2] for the same type of ELMs
which could be observed at the plasma heating power close to
threshold 'values for the L-H-transition. Also, from Fig.3 it is
seen that as the particle source is reduced, the plasma shifts
from ELM zone to the stable H-mode and on the contrary, the
increase of the source causes peripheral plasma cooling with
subsequent potential reduction and transfer into the ELM regime
[6] and then to the L-mode. The dependence of the time of L-mode
duration during the oscilation normalized to the period of
oscillation, t/T,; on the input power is shown on Fig.4. The
decrease of this value while the power grows also agrees with the
experiment [2].

CONCLUSIONS.

1. It is shown that the proposed model describes self-oscillating
L-H transitions which could be interpreted as ELMs, i.e. it
allows to describe both stable L and H regimes as well as H-
regimes with ELM without any additional instabilities.

2. The obtained dependencies of ELM characteristics on plasma
parameters (injected power, neutral atoms flow) qualitatively
correctly describe the experiment.
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Figure captions

Fig.1l. Time evolution of fluctuation level W, a.u. (a), energy
confinement time 75, ms, during oscillations.

Fig.2. Plasma density n, 10193 (a), and electron temperature
Te, keV, (b) profiles during oscillations.

Flg.3. Regions of L-mode, ELMs and ELM free H-mode on the plane
of the total particle 8§ and heat P sources.

Fig.4. Dependence of the time of duration L-mode during the
oscilation normalized to the period of oscillation, t/T, on the
total heat power P. y
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NEOCLASSICAL TRANSPORT, POLOIDAL ROTATION AND RADIAL ELECTRIC
FIELD AT THE L-H TRANSITION.

E.Minardi, G,Gervasini, E.Lazzaro
Istituto di Fisica del Plasma, Associazione EURATOM- ENEA-CNR,
Via Bassini 15, 20133 Milano, Italy

The transition to a high confinement regime in tokamaks operating with a magnetic
divertor configuration is accompanied by the strong steepening of the edge temperature
profile and the onset of a large positive poloidal mass rotation associated with a negative
radial electric field.The latter phenomena are signatures of a neoclassical transport
mechanism.We address the question of establishing whether neoclassical transport is
indeed sufficient to establish high edge gradients and drive poloidal rotation under strong
auxiliary heating .The heat transport equation is solved numerically in a narrow edge layer
interfaced to the plasma body through heat flux continuity, but allowing for heat
conductivity discontinuity. The results compared with recent experimental measurements
support the assumption that a highly sheared neoclassical poloidal velocity profile can
suppress the anomalous part of the heat transport, and that the neoclassical residual
transport, characterizes the plasma behaviour at the edge during H modes.

i n th Tran in a Hi Edge Laver
We consider a single fluid description of a tokamak plasma in the large aspect ratio
approximation a/R<<1, with a given, stationary, density profile and particle fluxes and
temperature evolving according to the momentum and heat transport equations derived
from the appropriate moments of the gyrokinetic distribution function 1 .

We assume that in a layer of width A<<a just inside the separatrix, on which T=0
exactly, the thermal conductivity of the plasma, subject to a strong auxiliary power input,
is dominated by the neoclassical behaviour of the ions in presence of one impurity
species, in a multicollisional regime depending on the time evolution of the temperature
profile.It is a central characteristic of the neoclassical theory the fact that the dT/dr driven
cross field fluxes are related to the parallel flows through the viscous forces.As a
consequence in the plateau and Pfirsch-Schlueter regimes just near the separatrix, a
positive poloidal ion and impurity velocity can be generated together with a negative
radial electric field when sufficient temperature or density gradients develop.

We assume that the anomalous effects are suppressed by the onset of sufficiently
high poloidal velocity shear 3. The thickness of the edge layer should be essentially
determined by the region of high neoclassical poloidal velocity appearing just inside the
separatrix.In an idealized situation the thermal conductivity of the plasma can be

discontinuous across the boundary s of an edge layer ssr<s+A and can take large
anomalous values at I<s ; at s continuity is required for the heat flux, the temperature and
its derivative.The power balance equation,in cylindrical geometry for the one-fluid

plasma model with temperature T and (uniform) plasma density n in the layer s<rgs+A
can be written as :

Il powi=ne,

where Q is the radial heat flux per unit surface and PA is the net power input term
(including Ohmic and auxiliary heating, radiation losses) averaged in the region r<s and 1
represents the fraction (Osn<1) of power deposited in the edge layer.
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In the layer s<r<s+A the heat flux is expressed in the general form Q(r)=-

njY+(dT/dr) +C/r,where Y+ is the ion thermal conductivity, nj the ion density and C is a
constant determined by the continuity conditions at r=s.On the inner side r<s we consider

, aradial heat flux of the form qr = -n)-dT/dr, where Y- is the anomalous heat diffusivity
of the plasma in the internal region(mainly due to electrons).

Assigning the value of T at a=s+A and prescribing the initial profile T(r,0),eq.(1)
determines completely the evolution of T(r,t). According to this picture the only divergent
contribution to the heat flux in the layer is due to the ions while the divergence-free part
can account for part of the heat flux (mainly anomalous) impinging upon the layer from
the core of the plasma.

Thus the resulting temperature profile is entirely produced by the viscous and
frictional neoclassical effects of the ions in presence of one (dominant) impurity species
of atomic number Zj.

III. Neoclassical Heat Transport.

The banana-plateau heat flux normal to the magnetic surface y=const. consists of a
diffusive and a convective term expressed in terms of the surface averaged parallel
viscous stress forces] :

q" =g Vy=35((B-v-8)-3(B-v-I)| @

where we retain only the parallel part of the stress tensors I and Q.Thé ion parallel
viscous forces are related to the poloidal flows as follows:

B-V.II
| N

(1_3-V-e”) 5 (PR -3 o A

where pij and K are the (dimensionless) viscosity coefficients ! and Vii the ion-ion
collision frequency :

_ 4 4mZ'¢'mA | _ 2T)1/2
Vi =3 mivh, > Vi, 4

Voy and Vyy are the neoclassical poloidal diamagnetic and EXB mass and heat
flow-in the notation of Kim et al.1:

cB, [oT cB, oT
¢ ——ZeE:| ; =
[ar : " " ZeB, or

™ ZeB,

&)

where B¢ and Bg are the toroidal and poloidal components of the magnetic field and
Er is the radial ambipolar electric field.

We use the viscosity coefficients valid in all collisionality regimes with the rational
combination by Kim et al.1 of the asymptotic coefficients . '
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In absence of an external momentum source or sink, relation (3) implies the parallel

momentum balance of the ions <B.div.I1;>=0 .Consequently in our approximation the
banana-plateau radial heat flux (2) is purely diffusive :

. np’v, (RqY B2 K, oT
L =—T(—q) @[ulua—ui]ijg

Here pj is the ion Larmor radius and q the safety factor. The total heat flux comprises
the classical and Pfirsch-Schlueter regime contributions.

The poloidal rotation of the impurity is a consequence of the relationship between the
ion diamagnetic flows Voy and V1y, and the nonvanishing parallel flow of the impurity
produced by the parallel friction force of the ions .In a situation in which the parallel ion
flow vanishes ,the electric field is given by E=(1-K;)(dT/dr)/Z.

We have considered the case of the L-H transition on DIII-D2.Fig.1a shows the time

evolution of the temperature profile T(r,t) with =0 and y-~2 m2/s simulating a case in
which the power is deposited in the plasma body and diffuses to the edge across the
surface s=0.58m .Starting from an initially flat profile T(r,0)=10 eV, a sharp temperature
gradient is formed and reaches a steady state in about 5ms, while the inboard
temperature T(s) reaches a value of 300eV , very close to the experimental data. In Fig.
2 the profiles of Er(r,t) associated with Fig. 1 are displayed.The field grows more and
more negative in the plateau region reaching the experimental values of about 30-40
kV/m . Fig.3 shows the evolution of the net ion poloidal velocity profile, which in the
banana region is slightly negative , as expected, but grows positive and reaches a peak
value of ~25 km/s in the plateau zone exhibiting a shear length shorter than the layer
width .This is in good qualitative agreement with the experimental results and with the
theoretical assumptions. The residual neoclassical heat transport appears to be
quantitatively sufficient to sustain the temperature pedestal and the high poloidal velocity
shear, which,in turn, is the mechanism of suppression of transport anomalies.Fig. 4
shows the rotation velocity profile for the impurities.

All these results support the initial conjecture that the observed L-H transition
phenomena can be explained in terms of standard neoclassical physics.
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Figure Captions
Fig.1- Edge temperature pedestal formation in DIII-D with By of 12T, qy of 2.7,
R=1.69 m, a=0.6m ,total input power of 5 MW, density at r=s nj=1.0 101%9m-3, mj=2

a.m.u., Z[=6, -~4 m?/s, a=njZ1%/n;Z;2 =1 with a_single null separatrix configuration.
Fig.2 -Profile of the radial electric field for the case of Fig.1

Fig.3 -Profile of the poloidal ion velocity for the case of Fig.1

Fig.4 -Profile of the poloidal Carbon velocity for data of Fig.1
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THE EFFECT OF COLLISIONS ON DIRECT ION ORBIT LOSS
IN THE PRESENCE A RADIAL ELECTRIC FIELD IN A TOKAMAK

T.K. Kurki-Suonio, M.J. Alava, S.K. Sipild, and J.A. Heikkinen

Department of Technical Physics
Helsinki University of Technology
Rakentajanaukio 2C, 02150 Espoo, FINLAND

In this paper we investigate the effect of both collisions and a constant radial
electric field on the dynamics of a hot ion population near the plasma edge using a
guiding center following code ASCOT [1].

The model for L-H transition by Shaing and Crume [2] has so far best agreed with
experimental observations. In this model, the L-H transition is triggered by Direct Ion
Orbit Loss (DIOL) near the plasma edge. In the velocity space, the ions contributing
to DIOL lie in the DIOL loss cone which is defined by the trapped-untrapped boundary
and a V), min, -line, see Fig. 1. A radial electric field has a profound effect on the topology
of the ion trajectories and affects the loss cone boundaries [3,4]. When addressing the
effect of collisions on the particle orbits, usually only the pitch angle scattering has
been considered. This has been justified by the fact that a change in particle energy
due to collisions does not affect the depth of the magnetic well. However, as indicated in
Fig. 1, only those ions in the trapping region whose banana orbits are bulged outward
and wide enough to cross the plasma edge will contribute to DIOL — i.e. ions with
[og] > |9||min]- In reality, only ions reaching the divertor, limiter, or the chamber
wall actually contribute to DIOL. However, for simplicity, we will here consider an ion
crossing the plasma edge as lost. The pitch angle scattering, moving an ion along a
circular trajectory in the (v|,v.)-space, can make the ion to cross either the trapping
boundary or the v|| 1, -boundary. The energy operator, consisting of slowing down and
diffusion, moves the ion only in the radial direction. Therefore, although the energy
operator does not affect trapping of the particles, it does move particles across the
||,min -boundary and thus affects the DIOL loss cone.

The effect of collisions on a test particle scattering from a background plasma can
be modeled by using binomially distributed Monte Carlo scattering operators derived
from the Fokker-Planck equation[5]. The change in the particle pitch, ¢ = v /v, during
an orbit integration time step At is obtained from the Lorentz scattering operator,

A€ = —vebAt + & [(1 - ) A/,
where 6y is the evenly distributed random sign of the stochastic part of the operator,

and v is the pitch collision frequency. The change in the particle energy during time
step At can be given in a similar form:

Ae=— 221/5,]‘ [6 - ngTj] At + 6, Z4kBTjey€,jAt,
J v J '
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where §; is the evenly distributed random sign, subscript j denotes different plasma
species, and v,,; is the energy scattering frequency. For 1 keV deuterons scattering off
100 eV electron background, one can show by expanding the Rosenbluth potentials that
define the scattering frequencies:

Vee N ICB—TV&G.
Therefore slowing down and diffusion dominate pitch angle scattering for high energy
ions scattering from background electrons. The value for the energy collision frequency
at these temperatures is v, ~ 120 s~!, when the plasma density is 10! m~3. At
the same parameters, but for background deuterons, the energy and pitch scattering
frequencies are comparable: v ; ~ 150 s~ and ve,; = 290 s™1. Thus, at the parameter
range relevant for DIOL, the high energy ions scatter from both background electron
and background ion population.

Because of collisions, it is necessary to follow the ions within the DIOL loss
cone to determine the probability for them to scatter out of the loss cone before they
escape from the plasma. Similarly, some ions originally outside the loss cone can scatter
into it and thus contribute to DIOL. Using ASCOT [1] we have assessed the effect of
collisions on high energy deuterons in a pure deuterium plasma. We follow a group of
deuterons launched in the equatorial plane one centimeter from the plasma edge in a
D-shaped magnetic configuration of By = 3.45 T, I = 4.8 MA, and x = 1.68. The major
radius is taken to be R = 3 m and the plasma minor radius a, = 1.2 m. The plasma
temperature at this location is about 180 eV, the density is about 7.7x101® m~—3, and
the ion collisionality v; . =~ 0.16. Test particle runs without collisions gave the minimum
energy Emin = 387 eV for the DIOL loss cone, and the trapped-untrapped boundary
at the pitch value of ¢ = -0.7461. The minimum parallel velocity is thus V||, min =
1.4x10° m/s.

Turning on the collisions, we follow an ensemble of 500 deuterons. The particle
energy is chosen from particle density considerations: the energies are chosen to be
above the minimum value for the loss cone, but less than E,;, + 4kpT, where T is the
plasma temperature. At the upper limit, the density has dropped almost two orders of
magnitude from the value at E;, and thus it is unlikely that particles with even higher
energies would significantly contribute to DIOL. The pitch of the test particles is chosen
so that the particles lie within or near the direct ion orbit loss cone. The collisions are
from a Maxwellian background plasma with equal ion and electron temperatures. The
ions are followed for 4 ms, which corresponds to a few bounce times but is short enough
compared to the collision time so that the ions leaving the plasma do so via DIOL.

For ions well inside the DIOL loss cone, we have studied the escape fraction
for three different energies: E=390 eV and 570 eV with ¢ = —0.72, and 1.2 keV with
§=—0.60. At the high energy of 1.2 keV, 99% of the ions escaped, as one might expect.
However, at the lower energies, less than 40% of the ions left the plasma via DIOL.

Launching ions right inside the trapping boundary, even at E=1.2 keV only 87%
of the ions escaped. At E = 570 eV and 390 eV the fractions were 49% and 31%,"
respectively. Increasing the pitch so that the ions start with ¢ = 1.1:{cr, 72% of the
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1.2 keV ions still escaped. For lower energies, the difference to the trapping boundary
case is even smaller: 46% of the 570 eV ions and 28% of the 390 eV ions escaped from
the plasma. Therefore, in the presence of collisions the loss cone boundaries are no
longer well defined.

The v)|, min-boundary is of particular interest because any difference between the
number of DIOL ions at this boundary and at the trapping boundary must be due to
the energy part of the scattering operator. Launching 1.2 keV ions right inside the
v)|,min-boundary, only 76% escaped; for E = 570 eV and 390 eV the fractions were 48%
and 38%, respectively. Therefore, while at lower energies the statistics are similar to
the trapping boundary case, for higher energies the fraction of DIOL ions is lower than
at the trapping boundary. This difference can be accounted for by the fact that for a
fast ion slowing down is strong enough to pull the ion out of the loss cone.

When a radial electric field is'present, the effect of the energy changing part of
the scattering operator becomes even more important. Because of the electric field, the
trapping boundary is now a hyperbola centered around v)c < 0 [4] in this magnetic
geometry. However, since for DIOL only high energy ions are relevant, the boundaries
for the trapped ion region can be roughly approximated by the asymptotes to the
hyperbola. The velocity cone thus defined is similar in shape to the fieldless case, but
it is shifted by v = %i—'f%: with respect to the origin. Therefore, in the presence of
a radial electric field, even changes in particle energy can trap/untrap ions.

Repeating the ASCOT collisionless test particle calculations for a constant radial
electric field of 10 kV/m, the slope of the asymptote of the trapping boundary was
found, in agreement with the theory, to be the same as the slope of the boundary of
the fieldless case. However, since the trapping cone is shifted by v, With respect to
the origin, the critical pitch now depends on the energy. Also the value for V||, min Was
found to increase from the fieldless value but, in accordance with theory, by less than
v||,c- With the constant electric field of 10 kV/m, v min lies at —=1.2x10% m/s. This
corresponds to a shift in the minimum energy to Epni, = 438 eV. Thus for a radial
electric field of 10 kV/m, the shifts in the DIOL loss cone boundaries are insignificant.
However, for a larger electric field value the effect of collisions could be qualitatively
different from the fieldless case. We shall investigate such a case in a future paper.

In this paper we have assessed the importance of collisions and a radial electric
field on the direct ion orbit loss of a hot ion population in a tokamak. In the absence
of a significant radial electric field, test particle runs show that because of collisions
the boundaries of the loss cone become diffuse. Furthermore, for very high energy
particles, the slowing down part of the scattering operator plays a significant role in
pulling particles out of the DIOL loss cone. The role of the energy collision operator
becomes even more important in the presence of a radial electric field, when the trapping
boundary no longer corresponds to a constant pitch.

It should be noted that our approach allows one to assess the effect of collisions
on DIOL dynamics for a test particle ensemble only because the model doesn’t account
for any changes in the background plasma. If DIOL were entirely due to the Maxwellian
tail jons, as suggested in Shaing’s model for a DIOL based L-H transition(2], the loss
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cone dynamics would probably be dominated by the very sharp velocity gradient formed
in the distribution function as the hot ions escape from the plasma. This kind of an
effect would require more elaborate test particle calculations than what we have done
here. However, experiments on J FT-2[6] have indicated that L-H transition can take
place even at v;, > 1. This, together with the observation of a high energy particle
population close to the edge[7] indicates that the radial current could be due to DIOL
of a hot ion component in the plasma[8]. The dynamics of these particles can be studied
using simple test particle calculations like ours.

In the future, we shall study not only what fraction of ions escape via DIOL
but also the time scale in which they do so. This will allow us to estimate the radial
current due to DIQL. Furthermore, we wish to investigate how the DIOL probability
depends on the distance from the plasma edge. Future development of the project
involves test particle studies in the presence of a nonuniform radial electric field, steep
ion temperature gradient, and impurities in the background plasma.

(1] J.A. Heikkinen, S.K. Sipild, and T.J.H. Péttikangas, accepted for publication in
Comput. Phys. Comm.
[2] K.C. Shaing, and E.C. Crume, Phys. Rev. Lett. 63 (1989) 2369
[3] H.L. Berk, and A.A. Galeev, Phys. Fluids 10 (1967) 441
[4] Y.B. Kim, private communication.
[5] A.H. Boozer, and G. Kuo-Petravic, Phys, Fluids 24 (1981) 851
(6] K. Ida et al., Phys. Rev. Lett. 65 (1990) 1364
(7] Y. Miura et al., Phys. Rev. Lett. 69 (1992) 2216
(8] K.C. Shaing, and P.J. Christenson, Phys. Fluids B 5 (1993) 666
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Figure 1. The DIOL loss cone in (vj,v1)-space. The effect of pitch angle and energy
part of scattering are indicated by a short and a long arrow, respectively.
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Simulation of vapor shield evolution at carbonized target plates
P. Spathis and L. Lengyel

Max-Planck-Institut fiir Plasmaphysik - Euratom Association
D-85748 Garching bei Miinchen, Germany

A time-dependent quasi-1-D MHD model has been developed for simulating the time
evolution of vapor clouds at carbonized target plates bombarded by plasma particles.
In this approximation, the limited extent of the target plate in the lateral direction
is not taken into account and only thermal plasma electrons are considered as energy
carriers. The electrons are assumed to be confined to magnetic flux lines whose angle
of incidence measured with respect to the target plate is assumed to be given. The
Maxwellian energy distribution of the incident electrons is approximated by five discrete
energy groups. The energy deposition in the shielding cloud and at the target plate are
determined by stopping length calculations taking electrostatic shielding into account.
The internal redistribution of the deposited energy by thermal conduction and radiative
transport is also calculated. Finite rate equations are used for detemining the ionization
dynamics of the neutral carbon particles released. In the model, collisional ionization and
radiative recombination are taken into account in defining the populations of the different
ionization levels. The deceleration and stopping of the vapor motion in the direction
perpendicular to the magnetic field lines resulting from ionization and interaction with
the magnetic field is calculated in a self-consistent manner.

It will be noted that this process is inherently time-dependent. The surface is initially
exposed to incident plasma particles without any shielding present. In the case of carbon
or carbonized surfaces, the erosion begins when the surface temperature reaches the sub-
limation temperature, i.e. the order of 4000 K. The velocity distribution of the particles
leaving the wall is half-sided Maxwellian, and it takes a certain distance (Knudsen layer
thickness) until it becomes fully Maxwellian, making some of the particles return to and
recondense on the wall. The relation between the vapor pressure and temperature, tak-
ing partial recondensation into account, is given by a saturated vapor pressure relation
of the form p, = p,(T,) = Aexp(—B/T;), where A und B are constants. Outside the
Knudsen layer, the vapor state can be described, with a sufficent degree of accuracy, by
an equation of state such as the van der Waals equation or the ideal gas state equation.
The expansion velocity of the eroded particles is of the order of 104 m/s and their typical
ionization time is of the order of ~ 1 us. After ionization, the expansion in the direction
normal to the magnetic field is stopped and, depending upon the relative magnitudes of
the erosion rate and the ionization time, a relatively high-density vapor cloud may form
at the wall surface, which can now only expand along the magnetic field lines. (Anoma-
lous processes such as the onset of flute instability, turbulent mixing, etc. are at present
not taken into account.) The dilution of the vapor during this second (field-aligned) ex-
pansion phase is much slower than during the neutral gas expansion phase. The energy
carriers of different energies penetrate the cloud to different depths, only the energetic
ones reaching the solid surface. A fraction of the incident energy carriers is intercepted
by the cloud. A fraction of the energy received is lost by radiation, thus reducing the en-
ergy flux affecting the wall. The time evolution of the vapor cloud with its radiating and
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shielding properties decisively depends on the heat deposition profile and the expansion
and ionization dynamics of the vapor.

On the basis of the existing ablation codes developed for hydrogen and impurity pel-
lets (IPP Rpt. 5/50, Dec. 1992) a 1-D time-dependent code has been developed that
simulates the evolution of vapor layers at carbon (or carbonized) surfaces subjected to
incident, magnetically confined plasma particles. In the code the following effects are
taken into account:

collisional energy transfer to the wall and vapor cloud by plasma particles;
finite rate ionization and recombination processes;

interaction of the ionized particles with the magnetic field, i.e. deceleration of the
cross-field expansion and the magnetic funneling of the ionized substance;

conductive and radiative energy transport within the cloud and radiant energy loss
to the environment (in diffusive radiation transport approximation).

In the following, results of a typical scenario calculation are given. The geometry con-
sidered is given in Fig. 1. A plane carbonized wall normal to the y axis and extending
to infinity is subject to bombardement by incident plasma particles confined to magnetic
field lines. The angle of incidence of the magnetic field with respect to the wall, o, is
given: o = 10 degr. The field and plasma parameters chosen are as follows: B = 3 tesla,
T. = TkeV,and n, = 1020 m~3,

Fig. 1: Simplified plate geometry (see text for details)

Figure 2 shows the temporal variation of the vapor layer expansion velocity in the di-
rection normal to the wall. As can be seen, following a short initial acceleration period,
ionization sets in and the cross-field expansion is stopped. The residual expansion is due
to expansion along the magnetic field lines.

Figure 3 shows the temperature distribution in the direction normal to the wall 2us
after the start of the plasma-wall contact. The corresponding distribution of the radiant
energy density, U(J/m?), and the corresponding black-body radiant energy density, Uss,
are shown in Fig. 4 for the same time instant. ’
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Figure 5 shows the distribution of the radiant energy flux over the layer. The inward-
directed negative flux represents an effective energy transport to the cold core, while the
outward directed positive flux represents energy loss and contributes to radiative cooling
of the layer thus reducing the heat load affecting the solid surface.

20
v (103m/s)
16
12
8_.

4 -

0 T T T T
00 02 04 06 08 1.0
t (us)

Fig. 2: Cloud expansion velocity vs time
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Fig. 3: Cloud temperature vs distance from wall (t = 2us)
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A time-dependent, self-consistent, slab-symmetric ablation model with
allowance for transverse expansion and magnetic confinement effects

L. Lengyel and P. Spathis

Max-Planck-Institut fiir Plasmaphysik - Euratom Association
D-85748 Garching bei Miinchen, Germany

A time-dependent, slab-symmetric ablation model has been developed. The ablation of
a pellet surrounded by a magnetically confined plasma is calculated in a self-consistent
manner. The erosion rate of the pellet surface is defined by the balance of the inci-
dent energy flux carried by plasma particles and the efflux of energy from the pellet
surface with the ablated particles of given sublimation energy and initial enthalpy. In
the present approximation, only plasma electrons are considered as energy carriers and
their energy distribution is assumed to be Maxwellian and is simulated by five discrete
energy groups. The energy deposition in the shielding cloud is determined by stopping
length calculations applied along the magnetic field lines with allowance for electrostatic
shielding effects. The condition of vanishing net incremental current (additive to the
toroidal current in tokamaks) is assumed for every flux tube cross-section. The stopping
length calculations are supplemented by thermal diffusion calculations, thus redistribut-
ing the energy deposited in the discrete energy group approximation. The neutral cloud
is allowed to expand also in the direction perpendicular to the magnetic field. The de-
celeration and full stopping of the cross-field motion is calculated by means of an MHD
model (iteratively with the axial expansion dynamics), thus determining the transient
variation of the lateral cloud dimension and the corresponding modifications of the field-
aligned density and temperature distributions used in the stopping length calculations.
Finite rate equations are used for determining the time history of the ionization state of
the ablated substance. In the case of hydrogen pellets, collisional and radiative ionization
and recombination processes are taken into account. The variation of the ablation rate
along the pellet path (i.e. that of its value averaged over the residence time of a pellet
of given injection velocity in a flux tube defined by the local ionization radius of the
ablatant) is presented for an ASDEX-UP discharge with pellet injection and compared
with the measured parameter distributions.

The ablation model presented here is described in detail in [1]. It comprises two parts,
each aimed at solving part of the whole problem: (a) determination of the energy flux
transported by plasma particles to the pellet surface along the magnetic field lines, (b)
determination of the shielding characteristics of the particle cloud evolving around the
pellet. For this purpose two time-dependent 1.5-D variable-mass Lagrangian codes were
coupled, thus in fact replacing a rather complex 2-D code that would otherwise be neces-
sary for solving the problem. Both codes are based on the full set of conservation equa-
tions with mass-source terms present and are of the single-temperature single-velocity
type. Each code has its principal direction: the direction of the magnetic field and the
one perpendicular to it. The essential effects of the complementary direction are taken
reciprocally from the other code, by means of iterative feedback coupling. In both codes,
the calculations are performed with finite rate atomic processes: collisional and radiative
ionization and recombination processes are taken into account.
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The first code, being the actual ablation code, takes care of the processes associated
with the direction of the magnetic field lines: (a) penetration of plasma particles into the
shielding cloud, collisional energy transfer to the cloud particles, particle and energy flux
depletion calculations; (b) field-aligned electrostatic field calculations based on the zero
net current condition in the direction parallel to B (not counting, of course, the discharge
currents in the background plasma); (c) gasdynamic expansion of the ablatant along the
magnetic field lines in a quasi-one-dimensional channel flow approximation (the effect
of the complementary dimension manifested in the evolution of the transverse channel
dimension is taken from the second code); (d) variation of the ionization state of the
species in time and space (along the magnetic field lines). In this series of calculations,
the Maxwellian energy distribution of the incident plasma particles was represented by
5 discrete energy groups.

The second code is a self-consistent MHD code based on the usual set of continuity
equations and Maxwell’s equations. The code calculates, for given background plasma
parameters, magnetic field strength, and ablation rate, (a) the expansion and ionization
processes in the transverse direction; (b) the magnitude of the induced v’ x B-emf, the
resulting azimuthal current density 7, and the associated deceleration force ;x B ; (¢) the
time variation of the cloud radius, the stopping time of the transverse expansion, and the
confinement radius; (d) the degree of diamagnetism (reduction of the magnetic flux in
the cloud). Since each Lagrangian cell used in these calculations is allowed to expand also
in the axial direction (the expansion rates are calculated from the pressure values known
on both sides of the cloud-plasma interface), the effect of the complementary dimension
is thus also taken into account. Energy is supplied to the cloud by means of flux-limited
thermal conduction along the magnetic field lines and by anomalous conduction in the
transverse direction from the side of the ambient plasma. The transverse energy flux is
in general negligible compared with the field-aligned value, but is sufficient for initiating
the ionization at the cloud-plasma interface. Noteworthy is that the ablation rate used
in this second code is an input quantity obtained from the first (ablation) code.

Results of calculations

The parameters of the ASDEX-UP pellet shot analyzed are as follows: a = 50 cm, T,y =
0.9keV, neo = 5.4x10 m~3, and B = 2 tesla. The measured spatial variations of T, and
ne were used in the present calculations. The size of the pellet injected (equivalent ra-
dius of a spherical pellet) was rpe; = 1.04 mm, the injection velocity vpe; = 880 m/s. For
the present calculations, the ablation rate and the associated pellet size reduction were
determined sequentially at a discrete number of radial positions along the pellet path.
At each position, first a cloud radius was assumed and the time-dependent ablation rate
corresponding to this cloud radius and the local plasma parameters Te(r), ne(r) was
calculated using the ablation code. Next, the ablation rate functions thus obtained was
transferred to the transverse expansion program. The time history of the transverse ex-
pansion was now calculated. The major results of these calculations are the confinement
radius (i.e. cloud radius) R4 and the magnetic shielding factor B/Bj. which allow the
ablation rate to be recalculated by using the ablation code. The procedure is iterated
till it converges.

Figures 1 and 2 show the measured electron temperature and density profiles prior to
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and after pellet injection (shot # 2708), respectively. Figure 3 shows the calculated
radial variations of the radius of the shielding cloud, R4, and the magnetic shielding
factor, B/Bg. At the periphery of the plasma, the plasma temperature is low and the
ionization time of the ablated particles is relatively long. A relatively large cloud radius
(in agreement with the diffuse cloud structure experimentally observed at the plasma
periphery) results. As the pellet penetrates further inward, the ionization time becomes
shorter and a continuously decreasing cloud radius results. Accordingly, the cloud density
is rather low at the plasma periphery, yielding poor shielding, and notably higher at
magnetic flux surfaces located closer to the plasma centre, resulting in more efficient
shielding there. The local ablation rate is defined by the combination of the magnitudes
of the pellet surface exposed to the energy carriers, the energy flux available, and the
shielding efficiency of the cloud.

Figure 4 shows the variation of the calculated ablation rate along the pellet path. The
values displayed correspond to local ablation rates averaged over the first 10 ws of the
residence time of the pellet at each radial position. Noteworthy is the good correspon-
dence between the resulting pellet penetration depth and the locations of the temperature
minimum and density maximum on the post pellet curves.

1.0 T T T T T T T T T T T T T
1 Te (keV) - 1 ng (102°m™3) .
- 1 15- 3
0.5 - 4 = 16 after 7 ~
] pellet ]
after 0.5 7 7]
7 pellet ) 4 i
0 T T T T T T T T 0 T T T T T T T T
-0.5 0 -0.5 0
R (m) R (m)
Fig 1 Electron temperature profile before Fig 2 Electron density profile before
and following pellet injection. and following pellet injection.
(ASDEX-UP shot #2708) (ASDEX-UP shot #2708)

ACKNOWLEDGMENT: The authors would like to thank the ASDEX-UP group for

providing the measurement data cited in this paper.

(1] LENGYEL, L.L and SPATHIS, P.N., A time-dependent, slab symmetric ablation
model with allowance for transverse expansion and magnetic confinement effects. IPP
Rept. 5/50, Dec. 1992.



IV-1450 8-44

3.0

2.0

B/B,
B/B, \
1.0 1.0
0.8 0.8 -

0.6 0.6 -

0.4 T T T T T T T

- 0.5 0

R (m)
Fig 3 Calculated shielding cloud radius and magnetic shield factor along pellet path.
T T T T T T 71

1N (1023571 ]
8 |

6 =

T T T =% T T

- 0.5 R (m) 0

Fig 4 Calculated ablation rate along pellet path.




IV-1451 8-45

PLASMA PROPAGATION ALONG MAGNETIC FIELD LINES
AFTER THE PELLET INJECTION

V.Rozhansky, I.Veselova

St.Petersburg Technical University
195251 Polytechnicheskaya 29 St.Petersburg Russia

After the evaporation and donization of the pellet
material the injected plasma propagates along magnetic field B
and also drifts across B in the self-consistent electric fields
[1]. At later stages when the density becomes almost uniform at
the flux surfaces the radial anomalous transport of deposited
particles takes place. In the present work only one aspect of
this problem 1is considered - the 1-D ionized pellet ablatant
propagation along a magnetic field. Numerical simulation 1s
based on the model described in [1], [2]. According to this
model the plasma source 1s deposited at t=0 and Z=0 (Z axis is
parallel to the magnetic field B). The plasma source is
characterized by the ablation rate N and its transverse size 1;
which corresponds to the perpendicular dimension of the neutral
cloud around a pellet. These parameters (N and 1,) should be
taken from an experiment. After t=t the plasma source is
switched off according to the pellet shift from the considered
flux surface so T corresponds to the particle deposition time
for the given flux surface. For t > 1 the injected plasma
freely propagates along magnetic fileld while it 1s heated by
the electrons from the amblent plasma. The basic equations are

On 'az”m- (1)
a(nT._)
ou du ) _ =
i, [?ﬁT ¥ Yﬂr) =T T 2)
oT oT ) 6]
a/on(— +ug2) +nr, Qo - - el 3)
The boundary conditions were taken

N =+w =n, T (Z»w) =10 u(@-e =0 (4

L !z:o = 6 10] = lTéD)/me
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N
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= lz=o -

for t €« (8)

Trs I Zwf)
where CS(O) - the local sonic velocity. For t>t the boundary
conditions at Z2 = 0 are transformed:

a7
1 - g, 0n =0 e =0 _
7=0 < 87 |z=0 Gy Gl (6)

The particle deposition time T for was taken T = 2.5 us, which
roughly corresponds to the time of the pellet shift li/vp (vp
1s the pellet velocity). For the medium electron temperatures
Tes 1 keV the right side of the Eq.(3) is modelled by non-local
heat conductivity [(3]1. For the high temperature plasma the
right side could be obtalned in the form similar to the one of
hydrodynamic heat transport equation of Braginskii (4].

1. Medium temperature plasma.

Simulations were performed for the hydrogen pellet and
following ambient plasma parameters n_ = 3.10'°m~3, (%)= 500
eV, 1,= 0.25 cm. The character of expansion 1is rather sensitive
to the ablation rate value. Calculations were performed for the
low, medium and high ablation rates N=10°s~) N=2.5.10%3g7!
N=5.1023g™" correspondingly. At fig.1 the density and tempera-
ture profiles are presented for t=t=2.5 us and N=5.1023s.
The obtalned profiles are 1n good agreement with the analytical
self-similar solution for the isothermal plasma with e = Téo)
( dotted lines )

N

n= ———— exp(-Z2/C_(0)t)
805(0)1§ P 5

u = CS(O)[1+Z/CS(O)t]

()

At times much larger than T when the electron temperature is
close to the ambient one, plasma profile could be described by
isothermal self-similar solution when Te=TéO), n=n(z/t),
u=u(z/t)

n=A/t, u=2/%t, for I{Zi < Wt ,

n=n_ , u=0 , for Zi > Wt , (8)

where W 1s the shock velocity
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- (@) Ig A (@) _ T /m . . 9
W = CS . g_ll'l—n—C:T, Cs C = e 1 ( )

where W 1s the shock velocity. The constant A corresponds to
the particle deposition during t =t

A =Nt/ (81§w ) (10)

At 1ig.2 the comparison between the self-similar solution
and results of simulation are presented for N=5~1O?3s‘1(a) and
N=10238_1(b) at t=50 us. It can be seen that for the small
ablation rate the relatively fast heating is observed, the
shock 1s formed 1n front of the cloud and obtained profile
practically coincides with the analytical solution gilven by
Egs.(8)-(10). The velocity of the front is presented at fig. (3)
for N=5A10235_1(1) and N=10235‘1(2). For all cases the
supersonic expansion is observed so the Mach number calculated
with respect to the ambient temperature is equal to 1.5 - 2.0.
Density variation in time at a distance one meter from a pellet
is shown at fig.4. Such type of signal was observed on TFTR in
experiment [5] and on stelarator Heliotron E [6].

2. High temperature plasma. .

The following set of ambient parameters were taken: T;°)=5 kev,
n=10"° m™3, N = 105577, 1,= 0.5 cm. The ablatant heating in
this case 1s a much slower process, the expanding plasma
temperature for a long time remains fairly low compared to the
ambient one. The expanding velocity 1s subsonic calculated
with respect to the ambient temperature. The case for i<t
qualitatively agrees with the calculations performed in [T7]
based on the model [8].
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Solution to boundary problem for inhomogeneous kinetic
equation describing particle sources

Zhykharsky A.V.
Scientific-technical Centre “Kinetika”, P.O. Box 36, 630078, Novosibirsk, Russia

In the present work the stationary one-dimensional boundary kinetic problem taking account of the
existence of particle sources in the plasma area in question has been formulated and analytically solved.
This problem has been solved in the general form since the distribution of particle sources was specified as
an arbitrary function of the coordinates and velocities.

1. Solution to boundary problem for the case of the point particle source.

To solve the problem a mathematical apparatus is made use of intended for solving the boundary
problems in the case of the stationary kinetic equation /1/. The point of solving the problem is in the
following:

a) The whole space area in question (r € [R1, R2 ]) is divided in two areas: area “1”
(r € [R1, ]) and area “2” (r € [t, Rz ]) where the point 7 = ¢ is a coordinate of particle sources. Since
within each area the homogeneous kinetic equation holds true for areas “1” and “2” the boundary problem
can be formulated and solved (the presence of source is represented by the appropriate boundary
conditions).

b) Based on the general physical assumptions a distribution function for the whole area

T € [R1, Rz ]) is written as combination of the solutions found. Postulate that this function is a solution
to the boundary problem for the inhomogeneous kinetic equation for the point particle source and zero
boundary conditions.

¢) Operating on the general distribution function by the left side of the equation we will obtain the
expression for the point source as the functions of coordinates and velocities.

1.1. Assumethat ¢ = 7 ,i.e. U(f) = U with (r € [R1, R2 ]) (see Fig.1). Inareas “1” and “2” the
equation holds true

dhi2  dU ohia _

V' Tarev =0 W

where the functions A and A2 are distribution functions in areas “1” and “2” respectively.

By virtue of the conditions: U(f) = U; = U(r) the boundary conditions for the functions /1 and
h2 have the form

2 2

m@)|,, =0 m0|,_=s(5)s B, el im0, @

where g is an arbitrary function (source power).
The solutions to the boundary problems (1), (2) have the form (see /1/)

m=[1-H(V+ m)]-g(%z+U—Uht); )
b= H(V - VIO =T -g(%2-+ - U,,t), @

where H is the Heavyside function.
Formally solutions (3) and (4) can be combined as follows
f=H(t—r)h +H@r—t)h, ©)
The character of the problem in question permits drawing the conclusion that in the cited case the
notion “particle source” is of spatial nature. The cited conclusion allows of introducing the following
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point 7 = f manifests itself in operating on the function (5) by the left side of the kinetic equation only
when differentiating the function with respect to the coordinate “r”.
Consequently we obtain;
=yp.Y_du o . (P
Lif] = ar ar v =V-(t — r):(h2 hl)"
v?
V>0 -» (h2 — hy) =g|l—=1 2
re=t 2 s V ¢
p2 \[ = sen(M) g5
V<0 (h2—hy) ==glut
r=t 2

2
V-8(t = 1)+ (ha= hy) oo, =17 1000~ r)'g(VT, :
Thus, one can contend that function (5) is a solution to the following boundary problem.

— kinetic equation V- gf Z[’{ :5 =|V|o(=r) g( ) ) ©
— ‘boundary condition f(R1) I o 0, f(R2) I beo (6-2)

Supplementary condition: U= max (U).
RisrsR2

1.2. Consider the situation where the source and potential coordinates are not the same, i.e., the
casewhere £ =ry or { = ry (seeFig.1). The method of solving the appropriate boundary problem in
this case is analogous to that applied to solving boundary problem (6). For the case < r Fthe boundary
conditions for areas “1” and “2” take the form

2
FuCR) ,v>0 =0 k() lv<0= g(VT, t) T |"< o &

y?
ho(t =gl5t|, h(R =0 8
2()|v>0 g(Z’t) o 2)|v<0 ®)
The solution to the boundary problem (1), (8) in area “2” will be a function of the form (see /1/)

hz=H(V—sign(r—'r")-V 2((7 —U))'g(—‘;—z+U—Ut,t)

Consequently the boundary conditions for area “1” will have the form
2 - —
hl(t)l “g(‘;,t) +hz(t), (‘; t)'[1+H(V+ V 2w - vy )]

A function of the form will be the solunon to the problem (1), (7) in area “1”
h = [l —H(V+V 2(0; - vi)]'g(T+U—U;,t) x

x[l+H v+V U -u

where U is maximum of the potential U over the entire interval (r € [R1, R2 ]) . Further forming
a function of the form (5) out of the functions hi1 and Az and substituting it in the left side of the kinetic
equation we will obtain the same function as is the solution to the boundary problem (6). Similarly the
appropriate expressions can be obtained for 41 and hzincase t = r; (see Fig.1) and their combmatlon as
a function of the form (5) is a solution to the boundary problem (6).

Thus, in case of convex potential the boundary problem with a point source is described by
equation (1) and with zero boundary conditions has the function (5) as a solution
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U U
- U2
U / \
\ 4]
Ry rn r rn 2 R t 7] R F
Fig.1 Fig.2

(—szgn(r—r)v2(U U)) (—+U U,,) t>F
m={[1- H(V+VIU=T1))] ¢ (—+U Un) ©)

x[1+H(V+V 2AU - U) )],t<r”,
ha| =h| _, h| _=h| _
o= B To|, = o

1.3. Now assume that the particle source is in the potential well (see Fig.2). In this case the
boundary conditions for areas “1” and “2” are written as

2
mR)|, =0 hO|, = g(-‘fz—, t) wh)) (10)

_ — [
hz(R2)|v<o_ 0, hal) | V>0 g( 2! t) * hl(t)lv>0

To solve the problem stated consider the following iterative process. At the first step of iteration
assume that areas “1” and “2” are fully isolated from each other. The boundary conditions (10) are
transformed into the form

V2
mR)| =0 WO, s

hz(Rz) | v< 0= 0’ hz(t) | v> 0 (‘;2’ )

By solving the boundary problem for the functions /; and 42 with these boundary conditions find a
first approximation of these functions. Then through expression (10) find a second approximation for the
boundary conditions at the point £. By solving the boundary problem for 41 and A2 with a second
approximation for the boundary conditions find a second approximation for the functions /) and A3 etc.

The calculations based on this model showed that the problem with a point particle source being
located in the potential well has no final solutions for the stationary formulation of boundary kinetic
statement (in this case the distribution functions tends to infinity).

2. Solution to boundary kinetic problem for distributed source

The results obtained while analysing the problem on the point particle source permit presenting the

function of the distributed particle source as

y?
PrYV)=|V|g 57
where g is an arbitrary function. The statement of the boundary kinetic problem hag the form

— B _dU o _ i
— kinetic equation v - dr A |V | g( y Ty (11)
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— boundary conditions

v? v?
f(R1)|v>o= & (T),f(Rz)lv«fgz(T), (11.a)
where g = g1 = ga.
The linearity of equation (11) necessitates seeking a solution to the equation in the form
fnV) = fo(r,V) + A V), 12)

where fo(r, V) is a solution to the homogeneous kinetic equation with boundary conditions (11a).
The solution to this boundary problem is givenin /1/; f1(r, V) is a solution to equation (11) with zero
boundary conditions.

The function fi(7, V) can be presented as

R2
A@V) = le [H(t = r)-h(t, 7,V) + H(r — t)-ho(t, 1, V)] - dt, (13)

where the functions /1 and /2 conform to presentation (9).
Prove that function (13) is a solution to equation (11). Write the expression

R

LIAl= le LIH(t - r)-hi(t, ,V) + H(r = 8)-hao(t, 1, V)] -dt,

where “L” is a differential operator of the left side of the kinetic equation. The operator “L” affects
the functions of “r” and “V” only. The function in the square brackets under integral is a solution to
equation (6) with a point source at the point 7 = 7. Consequently, we can write

Ry
f v? v?

LlAal= Rl |V |-g S U(r) — U@, t|-0(r—t)-dt= |V | -g(T, r).

The function (13) is thus shown to be a solution to equation (11). The function ( 13) satisfies the zero
boundary conditions since they are satisfied by the functions A1 and A2. Thus we can assert that the
solution to the boundary problem (11), (11a) has been found.

3. Discussion of the results obtained

Investigations carried out in the work permit drawing the following conclusions:

(1) a mathematical apparatus has been obtained which permits formulating (writing an explicit
expression for the right side of the inhomogeneous kinetic equation) and finding a rigorously analytical
solution (with accuracy to unknown “force” fields) to the boundary kinetic problem describing physical
statement with a point and spatially distributed particle source inside the plasma region under
consideration. 4

(2) it appeared that inside the potential well the solutions found admit of no existence of a particle
source such as to “generate” the particles that remain inside the well. It turned out that a stationary
problem describing the particle source inside a potential well can be formulated only when there is a
particle “sink” inside the very well. This conclusion is quite evident and the fact that the result obtained
was not postulated in advance while stating the problem but was obtained as a natural outcome of boundary
kinetic statement is, in author’s opinion, an indirect corroboration of adequacy of the results obtained.

(3) To completely solve the problems of constructing a completely closed mathematical apparatus in
order to solve boundary problems with inhomogeneous kinetic equations it is necessary to exactly
formulate and solve the boundary problem describing the particle “sinks”.

/1/ Zhykharsky A.V. Physica Scripta. Vol.44, 606-616, 1991.
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The Effect of Intense Pump Waves on Electrostatic
Oscillations in an Ununiform Plasma

V. Demchenko
International Atomic Energy Agency
Wagramerstrasse 5, P.O. Box 100
A-1400 Vienna, Austria

Abstract. Equations describing parametric excitation of the potential waves in an ununiform
plasma are derived. It is shown that such equations with an accuracy of redefinition of
natural (basic) plasma frequency coincides with well-known equations describing parametric
resonance in an uniform plasma. The natural frequencies of plasma waves could be obtained
by solution of a boundary-value problem taking into account spatial distribution of plasma
density.

1. Introduction. Although linear theory of parametric instabilities of uniform plasmas
can be regarded to be developed [1,2], the study of such instabilities in a nonuniform plasma
is still far from complete. Since in a real experimental conditions plasma ununiformity, as
a rule, could play a significant role in all dynamical processes, it is of considerable practical
interest to consider influence of strong high-frequency (pump) elertrical field on waves
dispersion in an inhomogeneous plasma.

2. "Separation" method for equations describing parametric excitation of potential waves
in an ununiform plasma. Let us consider uniform isotropic plasma with density gradient
directed along z-axis. The pump electrical field is supposed to coincide with % -axis:

Y
E,?=ZEL st wly , Wi=We + & | Wiy = G- WD L
v=Q

An initial set of equations can be written as follows:

.§:".' -2 - XN = 'Q“\ ' 2
-w\_'—* r (N NV = = (Ep-v), = ¢ Wmas) =0, @, @
A9 = - e S;_Q.;Yu, €}

where ‘M,G‘» - density and velocity of particles (&=2,L) , 'Q - electrostatic potential.

From Egq. (1) the electron quiver velocity is simply

Y 2 T & wh wly
Vo= - oo LW -
izQ
Perturbation of density Wa = 0 - We(¥) , velocity Va =g, -QakX) as well as

electrostatic potential, could be written in the form ~ &(1,%) M?QAD,Q& KX 4K o
Egs. (1) and (2) could be combined to give

1 A~
_“\A = ..?l:_. anp (L ALY 1‘\‘1,
Wy

= @
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vhere  Na= 0®y exp (8 M), AL T Vau (nah e 0

¥ a
. e |23 . )
A= e | ey < - e L or wedd

In new variables, Eq. (3) becomes

L9 = 4v EQQ wp- Ay, "is,i K = Vg )

Now suppose VoW = WaW e, R0 = Wt @,
so that Egs. (4) and (5) yields

"i\, R (@) ) q = - 4 o
1L, e pt ©

§ - unknown (separation) constant to be determined from the solution of boundary-value
problem (6). For time-dependent functions Nei ) the following set of equations can
be written:

\J
::«; +p {sw« * N wp [(he®) -ne Q\,\ﬂ} =Q, (7
g L

:;\« % :—t ?1{Qu + N4 !M?‘_—Q (N - b,;‘%]‘}-,q_ ®)

Eqgs. (7) and (8) with an accuracy of redefinition P¥ —sm \d;“c, y fve/wy) P— u;‘;

coincides with system of equations describing parametric excitation of volumetric waves in
an uniform plasma (see Ref, [1D).

3. Solution of "spatial" part of the problem. As an example, let us cogsider excitation

of surface waves propagating along plasma cylinder of radjus o (W, &, 9~
exp [k 4 w ). Eq. (6) becomes

dg w
4? Ai\- (tM v XA_—&) - (K‘ + -‘_—l)tm‘h =Q,

(&)

Continuity of values t&*l{;/&rand Yyat r=a yields

Twtva) K2 (eay
to + =0 ()= e — N
W +Y,,, a)=0Q, (ORRTCPTN SR RCE ot 1o (10)
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From Eq. (10), we have, in explicit form, expression for value P

g,
P!\d:.‘ = Uv;(ﬂ)- (4 -\V\im(m}) " (11)

4. Solution of time-dependent equations. Parametric excitation of volumetric waves in
a homogeneous plasma has been investigated in [3]. Following this paper, let us introduce
functions

AR g

. Wy -l —twly
23 ‘~> = k:‘« S Naa Q’Q} &* = S‘v: N 54) L7
Q

k]

for which one could obtain the following set of equations:

voy (€N (gnaw)
Q> = - RO Ty A,
- 12)
Cnaw)
Qe (Y
LNUY = - R S\‘. Ny v ’ 13)
where Ae= M = % Vv i B wLa)
L ¥y €L () _ o [CNY &W}ND P"‘
T owew? Y P2 (W w ) I Q«z}u;)y‘-(w.&wlf‘
From Egs. (12) and (13) one can determine the dispersion equation in the form
) ¢ PN A Q)
(-3 R (4= 8 T by o) =
Q o
SR (T are W) e

Eq. (14) predicts the parametric build-up of HF oscillations (s~ \p\) at the frequency
domain g = Ay la, (%—odd number).

For weak pump amplitude modulations (€4 = €a = % o b ) the growth rate
may be written as
4 wa

Alg \ Yy (3
LR L 4 dep ey + 4G D] N
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where
8 = Pl = Qa ey, K = &k\b- {ew,

1\ \ -4
" W D te, (P VA (N Qte (§) I
&(Y} = = %%QQ?') (T) 5 %4 (?5 = (T)z_ k\*R; >

Qe
T A B Y, o
(V. w R )%’.;____?\)‘”

) )

ABLW NL 4 L
W= (— 5 N= :
bl ( s >ERWR ’ 1P Stld

Ne. -€lectron - ion collision frequency.

From expression (15) one can get the condition for parametric build-up:

Al
Qg A < (W) (Aep) s 86D * (16)

and maximum value of the growth rate

4 “!.5“ ,.& ..S 3)
Y vaax = ?( MD-P- (Qc 0 (&) e . an

"Separation" constant P entering expressions (16) and (17) is determined by formula (11).
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CONFORMAL MAGNETOSONIC WAVES
S.V. Bulanov* and F. Pegoraro**

* General Physics Institute of Russian Academy of Sciences, Moscow, Russia
** Dept. of Theoretical Physics, University of Turin, Turin, Italy

The propagation of magnetosonic and Alfvén waves in an arbitrary planar current-
free magnetic cz-mﬁguration is solved explicitly, with the help of a conformal transfor-
mation in the case of magnetosonic waves. The role of critical points of the magnetic
configuration is discussed. The ezpressions of dimensionless parameters describing the

relative role of nonlinear and dissipative effects near X -points are presented.

The problem of the propagation of MHD perturbations near the critical points of a
magnetic configuration is related to the general problem of reconnection of magnetic field
lines. X- and O-points represent a typical local behaviour of a nonuniform, locally two-
dimensional configuration in the neighbourhood of a critical field line, while additional
structures, such as Y-points, arise in the presence of current sheets. In the case of
an X-point the propagation of small MHD perturbations leads to singularities of the
electric current, which, in the nonlinear regime, correspond to the formation of current
sheets either at the X-point or at the two separatrices. This current accumulation
occurs because in these regions the group velocity of the perturbations tends to zero.
It indicates that the wave dynamics becomes nonlinear and, in the presence of a finite
electron resistivity, it leads to magnetic reconnection.

We consider two-dimensional MHD perturbations that propagate in a static plasma
with uniform density p in a planar, current-free, magnetic configuration : B,(z,y) =
—e; X VAq(z,y). The equations governing small amplitude magnetosonic and Alfvén

waves in the absence of dissipation are

8%a VA4,)?

W - % Aa = 0, (1)
%  (B,-V)?

8 4mp b=0, 2)

where @ = a(z,y,t) and b = b(z,y,t) are the z-components of the perturbed vector
potential and magnetic field respectively. In a uniform magnetic field Eq.(1) reduces to
w? = |k|?|cq|?, and Eq.(2) to w? = (k- ¢,)?, with ¢, = B,/(4mp)'/? the Alfven velocity.
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Since the background magnetic field is taken to be current free, A4, = 0, the
unperturbed vector potential A, is a harmonic function. In this case we can solve
Eq.(1) by introducing a conformal mapping from the complex ¢ = z + iy plane to the
complex plane w = u + iv. Under the conformal mapping

¢
w=u()= [ 55 )
the Laplace operator A¢ is changed into |w'({)|2 A, = |4'|72A,,, where a prime denotes
complex differentiation and the index denotes the variables with respect to which the
Laplacian is taken. Then the magnetosonic wave equation (1) takes the simple Cartesian

form
8%a
a2

where we have redefined ¢ so as to include the factor 4mp. The Alfvén wave equation

— Aya=0, (4)

(2) can instead be rewritten in the form

& - (wor %) s=o %)

Here A(() is an analytic function: its real part, RA({), coincides with the unperturbed

vector potential A,, and its imaginary part is F, = SA4({). The magnetic field B,(z,y)

can be written in terms of B(¢) = A'(¢) as Bo. = —SB((), and B,y = —RB(¢).
Eq.(5) describes the propagation of Alfvén waves along the field lines of the un-

perturbed magnetic field and its general solution b = b(4,,8) is an arbitrary function

of
dF,
A, =Ao(z,y), and 6O(z,y,t) =t :i:/ Ve (6)

Eq.(4) can be solved by separation of variables either in Cartesian coordinates in the

u — v plane, or in “cylindrical” coordinates @w = (u? + v2)}/2 and ¢ = arctanu/v.
Solutions of the form @ = a(u £ t) or a = a(v £ %) in w-plane correspond to waves that
propagate in physical z — y space respectively perpendicular or parallel to the field lines
of the dual magnetic field whose complex vector potential is w(¢) and is defined by
B(¢) = 1/4(¢) = 1/B(¢) . Bi(2,) = [~ Box(2,9)es + Boy(2,v)ey] | Bole,3)| ™).
For general propagating Cartesian solutions the complex wave vector K¢ = ke + iky
in z.—y space [ defined in terms of the logarithmic derivative of a(z,y,t) ] is related
to the complex wave vector k., in the {-plane by k¢ = ixy B*(() , ko = —ir¢ B(().
This duality condition allows us, by interchanging B(¢) with B*(¢), to relate, e.g., the
propagation of magnetosonic waves around a current free X-point to that around an O-

point with all the current concentrated at the singular point where |B(¢)| — oo (current
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line). If B({) — 0 for { — {,, w'(¢) and B*(¢) — co. Thus in the z —y plane, both the
wave vector and the amplitude of the perturbed magnetic field diverge if a(w) # 0 and
kw # 0 at w = w(({,). Inversely, if B(¢) — oo at { = (,, the wave vector and the field
amplitude in the z — y plane vanish. Thus magnetic energy accumulates in the vicinity
of an X-line and is reflected by an O-point with a current line. This also implies that
dissipative effects are important in the former, but not in the latter case. Depending on
the zeros and singularities of A'({), the image of the z — y plane under the conformal
mapping w(¢) can either be a subdomain of the w-plane, or it can require the definition
of branch cuts in the w-plane, which has to be extended over different Riemann sheets.
This requires a reexamination of the boundary conditions to be imposed in the w- and

in the {-planes, and of the position and form of the radiation source terms.

In the case of a uniform magnetic field, A({) = Bo(, the conformal transformation
(8) is trivial: w(¢) = ¢/B,. In the neighbourhood of a current free X-point A({) =
h(?/2, where h is the value of the field gradient, and the field lines are hyperbolae
%A = const. The conformal mapping is w(¢) = A™'In( so that v = A 'lnr and
v = h™1¢, with 7 and ¢ the polar coordinates in the z —y plane. The simplest Cartesian
solutions in the w-plane correspond in the z — y plane to cylindrical waves of the type
a = a(lnr £ ht) and to "rotating waves” a = a(¢ £ ht). Radially converging solutions
take an infinite time to reach r = 0. The dual configuration is B*(¢) = 1/(h¢), and
corresponds to the magnetic field near the O-point with a “current line” c/(27h) at the
O-point. The conformal mapping is in this case w(¢) = h¢2/2. Cartesian solutions in
w-plane correspond in ¢ — y plane to perturbations propagating perpendicularly to a
branch of an equilateral hyperbola. The phase velocity increases towards the O-point,
where the wave number and the amplitude of the perturbed magnetic field tend to zero.
Analogous solutions can be obtained for the case of a ¥-point ( B(¢) o< w(¢) o ¢/ )
and its dual configuration ( B*({) o ¢(~/2), and for a current sheet between two Y-
points B(¢) = k(¢ — ¢2)/2, w({) = k™! arcsin(/(,, where h|(,|? measures the total
current in the sheet. In these configurations, perturbations reach the singular points in
a finite time. Cartesian solutions of the form a = a(v % t) with v = Sarcsin ¢ /¢, reach
the current sheet simultaneously at ¢ = 0 due to the non uniformity of the velocity of
propagation. The magnetic field configuration given by B(() = h(¢ —(2/¢) corresponds
to the configuration with two X-points at ( = +(, and an O-point with a current line
at ( = 0. The corresponding conformal mapping is w(¢) = (1/2k) In(¢? — ¢2). The
dual field is B*(¢) = {/[R(¢? — ¢2)] with one X-point and two O-points with current

lines. Perturbations propagate faster towards the center of the island in the direction
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of the O-point with the current line, which they reach in a finite time, and are then

deflected towards the X-points, where energy is accumulated.

Nonlinear effects are important when the wave amplitude becomes comparable to
the unperturbed field |B,|. Near the null points of | B,|, the perturbed magnetic field of
the magnetosonic waves tends to co as [b1| = |(a/8t)w'| = |(8a/8t)||B,| ™. Then, the
characteristic nonlinear scale ry, is given by |Bo(rm)|? = |0a/8%|. Analogously the rele-
vant nonlinear scale r, for Alfvén waves can be obtained from [Bo(ra)| = |bL|. Ohmic
dissipation leads to damping of both Alfvén and magnetosonic waves and to their reflec-
tion from the vicinity of the null points. The characteristic distance from the null points
reached by a wave with frequency w is | Bo(r)|? ~ wvpm, with vy, the magnetic diffusion
coefficient. The dimensionless ratio Ly = [Bo(rm)/Bo(ry)]* = (8a/dt)/[(47mp)/2 vpmw]
characterizes the relative role of nonlinear and dissipative effects in the case of mag-
netosonic waves, and L, = [B,(ra)/Bo(r,)]? = |bL|?/(47mprmw) that of Alfvén waves.
Here we have reintroduced the factor 4mp. If L,,, L, > 1, current sheets will be formed
in the vicinity of the null points.

To clarify the meaning of these dimensionless parameters we show, as an example,
that in the Sweet-Parker model of forced reconnection L,, represents the square of
the ratio between the width d and the length ! of the current layer. Simple order of
magnitude estimates based on the continuity, momentum balance and Ohm’s equations
give d* & v, /D and vin ~ Qd, where O ~ h/(47p)'/? is the Alfvén frequency at an
X-point with field gradient k, and v;, is the plasma inflow velocity. The length [ is
related to the total current I in the layer: 12 ~ I/(hc). Writing I/c ~ J(ld/c) ~
cE(ld/vm), where J is the current density in the layer and the electric field E is given
by E = —0a/c0t, we obtain L, = (wl)/(Q2d). We can interpret w as the inverse of the
reconnection time //v;, ~ I/(Qd)’ defined as the time it takes the plasma to cross the

region of size | where the current density is significant. Then we find L, ~ (1/d)2.

S5.V. Bulanov and S.I. Syrovatskii, Sov. J. Plasma Phys. 6, 661-667 (1980).
S.V. Bulanov and F. Pegoraro “Conformal Magnetosonic Waves” to be published
in Phys. Lett. A (1993)
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Negative Energy Waves in a Magnetically Confined
Guiding Center Plasma

G.N. Throumoulopoulos ! and D. Pfirsch
Max-Planck-Institut fiir Plasmaphysik
EURATOM Association, D-8046 Garching, Germany

The conditions for the existence of negative-energy waves for electrostatic initial pertur-
bations (which could be nonlinearly unstable and cause anomalous transport) are inves-
tigated for an equilibrium with space dependent, sheared magnetic field. The method of
investigation consists in evaluating the general expression for the second-order wave en-
ergy derived by Pfirsch and Morrison [1] for the case of the Maxwell-drift kinetic theory,
based on the Lagrangian formulation of the quiding center theory given by Littlejohn
[2] and later regularized by Correa-Restrepo and Wimmel [3]. In Cartesian coordinates,
the equilibrium magnetic field is given by B® = BO(y)e, + B (y)e,, and the mean
Lorentz force, acting along the y-axis, balances the force due to the pressure gradient;
thus, the equilibrium condition P + (B(®))?/8r = constant is satisfied. The guid-
ing center drift velocity v_(q?) of any species v possesses, in addition to the component

vﬂl = q4/g,, parallel to the magnetic field, a perpendicular component due to the grad-
B drift (g4 is a velocity variable, the function g,(z) regularizes the theory, and the rest
of the non-standard symbols are illustrated in Table 1). The equilibrium guiding cen-
ter distribution function fég) is a function of y, y being a conserved quantity because
the quiding centers move on a plane perpendicular to the y-axis, ¢4 and the adiabatic
invariant magnetic moment y [f{(y, ¢a, )]

After a lengthy calculation, the second-order wave energy for the equilibria considered
and for purely electrostatic initial perturbations can eventually be cast in the neat form

%(0) of0 1 9f0)
FO = -5 [ daududy|GSF Bm— (ke - 2(2) (kua—;: . h%—)g—y) ,
where G{)(y, g, 1) is a first order function which is connected with the perturbations
around the equilibrium state, and k., kj and k_ are, respectively, the wave vector lying
on the z-z plane and its components parallel and perpendicular to B®. The following
conditions for the existence of negative-energy waves, which need only be satisfied locally
in y, ¢4 and p, obtain if the reference frame is one of minimum energy, i.e. if in it the
center-of-mass velocity parallel to B(® vanishes. The conditions for oblique propagation
(K # 0) are substantially different from those for perpendicular propagation (ky = 0).
The former case is thus discussed separately from the latter as follows.

!Permanent address: University of Ioannina, Department of Physics, Division of Theoretical Physics,
GR 451 10 Ioannina, Greece.
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Symbol Meaning or Definition

S normalization surface
Vo constant velocity

z 9a/vo

9, dg, [dz

BO) magnetic field modulus

b© B©/ B0

B®  BO 4 (m,c/e,)vog(z) Vxb®
B:®  modulus of BX©)

w©) e, B0 /em,

Table 1: Notation

. afQ
1. Oblique waves (k; # 0) If any f;g)(y,q‘i,,u) has the property gi——ai— > 0,

negative-energy waves exist provided klﬂj- < min(A,, M,) or EiL > maz(A,, M,), where

_ _4rgludP®/dy _ 9,01y . :
A= W and M, = PCr ng o0’ For particles with ther.mal velocities

it holds A, ~ M, ~ ﬁ% < 1, with (rz,)s the Larmor radius at thermal velocities
and L the macroscopic scale length. No essential restriction is therefore imposed on the

. af©
orientation or the magnitude of the wave vector k,,. The condition g%—ggf > 0 also
v

obtains for a homogeneous magnetized plasma (BO® = constant), a result which was
first derived by Pfirsch and Morrison [1]. In addition the same condition is valid for an
inhomogeneous force-free equilibrium with sheared magnetic field of constant modulus,
which can be described by taking B) = B sin(az), B® = B© cos(az) [a! is the
shear length, and f{9) = S (qa, 1)]. The last result agrees with that obtained by Correa-
Restrepo and Pfirsch [4], in the context of Maxwell-Vlasov theory.

8f©
. Of 3y .\ _ .
It _%,’,-—5_;;— < 0, a condition which is more frequently satisfied, only waves

for which the quantity % is restricted within the interval [min(A,,M,),
maz(A, M,)] can possess negative energy. For particles with thermal velocities this

condition implies that %_L ~ (2 )eh < 1. The possible waves are therefore nearly
perpendicular.

2. Perpendicul =) EBOD o st f
. ergen icular waves (k) = 0) qy__aé;L < 0, negative-energy waves exist for

s . a afQ
any wave number k,, irrespective of the sign of the quantity g}—gfg—. Since, according
v

to the results of the present work, the most important negative-energy perturbations
concern perpendicular waves, the last condition is further examined for tokamak-like and
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stellarator-like equilibria. To simplify the notation, the superscript (0) will be suppressed
in the following, on the understanding that all the quantities pertain to equilibrium.

2.1 Tokamak-like equilibria To describe an equilibrium of this kind, the space-
dependent, shifted Maxwellian distribution function

_ pB(y) +1/2m, (vey — Vi())?
oo [ 22004l =

is used. The small parallel shift velocity V,(y) | vV O 4 (%’_-’/h’l < 1, where (v,)in
¢

stands for a thermal velocity | produces a net “toroidal current” (the coordinates z and
2 represent the poloidal and toroidal directions, respectively). In the case 7, > 0 for
all v, if n, > 2/3 for at least one v, negative-energy waves exist for any perpendicular
wave number k,, except k; = 0. The existence of negative-energy waves is therefore
related to the threshold value 2/3 of the quantity 7,, a quantity which usually expresses
the trigger for the temperature-gradient driven modes. This is lower than the critical
value 77, which is determined in the framework of a linear stability analysis (for exam-
ple, performing a linear kinetic stability analysis of the ion temperature-gradient mode,
Dominguez and Rosenbluth [5] obtained a critical value n{ > 1). Accordingly, the value
ns¢ = 2/3 is subcritical and the possible existence of negative-energy waves below the
instability threshold implies that self-sustained turbulence may be present in a linearly’
stable tokamak regime. This result agrees with numerical results obtained by Scott [6]
as well as by Nordman, Pavlenko and Weiland [7] within the framework of a nonlinear
collisional and a nonlinear collisionless fluid model, respectively.

Furthermore, the part of the phase space and, consequently, the fraction of the particles
which are associated with negative-energy waves are determined. (Henceforth particles
of this kind will be called active particles.) This is accomplished by using analytic
tokamak-like solutions of the drift kinetic equilibrium equation for cold ions, which have
the following characteristics: constant toroidal magnetic field, poloidal magnetic field of
the form B, o tanh p ( p = y/L) and peaked pressure as well as current density profiles
(P,j» o< 1/ cosh? p). With the electron shift velocity profile appropriately chosen, the
following three equilibria with typical n,-values, compared with the subcritical value, are
considered:

o 7. = 1 for any p. In this case both the density profile and the temperature profile
are peaked (N, T. oc 1/ cosh p). Although the value of 5, is equal to the critical
value for linear stability or probably a little lower, nearly one-third of the electrons
that possess thermal velocities are active.

® 1, — oo for any p. In this case the density profile is flat and the temperature profile
is peaked (7% o< 1/ cosh? p). All the electrons are now active, as expected, because
n. approaches an extremely large value.

e 7. = 0 for any p. Conversely, this equilibrium exhibits a flat temperature and a
peaked density profile (N, oc 1/ cosh? p). In this case it is shown that the plasma
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has no negative-energy waves, as again expected, because 7. takes its lowest non-
negative value well below the subcritical one.

For the equilibria considered the fraction of the active particles increases as one proceeds
from the center (p = 0) to the edge (p = 1) This indicates that self-sustained turbulence
exists to a higher degree in the edge region.

2.2 Stellarator-like shearless equilibria The distinguishing feature of these equi-
libria in comparison with the tokamak-like ones is that the net plasma current van-
ishes. The single toroidal component of the magnetic field exhibits a hollow profile
(B, = (B2 + B2tanh® p)'/2, where B, and B, are constants) and the associated poloidal
current density is an odd function of p (j, o tanhp/cosh®p). Thus, the current in
the one half-space (p > 0) flows in the opposite direction to that in the other (p < 0).
To derive equilibria of this kind, an appropriate distribution function is a y-dependent

Maxwellian (V, = 0). By treating this distribution function, the condition %5—612’—" <0

furnishes the same subcritical value 75° = 2/3. Equilibria which exhibit electron density
and temperature profiles identical to those of the tokamak-like ones discussed above are
also examined. It is shown that the results of the tokamak-like equilibria that concern
the fraction of the active particles are also valid in the stellarator-like regime. It therefore
turns out that, as far as the existence of negative-energy waves is concerned, within the
approximation considered in the present work the two confinement systems are equiva-
lent.
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PLASMA DIELECTRIC TENSOR IN A TOKAMAK

SATISH PURI
Max-Planck-Institut fiir Plasmaphysik, EURATOM Association,
Garching bei Miinchen, Germany

Periodic modulation in particles’ parallel velocity in a tokamak gives
rise to an infinite, discrete set of singularities in the rf induced plasma cur-
rent: Both Landau and cyclotron damping involve a correspondingly infinite
spectrum of resonances [1]. This behavior has led to the widespread misunder-
standing that unless the particles were to possess an infinite phase memory,
the collisional (or stochastic) dephasing processes would render such a model
untenable. In this paper it is shown that in accord with the linear theory,
the particle motion in the periodic geometry model is amnesic and that for
plasmas of thermonuclear parameters, the collisional dephasing has no signif-
icant effect on collisionless damping. Dielectric tensor ¢ is strictly local in the
zero-Larmor-radius limit; in a Maxwellian plasma dissipation is positive defi-
nite at every spatial location, not just as a flux-surface (or volume) average.
Landau and cyclotron damping in an imhomogeneous magnetic field is given
an alternative interpretation that avoids the misleading physical picture of
indefinitely sustained resonant absorption. Errors in the existing cyclotron
damping models involving collisional dephasing effects are pointed out.

1. Introduction

Using the Grishanov-Nekrasov [1,2] formulation for the plasma dielectric tensor
in a large-aspect-ratio tokamak, it has been shown that the lower-hybrid-current-drive
spectral-gap anomaly may be resolved via the enhanced Landau damping of large-phase-
velocity waves [3,4]. Using steepest-descent and stationary-phase integration approach, it
is possible to obtain both the real and imaginary parts of the dielectric-tensor components
in the zero-Larmor-radius limit [4, 5].

The presence of resonant singularities arising from the periodic zero-order motion of
the particles in the tokamak has led to the misunderstanding that unless the particles were
to possess an infinite phase memory, collisional (or stochastic) effects would render such
models untenable. Before attempting to present detailed results for the dielectric-tensor
components in a tokamak, it is imperative to justify the Grishanov-Nekrasov model.

In this paper, it is shown that collisionless damping in an inhomogeneous mag-
netic field is a robust velocity-space diffusion process and is not significantly altered by
collisional dephasing in a thermonuclear environment. Furthermore, in contradiction to
presently exisitng results, it is shown that for a Maxwellian plasma in the zero-Larmor-
radius limit, both Landau and cyclotron damping are strictly local entities and are positive
definite at every point in space. A new interpretation for the collisionless Landau and
cyclotron damping that avoids the misleading physical picture of an indefinitely sustained
resonant interaction is presented.
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2. Landau damping

In the straight geometry, the change in particle’s velocity in the field of a longitu-
dinal wave (turned on at t = ¢;) may be expressed as

eE sin(at + ¢) — sin(ato + ¢)
m a

t
! E
Av = / e—cos(at +p)dt =
m
to
where o = kv — w. After averaging (Av)? over ¢, velocity-space diffusivity may be

expressed as
2 2rain? gt —
D(v) = <(Av)’> _ m (eE\" [sin® B(t —to) ’

t—-to 2 m Wﬂz(t—tu)
where f = /2. For increasing (¢t — o), the term in the square brackets gathers near
B = 0, approaching the value (t — t9)§ [B(t —to)] as t — tp — oo: Since D(v) vanishes
identically for ¢t — g < 0, this term may be approximated as §(a) = (kv —w), giving the
well-known linear-theory result employed in quasi-linear analyses

D(v) = g (%)2 8(kv —w) . (1)

Introduction of causality to obtain the time-independent D(v) is reminiscent of Landau’s
initial-value solution of the Vlasov equation. The limit ¢ — oo used to obtain (1) is in
keeping with the definition of diffusivity; in the linear theory, D(v) is valid at all times af-
ter switching on the electric field. The associated diffusion flux ¢(v) = —noD(v) (8f/0v),
where f(v) is the velocity distribution function. The energy absorption rate becomes

Qg = /mv¢>(v) dv= —/rw:ev(%eoEz) g—i&(kv —w)dv,

where ¢ is the dielectric permittivity of free space and wp, is the plasma frequency. Upon
performing the integration, one obtains the Landau result

ow __md , 0f

ot~ w ?Ov

w, @
Vs
where v, = w/k is the wave phase velocity and W is the energy density.

In more complex magnetic-field configurations, modulations in particle’s parallel
velocity can lead to dramatic changes in Landau damping. Consider a paraxial particle
in a straight, periodically varying magnetic field such that!

kvt = kvt + osinwpt ,

where ¥ is the average velocity and wp is the modulation (bounce) frequency. For this
case

t
Av = / % cos(kdt + o sinwoet — wt + ¢) dt

to

1 Arbitrarily complex velocity modulations may be similarly handled after Fourier de-
composition.
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and

D(s) =7 (ﬁ) 3" T(0) 6(k —w + pu) . (3)

m
p=—00

The single resonance at v = w/k is now split into an infinity of resonances located
symmetrically around w/k and spaced §v = wy/k apart. Since Y2 Ji(0) = 1, the
combined strength of the resonances remains unchanged; the emergence of secondary
resonances (p # 0) is inextricably bound up with the weakening of the primary resonance
(p = 0). If the secondary resonances occur where 0f/8v is larger than the
corresponding slope at w/k, there would be a net increase in Landau damping.

3. Stochasticity effects

Collisions or irregularities in periodicity introduce random or pseudo-random vari-
ations in wy and 0. For v < wy, wy would acquire a spread O(v) centered at the mean
value @o. Approximating the spread in wy by discrete Fourier spectrum gives?

L
l
k——k‘+z in | @t + —vt
vt vt I=—La'1s1n (wa Ly)’

and

D(ﬁ)=12_r(%>2 15[ { i J:'(a,)}é[kﬁ—w-l— zL:pz <Qo+%v)J , (4)

I=—L \pj=-o0 I=—L

where H,I‘:_ 1 is the product operator acting on the expression in the curly brackets while
the summation indices p; enter the argument of the 6§ function. Thus, collisions lead to
further fine structure in D(v) without materially altering Landau damping provided v <
wo. A direct intuitive grasp of this result follows from the fact that for a Maxwellian
distribution, collisions leave f(v) and hence the linearized wave-particle energy
exchange interactions (summed over the ensemble of particles) intact; even as
the absorption spreads in v. :

The structure of (4) reveals that the total diffusivity, summed over all resonances,
remains invariant for velocity modulation of arbitrary complexity; D(v) gets simply re-
distributed over an ever finer mesh. This result of wide ranging generality, underscores
the robust character of Landau damping, unperturbed by arbitrarily-random velocity
fluctuations, slow compared to the fundamental period of particles’ parallel velocity.

In (4) @y = 0 corresponds to the uniform magnetic field case; collisions cause diffu-
sivity to spread around v = w/k by the amount Av ~ v/k. In the absence of a significant
change in the slope of the Maxwellian for the velocity shift Av, collisions would not ma-
terially affect Landau damping,.

*Inclusion of cosine terms in the Fourier spectrum can be treated similarly.
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In the limit L — oo in (4), the total diffusivity remains unaltered even though the
discrete resonance spectrum merges into a continuum: Thus, spatially-inhomogeneous,
non-periodic magnetic fields, too, can be treated in the manner of (4). Since the zero-order
velocity is uniquely specified for all x (or t) by assigning derivatives (spatial or temporal)
of v to all orders, the resonance structure in (4) is equivalent to regarding v as
an analytic function. Landau damping is then seen as a function of particle’s velocity
and its derivatives rather than as a set of resonances. Since these derivatives are locally
defined everywhere, the requirement of an indefinite phase memory in the particle’s orbit
disappears. Hence, it is proposed that viewing Landau damping as dependent
upon local velocity and its derivatives is a more valid physical interpretation
than the resonant interaction model: Landau damping continues to be a valid local
entity even when no well-defined resonances exist in a non-periodic magnetic field.

4. Cyclotron damping

The foregoing considerations for Landau damping are equally applicable to cy-
clotron damping in a tokamak. Collisional effects are even less important because, unlike
Landau damping, cyclotron damping involves a much broader segment of the particle
population. Being a diffusivity effect, cyclotron damping, too, would be positive definite
at every point (r,6,¢) in the tokamak volume for a Maxwellian plasma in the zero-
Larmor-radius limit. Grishanov-Nekrasov theory indeed yields positive definite damping
everywhere, in contrast to the presently existing results 6] which might, at best, fortu-
itously become positive definite upon averaging over the magnetic surface. The error
in [6] stems from the neglect of higher-order velocity derivatives; nor is the
situation remedied by ad hoc introduction of collisional dephasing. As discussed in the
previous section, neglect of higher-order velocity derivatives is tantamount to
disregarding valid resonant interactions.

5. Conclusions

The Grishanov-Nekrasov [1] derivation of € in a tokamak involving an infinite, dis-
crete set of singularities retains its validity in the presence of stochastic dephasing effects;
the collisionality contribution being negligible in plasmas of thermonuclear parameteres.
Landau and cyclotron damping are local quantities depending only upon the local velocity
and its derivatives; thus it is not imperative for the particles to remain in step with the
wave for indefinite periods to validate the Grishanov-Nekrasov model. A derivation of €
that includes finite Larmor radius as well as drift terms and involves singular resonant
interactions similar to those of Ref.[1] has recently been given by Lamalle [7).
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Strongly nonlinear plasma waves

S.V.Vladimirov* and V.S.Krivitsky
Theory Department, General Physics Institute, 117942 Moscow, Russia

Recently a number of plasma particle accelerators schemes (for achieving high
acceleration rates and high energies) has been proposed (see, e.g., a beat-wave accel-
eration scheme [1], a wake-field acceleration scheme [2], a laser wake-field acceleration
scheme [3,4]). All these mechanisms imply the excitation of an intense longitudinal
plasma wave, in which the effective acceleration is realized. The high amplitudes of
the excited waves require the taking into account nonlinear effects. More often one
restricts oneself in that case to the use of perturbation theory. But the use of a finite
number of terms in the perturbation theory series is valid only for sufficiently small
wave amplitudes. On the other hand, both from the point of view of the theoretical
requirements for acceleration and of the corresponding experiments, the amplitudes
of the excited longitudinal waves are rather large.

A theory taking into account exactly the nonlinearity of a one-dimensional plasma
wave was already produced in the fifties [5-8]. However, this theory was based upon
the equations of cold collisionless hydrodynamics (nonrelativistic [5] and relativistic
[6-8], see also more recent papers [9,10]) so that the range of its applicability is
limited to a plasma with a temperature T = 0. Moreover, the problem itself of the
validity of the hydrodynamic approximation for nonlinear motion in a collisionless cold
plasma is nontrivial. On the other hand, for arbitrary distributions with nonvanishing
characteristic particle valocities (thermal, "two-temperature”, etc. distributions) the
hydrodynamic description is invalid (even in the linear limit when obtaining a valid
dispersion one must introduce ad hoc an adiabatic index into the equations).

The considerations of Ref.11, based on kinetic theory, have shown that taking
the particle velocity distribution into account introduces qualitatively new features
into the description of a (one-dimensional) nonlinear plasma wave. In particular, they
analyzed the possibility of the existence of particles trapped by the wave, and if their
distribution is appropriate, any form of nonlinear waves can be obtained.

Here, we develop in detail and analyze methods which enable us to obtain exact
nonlinear wave solutions for arbitrary particle distributions in the plasma. It is im-
portant that in principle some of these solutions cannot be obtained in the framework
of the hydrodynamic approximation. In particular, we indicate the possibility of the
existence of solitary nonlinear waves even in the case when the role played by the
trapped particles is negligibly small.

We consider a plasma with an electron component which is described by the
collisionless kinetic equation. The electric field is described by the Poisson equation.

* Present address: Theor. Physik I, Ruhr-Universitit-Bochum, D-44721 Bochum,
Germany
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By solving these equations we can obtain the following equation which describes
oscillations of the field of the wave

6W(Z)
dt2 ) = 0z (1)
where Z = —e¢/mu?, T = wye(t—z/u), ¢ is the electrostatic potential (E = —d¢/dz),
m is the electron mass, u is the speed of the wave (we are interested in solutions

o« (z — ut)), and wpe is the electron plasma frequency. The ”potential function”
W(Z) is

W(Z)=1+Z-VIi+2Z )

for a nonrelativistic (u < ¢, where c is the speed of light) wave propagating in a cold
plasma (if only the electron contribution is considered). Taking the motion of the
(cold) ions of mass M into account gives

W(Z)=1-V1+2Z - (\/1-2Zm/M — 1)M/m. (3)

The generalization of (2) into a relativistic case (u = c) is

W(Z)=(1-u/) Y1+ Z — /1+22Z + Z2u?] 2. (4)

Taking into account the electron thermal motion results in

W(Z)=14+Z-VI+2Z+[2+(1422)7%2 - 3(1 +22)" 2]k /242, (5)

here vy < w is the lectron thermal velocity vy = /T /m.

The dependence of the wave field upon time is given in a general case by the
elliptic functions. For the case of small amplitude the period P of the wave oscillations
is

P ~2n\/M/(m+ M)[1 —15Cm/8(m + M) (6)
for the "potential” (3),
P ~ 21(1 4 3Cu?/8c?) (7)
for the "potential” (4), and
P~ 27/y/1 4 3vk/u? — 15nCv [u? (8)

for the "potential” (5). Here, C = U/ ngmu? < 1, where U is the wave energy spatial
density. The expressions (6)-(8) coincide with the known results obtained by using
the perturbation theory up to the third order in the wave field.

The results (3)—(5) are obtained directly from the kinetic equation without using
the series expansion in powers of the electric field. Indeed, the general solution of the i
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kinetic equation in our case (when the wave E = E(t—z/u) propagates in z-direction)
is

= fo(mu +m/(v —u)? + 2e¢/m), (9)

where fo is an arbitrary (smooth) function. In a difference from [11], we suppose the
argument of the function (9) to be a momentum p but not an energy V = m(v —
u)? /2+ e¢. This choice is better because the function upon energy would achieve the
same value for different velocities v (corresponding to the same energy V). But such
the restriction is unnecessary (this is evident in the special case ¢ = 0: a solution
of the "free” kinetic equation is arbitrary function f(v) which generally should not
obey the equality f(v) = f(—v)). Moreover, using the argument V instead of p in the
non-perturbative consideration results in the absence of a good” limit when ¢ — 0
(ie. the "free” plasma state and the correct linear theory — see also [11]). It should
be also mentioned that the function /(v — )2 + 2ed/m in (9) can not be considered
"algebraically”, but analytically, as a corresponding branch of an analytical function
of a complex argument.

The non-perturbative kinetic theory allows us to properly take into considera-
tion all thermal effects without expansion in v2./u®. It also allows us to answer the
question: what is W(Z) for Z < —1/2 (in a nonrelativistic case)? The ”potential”
W(Z)is (Z <0)

_1+£2—2z+2\/£2——2z (10)

2
vy

W(Z) =27 2% / i / i d€ ex
=7 - —— z
V2mmT Jo o P

We should take a principal value of an integral (10) due to the necessity of making a
cut between two special points 4./2|z| of the square root function in (10) in order
to get a regular branch of the analytical function.

After some algebraic transformations we obtain for W (Z) the following estima-
tion

W(Z)~Z +14+v%/u® +0(1) (11)

for the case Z — —oco. Thus the function W(Z) (10) is smooth and reachs its
maximum in the point Z = Z,x ~ —1/2 if the plasma temperature 7" # 0 (when
T — 40, the Zyax — —1/2). The function W(Z ) is continuously differentiable for
T # 0; the discontinuity in the derivative dW/dZ as T — +0 is connected with the
appearance of a singularity of the exponential in the integrand (10):

" uly? )
exp| ———5 | —é(y) if wvr — +0. (12)
V2mvup 2

The "potential” W (Z) allows soliton-like solutions of Eq. (1): the oscillation
period P tends to infinity when C = W(Zupay). Thus for any (even arbitrary small)
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temperature T there does not occur the wave breaking, as in hydrodynamics, but the
formation of a solitonlike state Z(t — z/u). Of course, the problem of whether such a
soliton is a ”true soliton” goes beyond the scope of the present consideration. Taking
ions into account does not change in principal this important statement, it should
only be noted that for a case of electron-positron plasmas the solitonlike structures
have different asimptotics in the limits 7 — oo, therefore these are kink-like instead
of single wave as in the case M > m).

The obtained results are based on the assumption of absence (or small number)
of trapped particles. Generally, as was clarified in [11], it is possible to obtain an
arbitrary ”potential function” W(Z) and hence an arbitrary type of the wave, if
the proper distribution function of the trapped particles is chosen. Of course, there
are always some particles trapped by the wave; but one should study the process of
trapping in detail in order to know how many such particles are present in the system.

It seems to be rather natural to suppose that for the wave phase velocity u ~
¢ (which is the most interesting case in the problem of particle acceleration) the
number of the trapped particles should not be very large, because in the corresponding
experiments the majority of plasma particles has velocities of the order of vz which
is much less ¢. But in general it is necessary to study the dynamics of the process of
trapping, this problem is beyond the limits of the present consideration based on the
assumption that all solutions depend upon the argument ¢t — z/u.
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On dissipative acceleration
of coupled ion-sound and Langmuir solitons

S.V.Vladimirov* , S.A.Boldyrev and V.N.Tsytovich
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* Theor. Physik I, Ruhr-Universitit-Bochum, D-44721 Bochum, Germany

The problem of nonlinear coupling between Langmuir and ion-acoustic waves in
plasmas was actively discussed [1-4]. We have to distinguish two limiting cases. The
first is the case when the speed V; of the nonlinear wave and the intensity of the
Langmuir field satisfy the inequality

(1=V§/VE? > |E'}} ngT. ~ me/mi, (1)

where Vs = /T, /m; is the ion sound speed (we suppose T, > T;), me(;) is the electron
(ion) mass, T,;) is the electron (ion) temperature and ng is the unperturbed plasma
density. In this case the Zakharov equations can be used to describe the coupling.
The second case takes place for stronger Langmuir fields

[EY? /0T > me/mi, (2)

and for the speed

|El|2/nOTe >(1- VO""/VE)2 > me/my, (3)

when the Zakharov equations cannot be used. In this case we have to take into account
nonlinear as well as dispersive terms in the equation for a low-frequency potential.

Nonlinear equations for the Langmuir wave’s amplitude and the ion-acoustic field
potential with dispersive terms previously were obtained by using hydrodynamics only
[2]. Here, we consider the exact kinetic description to correct the above system and
to obtain new dissipative terms which describe Landau damping of the ion-sound
waves as well as a nonlinear scattering of the Langmuir waves on plasma particles.
In our approximations (1) and (3), the dissipative terms can be considered by using
a standart perturbation procedure [3,5]. As we will see, the dissipative effects result
in some amplitude reduction (in a quasi-soliton state which we will define below) as
well as in acceleration of the coupled nonlinear wave.

Let us introduce dimensionless variables and functions
T’ = pwpez/2V,, t' = tuwpe/e, p=4me/3m; <1, A =2(wy — Wpe)/ wpe, (4)

e=E'[\dmnTep, @ =—qp*/T., E*=-0,¢", (5)
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where wpe = 1/4mngg?/m. is the electron plasma frequency, E"9) is the high frequency
Langmuir (low frequncy ion-sound) field, ¢* is the potential of the low frequency field.
Below we will omit the primes at the dimensionless variables z, t. After the kinetic
calculation we obtain the following system of equations which generalize the system

2l

i0se + O%e + Ae = —llz<1>e+]\7(‘1>,e), (6)

T 1 1 1 -
0, + (1+37)0:@ + Eu33<1> + §am(<1>2) + Euamleﬁ +D(®) =0. (7

In this system, the operators N and D describe the dissipative effects. We have

. i i [t dwdk [37 4 i G T
N(®.e) = ;66'1) = ;e/ @ T'u‘iw,kmgn(k)e kT (8)

—o0
and
~ *to° dwdk [1 Ww? d il
D(®) = 2= Qw . —zwt+tkz. -
@ = [ e o 2 i
Let us firstly assume N = D = 0. Then we can find a solution of Eqs.(6),(7) in
the form
ple* = ap + 1 ® + @2 (10)
Thus we have for ® a general solution in the form of a cnoidal wave [2]. For the
solution close to a set of solitons (so-called quasi-soliton) we obtain
& = a + 6un’cn’(n¢, s), (11)

where £ = z — Vgt — zo. The parameter a can be derived from the conservation of
number of particles: ff:: snleide = 0, we have 6n(®) ~ &, énl) ~ &/VZ in the first
approximation. Furthermore, we obtain

2 1 3

ag = 6un’ <8% + 5041) (1 5 f) - Z(5a1)2a (12)
o = —8un? (1— L + ba (13)

1 K 1,

4
__4 1

Qg 3, ( 4)
A:—1}2—61——§&, (15)
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T; 10 6 1
V=1- = =31 * 3 =7 - E=
V=1-Yo= -3 4+ (3 K) ~se, (16)
where K = K(s) = fol dr/y/(1 = 72)(1 — s272). Then from Eq.(10) one can find the
field amplitude e which is proportional to

¥, 1. . [, M .
exp (Ez%x - Z’%t+2/dfw +z€) )
. 26 2
M? = un® {—275(13 + 1440% +0 [(,u,z/K?) ]} . 17)

Five parameters ), K, day, g, 6 are still free. To satisfy the conditions ,u|e]2 >0

and M? > 0, we have to choose
0 < 6oy < 280 17"
o < — .
=T =T K
Another restriction follows from the condition of a small variation (due to the damping
effects) of the parameter §a; with the soliton characteristic time 7 ~ 1 /n. We have

Oi6ay K néau, this leads to sufficiently weak inequality on the nonlinear wave period
K < 5007.

The system (6),(7) without dissipative terms admits a variational principle and
conserves the number NV and momentum P of the waves. In the first approximation
we describe the nonlinear wave damping (if K 3> 1) as a slow time variation of
free parameters 7 and 6a;. To satisfy the condition of uniformity we have to put
K/n =const (the distance between two quasi-solitons in the nonlinear wave is not
changing with time). To describe the evolution of the parameters 1 and da; resulting
from the dissipative processes, we consider the conservation equations for average
quantities [4] in which we take into account the dissipative terms:

(18)

oN
- =0 (19)
oP . 1 +2K 1 +2K )
Ty =Rp= _W /_2K ®D(®)d¢ — m/_”{ le]* [0 (6®)]d¢. (20)
The average quantities by definition are
~ 1 2K
= — AdE. 1
A= [ ac (21)

The main dissipative effect is the linear Landau damping of the ion sound (the first
term in the r.h.s. of (20)). It is wellknown (and worth stressing) that the main part
of near-sonic momentum and energy is contained in the ion-acoustic field.

Let us substitute in Eqs.(19),(20) N = |e|?, P = i(ed,e* — e*0,¢)/2 + ®2/u2.
The average forse Rp we calculate in the soliton approximation K > 1
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Rp= —Kiuz /_ :o £ 10J)) (<1>(°>) dt - 511{7 /_ :Q @2 [af (5@“’))] &, (22)

where ®© and e® are solitary solutions of Eqs.(6),(7) without dissipative terms.
Futher we will use the following formulae

B i 3456 [3

Z [ 00p (a0) de ~ Sy S0 (23)
1.7 2688 (3w
;/ |e(®)? [85 (6‘1>(0))] dg > —5 ——sﬁﬂﬂ4C(3)v (24)

where ((3) =~ 1.202. Finally, we obtain

Ot (ozo + agéz) =0, (25)
Bison = o[ 2L (), (26)
21— . (21)
The rate of the change of the soliton velocity we find from Eq.(16)
0,6V = ?W?‘—" <0, (28)

and we can see that the nonlinear wave is indeed accelerated, since V=1-V.

Our results demonstrate that the near-sonic quasi-soliton increases its velocity
because of the dissipative effects, if the inequality (3) is valid. The amplitude of the
nonlinear wave is decreased simultaneously. To describe the soliton damping, we have
used the perturbation procedure which is not valid if (1 — VE/V2)? < me/my, or if
the period of the nonlinear wave is sufficiently large, since the larger the period K,
the smaller the interval (18) for changes of the da;, and for the ” pure” solitary wave
(K = o) the perturbation theory is not valid. For the speed interval (1) one can use
the Zakharov equations with dissipative terms, in this case both the velocity and the
amplitude of the "usual” Langmuir soliton are decreased [5].
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The evolution of waves in turbulent plasmas, in which a large number of degrees of
freedom is excited, can often be determined by the nonlinear interactions of the waves.
Among them the nonlinear interaction of resonant waves with the non—resonant ones can
be important (see, e.g., /1,2/). The non—resonant waves are those for which both the

Cerenkov resonance condition

w—kv=0 (1)
and the scattering (off the second type of waves, namely the resonant waves) condition
w—Q—(k—q)-v=0 (2)

are not satisfied, while the resonant waves are those for which the condition (1) is
satisfied. Here w and Q are the frequencies of the considered waves, k and q are the
corresponding wavenumbers, and v is the velocity of a plasma particle. The effect of the
nonlinear interactions of the resonant and non—resonant waves is called the plasma—maser
effect (see, e.g., /2/).

In the present paper, we investigate the nonlinear evolution of the resonant waves
accounting for their interaction with the non—resonant waves. We obtain a general
expression for the nonlinear growth rate of the resonant waves.

The electron distribution function fp satisfies the collisionless kinetic equation

‘9{ +v--§§1’-+ eE-‘?If) =0 (3)

where the electron charge is e=—|e|. Let us define the regular part & of the distribution
function by
3, = <fp>, (4)

where the angular brackets < > denote averaging over a statistical ensemble. For the
sake of simplicity, we assume that all fields are longitudinal. The electric field E is then
governed by the Poisson's equation

divE = 4re [ 6fpdp/(27)3. (5)
where 6fp is the fluctuating part of the distribution function. We shall represent it by an
expansion in powers of the turbulent field E:
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5tp = Z«sf&l), (6)

where 6f£.l):x|E|1 We have normalized the dlstnbutlon function fp by

n= [l ™
where n is the concentration of plasma electrons.
We now introduce the correlation function of the Fourier components of the

electric fields by

<Ey g o> = By 28(0+0) 81t iy /K, ®)

w,k;i W
where

E,x= S E(tr)exp(iut—ik-r)dsdr/(27)* = KE,,  /|K]. 9)

Here, for the frequency and wavenumber of the Fourier components of the resonant
waves, we use the notations w and k, while for those of the non—resonant waves we use
and q. The last factors in Eqs.(9) and (10) demonstrate the longitudinal character of the

waves.
We are interested in the nonlinear contribution to the dielectric function (of the

resonant waves) proportional to |EQ q|2E K This can come from the coupling ( 6f$2 2 a8

well as from 5f$3 The contribution of the second order (in the fields) terms to the
imaginary part-of the nonlinear dielectric permittivity of the resonant waves is

__ 16726 |E 4] q
Trndensik) = -ﬁ—f’g[k—ﬂ B w—{lk—q)

Im[S(w,k;2,q;0-0,k—q) S~ k—g3w,ki—0,—q)] (10)
where the (symmetrized over the last two indices) second order plasma response is

S(w,k;wy,ki;w2,ke) = f(%%WFleHE { [kl-gl—)] .

e o) ol e el 00

In Eq.(11) only for the resonant waves the imaginary parts of the denominators are to be
taken into account (the scattering condition (2) is not satisfied here).

The contribution of the resonant waves to the imaginary part of the nonlinear
dielectric permittivity by the third order terms is

Imés(a)(w,k) =1Im {i&?—; f&%ﬂ%% :
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1
|25 s [k 5] o) 02
We can simplify this equation by a standard method /2,3/. In particular, we expand the

denominator [v—0—k—q)-v] by [w—0—(k—q) V]t = —(0@—q-v){1+[(v—k-v)/(@—q-V)] +
[(«—k-v)/(2—q-v)]2+...} and use the sign symmetry of @ and q. We have finally

Imde(8)(u k) = — 2724 f@%, 2‘1 [Eq of26(uk-v)-

8 by ) e [ - o]
AR E= A T A

Using the expressions (10) and (13), one can easily obtain the corresponding rates
describing the evolution of the resonant waves

pl=— Qméspol (w k)+Im63(3)(w,k))
( k) /ow w—w(k)
where € (w k) .is the linear dlelectrlc permittivity, w(k) is the linear frequency (i.e., the

(14)

7

solution of € (w,k):O) of the resonant waves.

When the constant particle distributions are maintained (i.e. the system is open),
the contribution to the growth rate of the resonant waves caused by the plasma—maser
mechanism is determined by the expression (14). If the particle distributions are not
constant then the effects of nonstationarity of the system can be essential when describing
the evolution of waves in plasmas (e.g. the contribution of the effects of nonstationarity
to the growth rate of the non—resonant waves is of the order of the "direct third—order"
contribution to the nonlinear growth rate of these waves (see /2,3/). However for the
closed systems (in which the (slow) variation of the plasma parameters is governed by the
well-known quasilinear equation (see, e.g., /4/)) the effects of the system's
nonstationarity do not make a contribution to the plasma—maser mechanism for the
evolution of the resonant waves (see /5/) in contrast to the situation which occurs when
describing the evolution of the non—resonant waves (see /2,3/).

The plasma—maser effect can significantly influence the evolution of resonant
waves. For example, such a situation can arise when the one—dimensional beam of fast
electrons propagates through a plasma /6/ in the presence of the ion—sound waves. In this
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case the resonant (with the beam particles) waves are the Langmuir ones, while the
non—rtesonant waves are the ion—sound those. The plasma—maser effect can /6/, in
particular, result in the stabilization of the beam instability for the beams with the
distributions

QS A(vg—v1)m[1—~(vo—v)m/(vo—v1)m], if v 1 Sv&vo,

vo—v1 m{1~(v-vq)n/(ve—vo)n], if v o <v<va,
,if v<vy or v>vy

(15)

(where v=p/me, Me(5) is the electron (ion) mass, 1<m<2, n>2, and the constant A(>0)
is determined in the usual manner by normalization), when the following conditions are

valid;
moc (] (m PO < [Wdy) 0

Here np is thé concentration of the beam particles, qs and W are respectively the
characteristic wavevector and the energy density of the ion—sound waves, wpe is the

electron plasma frequency, Te is the electron temperature, vp, =(Te/me) Y2 , Av=v—y.
When the conditions (16) are valid the effect of nonlinear interaction of the resonant and
non—resonant waves dominates over that of quasilinear interaction.

In conclusion, the effect of the plasma—maser type nonlinear mechanism on the
resonant waves can result in new phenomena which are absent in the more familiar
nonlinearities, such as decays and/or induced scatterings, as well as quasilinear
interactions.
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ABOUT THE INFLUENCE OF THE HIGHEST NONLINEARITIES ON THE FINISH
STAGE OF THE LANGMUIR COLLAPSE.

Gulenko V.V., Gushchin V.V.
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The paper presents a hamiltonian approach to description of
nonlinear dynamics of strong Langmuir wave on plasma. Among the
numerous reasons stimulating this activity note the following. First
of all, a considerable interest to Langmuir wave is due to the
problems of their collapse [1] and strong turbulence [2] as well as
on connection with plasma methods of charged particles acceleration
[3]. Secondly, the presented approach to our mind, is the most
effective under derivation of equations, which in sequaence take
into account. high orders of nolinearity and dispersion in different
continuous media and possesses the universality. This is extremely
important under studies of nonlinear regimes with the tendences of
singularity formation (self-focusing, collapse, e.t.c).

It is wirth pointing out that the use of hamiltonian formalism
for description of classical nonlinear fields of different physical
nature is a wide-spread procedure [4-5]1. However, the absence of the
reduction procedure of the interaction hamiltonians of different
nature waves considerably restricted the possibilities of the
formalism. To remove this shortcoming we desired the nonliear
canonical transforms excluding non-significant (non-resonant)
processes from the interaction hamiltonians in general form. The
appearence of dynamical equations appears to be completely defined
by dispersion laws of interacted waves. Selecting all possible
three-wave, four-wave, e.t.c. wave processes where they take part,
we define significant terms in interaction hamiltonian and thus, the
equations. Without goving details present only the searched set of

equations on impulse K,td presentation
da 5%int  Ob S%int

— + w ay=-i —_
at ) Sa at Sb

5 3 =d¢_+% +% >
t 3 4 o

tn

G = [dk { [b"b b +c.c.]u‘s 5 +s[b a a*+c.c.]u‘° 5 } @>
3 123 1 2 3 123 1-2-3 1 2 3 123 1+2-3

o i 1 kR .
% = [dk ca aaaV 5 + [€:5)
4 12342 4 273 4 1234 1+2-3-4
A ] - e * 7
+ |la a b b +cec.|V 5 +a a b b V )
172 3 4 1234 1-2-3-4 1 2 3 4 1234 1-2+3-4

& - P 4
:Jesfdk —aaaaaad@ s +... 4>
S 1234563 1 2 3 4 5 S 123456 1+2+3-4-5-06

Here aksa(ﬁ,t).bkab(ﬁ.t) are the complex amplitudes of HF and LF
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3 - it i Al —scit +i8 +i
waves respectively, dkgzs=dk1dkzdka, 6’_ 42 i'a=6(k1“kz'ka> Sonsp
UV =uPeR R LR,V =R LR R R D et.c. are the matrix

123 ES 2 E] 1234 i 2 a <

elements of i-th order. Here we present only the clear appearence of
of them which will be used further in the case

some
ke | <CmoMY 2=t R,
de .
c4n>” 7% ¢ PR 2rd”® kK K> KK >
10 _ s L 2 3, %3 13 2 s B>
123 oen Mo Y24 % k. 2% 4 T Kk k_k
o i pt 2 3 ] 1 3 24
en> ¢ 3 (& K> & K> & KD
Q* 5s 2 2 =l : 6>
123459 H¢n md%uw Kk k k k k k
o pe 2 3 4 5 1 ©

where T is the Debye radius, e, is the ion acoustic velocity, wp

is the Langmuir frequency, K is the wavevector.

The study of linear stage in the framework of > shows that
under sertain conditions the higher order nonlinearities may
influence on the initial stage of the modulational instability
evolution. In spite of the formal coincidence of the increments one

has to separate the regions with kr-deqf/z and krd°>yi/z where HF

and LF waves are unstable respectively. Note that there is mutual
transition of these instabilities wunder the variation of the

parameters of the task.
Using the reverse Fourier transform it is not difficalt to write

the set (1> on the coordinate (&,t) representation

iAg—Z=—2nw ég—e:: g%=é;gf; g=-‘ig—e; >
Pes5w 58 Sn
+
Se=gezc.)ch geel.. nor\+gel.on. non+xdi.sp+' o

Here n,® is a calonically conjugated pair of variables, n is
perturbation of plasma particles concentration, & is velocity
potential of them, y is the electric field potential of wave. By
straightforward variation in (7> one can obtain equations describing
the nonlinear dynamics of Langmuir waves. In the framework of these
equations it is possible to simultaneously take into account
electron and ion nonlinearities, variation of dispertion e.t.c.

Restricting 3% by :;emkh in (7> we obtain the set of Zakharov

+9¢ the set of Kuznetsov equations
zakh el. non
[6]. The concrete appearence of hamiltonians in (7> is not presented
here. Due to fact that the possibilities of analytical study of
Zakharov equations are limited one has to use a computer simulation
under the studies of the collapse problem. Extremely great volume of
calculation demands the information about the caverna physics in a
numerical model (the automodel character of collapsing, a caverna
anisotropy e.t.c.). The '"improved" equations which are impossible to
be obtained out of the framework of hamiltonian formalism  are
necessary tor making the model more precise.

equations [1]1 and if =%




IV-1489 8-54

It is necessary to point out that. the appearence of equations
1,7> is sensitive to the decay process HF =+ HF’+LH (s=1 in 1) if
the decay process takes place and s=0 if not). It is impossible, one
can exclude 9?3 from (1> and this set is reduced to the following

equation
da
k . . - *_ 3
—_— - -
at lwkak- 1jdktzaaiazaavszakéxn-z-s-k 82

! - * W4 -
?fdkizs4saxazaaa4ast12345 1+2+8-4-5-k

In the case Q“)=0 the equation (8> in © represantation

corresponds to NSE or to the equation of statistical approach [11.

The modulational instability has been considered before do lead in

this approximation to formation of singulariry. The dynamica of the

latter goes to supersonic stage under W/nT > ., Wakzwz/an. Show that
the taking into account of Q“) leads to a stabilization. Really, in
this case .

gt‘=9€2 —984 -!-96"‘s w>

when 9€6=0 the condition %<0 leads to the collapse. Using the
similary transforms in (9> which conserves the integral of particles
number N-J'Iaklzdl:, adk, o= 7\—d/za(i/x,t), d is the dimension of the

space, it is not difficalt to obtain the following dependence % on A
ge(,\>=9ezc?nz—se‘(g))\%geé(?)x“ o>

where 3 =K %\. One can see the stabilized influence of higher
nonlinearities  under t.he increase of A C(collapse in impulse
represantation corresponds to k= ). The exact proof of the fact of
collapse is based on Talanov theorem [1]1 <(virial theorem?> and is
realized only for NSE or for nonrealistic spherically symmetric
case. The similar situation probably takes place in impulse
represantation. The another proof [11 is based on the impossibility
of the stationary state realization, started from %<0. Acting
analogously to [1,7] we obtain

3
e d=2 25,  2 ] :
*=3aPN - 3373 a8
looking for the statinary solutions in the form

a(ﬁ,t.)=exp(ip2t)A(E). For 9€6=0 we have a reduction to [1l. The

analysis of (11> shows a possibility of stationar. Moreover, the
coordinate representation~ of equation a> has a soliton-like
solution

w(x,;_L L= CE dexpliQt- HJ_)] F=x-Vt, §-<o,xy e >
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(cx/az)‘/z
wCE > 3

2 1,2 a 1,2
[ch [{a /41-0.] —S—Z-Zexp [Za /Zrb.]

2>

2
q
asz[_——+“ i(uz—kz)rz] 3 o E—m——
w 2 De 2~ 8nn T
which is redused to the ordinary -soliton when Q“)=0. In the
framework of Zakharov-Kuztetsov method [71 using the integral
inequalities of Helder one can prove its stability.
The estimate

2
3 2_2 W 3 -
wx —w k'r W o X —=
2 pe De penT s12p pe |nT

from (8> and shows that the ion nonlinearities become

3>

follows
significant even for W/nT<4, (krd)z(i while the electron ones become

significant only if W/nT = (krd)zzl.
The automodel solutions of the studied sets of equations play an

important part in the collapse problem. When Q“)=0, the equation
¢8> allows the following automodel substitution

o
ack,to=ct-t > 7 1/2riN e, gkt 7 4>

where t’o is the time of the singulariry formation. It is importants

to point out that the solution 14> corresponds to well-known
automodel solutions  of NSE and to the equations  of static
approximation [11. It is not difficult to get assured in this using

the reverse Fourier transform. However, when Q“)#O the equation (8>
has no automodel solutions of the form 14> It is necessary to
search another nontrivial symmerties of equation (8).

The given examples convictively enough demonstrate the
significant  part of higher nonlinearities on the dynamics of
Langmuir collapse at nondecay din respest to the process 11242
part of its spectrum. The analogous studies may be carried out in

the region krd>p1/2.
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Nonlinear Generation of the Fundamental Radiation in
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Nonlinear generation of coherent electromagnetic radiation by intense Langmuir waves in
the vicinity of the fundamental plasma frequency f, is of current interest in space and labora-
tory plasmas. In a pioneer work, Lashmore-Davies [1] demonstrated that an efficient process
for converting intense Langmuir waves into f, electromagnetic radiation can be achieved
by two counterstreaming Langmuir pump waves through an electromagnetic oscillating two-
stream instability. Recently Chian & Alves (2], Akimoto (3] and Rizzato & Chian [4] extended
the formalism of Lashmore-Davies in order to include mixed processes with induced modes
which are purely electrostatic or electromagnetic.

In this paper we extend our previous analysis [4], in order to study the nonlinear in-
teraction involving travelling electromagnetic pumps, low-frequency density fluctuaticns and
high-frequency f, modes which can be electrostatic-electromagnetic hybrids.

In the model, a high-frequency transverse wave (w, = fp,ko) which is incident from left
to right along the x axis with polarization along the y axis, nonlinearly interacts with low-
frequency density fluctuations and emits a secondary high frequency wave with wavevector
lying on the x y plane. The wavevector k;s of the low frequency fluctuations is assumed to
be parallel to the y axis but otherwise arbitrary, from which is readily seen that depending
on its magnitude, the high-frequency mode may be predominantly electrostatic (k?f >> k%),
electromagnetic (klzj << k2) or a fully mixed mode (k,zf ~ k2).

The coupled set of equations describing this kind of coherent process, if Fourier analyzed,
yields the following relationships for the relevant perturbed physical quantities [4]

2
[=2iwy0, = 8, = e x kX +3vhk(k )] FE(K) = —=2 / n(k)Eo(k —k)dk, (1)

and
—k2¢,

2m;

dsn = /[Eo(k — k1) - 6E(=k1)* + Eo (k1 — k)* - 6E(ky)]dk; (2)
with dg = 87 + w}, w} = ckk?, n(k) = n(=k)* as the k - Fourier component of the density
fluctuations n(r,t) and §E(k) as the k - Fourier component of the high-frequency perturbed

field E(r,t). Besides, in the above set of equations we introduce wg = n,e?/mee,, € as the
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electron charge, m, as its mass 6, = w2 — w2, n, as the particle density and c§ = \/kpT/m;

as the velocity of ion-acoustic waves with kp as the Boltzman constant, 7' as the electron
temperature and m; as the ion mass.

Now one splits the high-frequency field into its electromagnetic and electrostatic compo-
nents as 6E(k) = §E(k) + éEr(k), where §Ef, is parallel to k and §E7 is perpendicular to
‘that quantity. With that, taking into consideration that 7 X 7 Xx E;, = 0 and v - Er = 0,
and making use of the assumed pump spectrum E,(k) = §E,8(k —%Xk,) one can finally arrive
at the following low-frequency nonlinear dispersion, heretofore referred as the full dispersion

relation: f2 141 g
2_ 2 f _ 2T € - 3
W’ —wy, f w‘”Wl-l—f[(e(l-f—f)— 1)? — w? + 12 _wz]’ (3)
» k2
where w?, = c%k2/R?, W = 8—;’5‘%31—2, R = %25}’ €= = 2, f = % and where

frequencies has been normalized to R.

Our basic interest in this paper is to analyze mixed instabilities involving electrostatic and
electromagnetic effects simultaneously (hybrid modes). To do that, let us start with some
limiting cases where those instabilities are decoupled into pure electromagnetic or electrostatic
modes.

1. Electromagnetic Case (f << 1)

Pure electromagnetic cases basically takes place when the wavevector of the emitted high-
frequency wave is almost parallel to the x axis, which means f << 1. If besides that one
notes that any emitted electromagnetic wave would have a larger wavevector than k, and
consequently a larger frequency than w, as well, one concludes that the interaction process
cannot be of the decay type. Thus, on disregarding electrostatic effects in the full dispersion
relation and writing w = iT' (T real) to search for purely growing modes, one can obtain the
instability range for this kind of mode in the form

0<< f<< W, (4)

a relation that leads to conclude that the original instability is entirely situated in the elec-
tromagnetic domain ( fmaz << 1) only when W << 1, a condition characterizing what could
be called a weak pump regime. If W is arbitrarily large, the instability will probably contain
some admixture of electrostatic effects. It is seen that this instability, also known as elec-
tromagnetic filamentational instability, takes place when smooth transverse perturbations of
the original propagating electromagnetic mode start to develop in time [1].

2. Electrostatic Case (f >> 1)

Similarly to the electromagnetic case, let us assume that we are working in a region of
large enough values of f such that for the moment, the electromagnetic contribution to the
dispersion relation may be disregarded from the full dispersion relation. The electrostatic
system so obtained turns out to be a little more involved than the electromagnetic one,
because now one can identify two possible situations as the factor f is varied. Indeed it is
not hard to verify that there is a critical value for f, f., such that if f > f. the linear
frequency of the emitted electrostatic wave is larger than w, while for f < f., it is smaller.
This critical quantity f., may be evaluated from the condition of null electrostatic mismatch,
0r = 0= (e(1+ for) — 1)? = 0 which yields

1 1

fcr=;—1~;, (5)

a quantity that is naturally large. If f > f, the interaction dynamics is much similar to the
previously studied electrostatic case. In this situation there is no possibility of decay and
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what one really has is a purely growing density mode whose unstable f’s are located in the
range .
W+1
fo < f<=——. (6)
One sees that the range may be either narrow or wide, depending on the pump power.

On the other hand, when f < f.,, the instability is of the decay type. In the weak
pump regime mentioned above, the peak of the instability ( fpeak) is located at the resonance
defined by (€(1 + fpeak) = 1)? — w2, frear, Which can be seen to yield small values of f only
when w,; satisfies w,; << 1, something that can always occur for not too small values of ko,
or specifically when

(recall that ¢%/c? <<-1). For large enough w,,’s or small enough k,’s, the instability would
have its peak located at too small values of fyesr for the electrostatic electromagnetic de-
coupling to be operative. In Fig.(1) we plot all the frequencies w = w, + il, (wr and T
real) of the various modes participating of a weak pump regime where wos << 1, considering
W = 0.1, wos = 0.05 and ¢ = 0.01. The three basic unstable modes are clearly seen: mode
M3 is the purely growing filamentational instability; mode Mj 4+ My is the pure electrostatic
decay instability that appear as a result of the fusion of modes M, and My (we denote
Ms = M3 + My), and mode M7 is the purely growing electrostatic mode.

3. Mixed Modes

The first mixed mode one should quote here is precisely the decay one occurring for
wos ~ 1 already in the weak pump regime. Besides that instability one should analyze the
behavior of the previous purely growing electromagnetic filamentational instability as the
pump power is increased. In order to accomplish that, we replace w with il' (T real) in the
full dispersion relation.

If f is much smaller than one the situation is of a purely growing electrostatic instability
as before. However, for larger values of f, the situation is changed. In this case of purely
growing modes, it is not hard to show that the effect of the electrostatic term is to curve
downwards the function defined by the right hand side of the full dispersion relation as one
approaches I' = 0. It may occur that due to this curvature, two mutual intersections of the
right and left (which is a straight line if considered a function of I'?) hand sides, become
possible. The critical existence condition of these kind of situation is closely related to the
intensity of the pump power. Indeed, it can be shown that two critical quantities W, and fe
can be introduced as

- 2
f-~1—5 N W.~:>>1. (7)

such that if W is larger than W, there will be some value of f, larger than f,, for which the
two roots simultaneously appear. .

The larger of the two ioots goes into the electromagnetic filamentation for f << 1, but
the smaller one represents a new unstable mode that does not occur neither for f << 1nor
too small values of W.

_ In Fig.(2) we plot the frequencies of the modes occurring in the strong pump regime
W >> 1. Purely real modes M; and M, join to form an additional unstable mixed mode
My +M; which a numerical analysis reveals to be present for W'; 1. In that region of relatively
small values of f one also notes the presence of the purely growing mode M3 that goes into
the electromagnetic filamentation for f — 0. For larger values of f, again one can note the
presence of the second purely growing mode Ma along with a junction point J where modes
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M3, M3 and Ms (an extension of the former decay instability) join together. In contrast to
the former regime, the decay instability Ms may now be seen as formed by the fusion of the
purely growing modes M3 and M. In the figure we use W = 5.0 x 10% in order to be well

above the threshold W, (e = 0.01) ~ 200.0, and take w,, = 1.0.
We wish to express our acknowledgments to Cldudio M. Rizzato
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ON THE INFLUENCE OF EXTERNAL PERIODIC FORCES ON NON-LINEAR
——— e s - SRR SBR VA JURUAS ON NON-LINEAR
LONGITUDINAL OSCILLATION IN THERMAL INHOMOGENEOUS PLASMA
e s o ShnaAy I NHVMVGANEOUS PLASMA

I. A, El-Naggar
Physics Dept., Faculty of Education, Alex, University,
Alex., Egypt.

In this case of a thermal plasma the system of initial
fluid equations is of the form

dv e 1

dE Tk ¥V e g VP ()
dn 4 2NV =0 P) (2)
dE DX

g_f =4me (n-n,) , (3)

where €L 0,M=/)is the ion equilibrium density which may be
considered as stationary for high-frequency oscillations and
K#4is the effective frequency of electron-particle collisions,
It is assumed to be small (¥ <4}) and independent of the velo-
city, Here and later on d/dt is Lagrange (substantial) deri-
vative., Taking into consideration thatN@))>h, one may write
equation (1) as following .

4 2
dv e V. W,
. = 777-5; - g&.'Zf - L axp P) (4)
JE, T o 5%
whereWo=/4TEN,/mis the Langmuir frequency of plasma electronsa
For inhomogeneous plasma, this frequency depends on the dis-
placement 4 . In order to solve the system one conveniently
changes from Euler to Lagrange derivatives and considers the
displacement of electron fluid element 9 from the position of
equilibrium as a function of time and initial coordinates
X=xX+9(X,E). Following further a procedure described in El-
Naggar, 1990 one obtains
7

2
J1  p de 29 ’J(1 __e [,
qB Vel g P gE t Y g F X )’—m f®- )
We consider the solution of equation (5) assuming that a mo-

nochromatic electromagnetic wave propagates in a plasma, so
that

fir)=F Sin(w, t+@) , (6)

where Wiyis the external frequency, E.is the amplitude and d%
is the initial phase of that wave., The case of thermal and
weak non-homogeneous plasma, which is of greater interest
from the physical point of view , will now be considered.
Moreover, this paper is confined to the case of a basic sub-
harmonic resonance (“ax=%4Up), Unstable oscillations can also
develop at frequencies of@W=(«,/2)N, where N=2,35-- . But with
arise in p) , the resonance intensity (as well as the width
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of the resonance,range ) decreases sharply. Consequently,
in such plasma “pmay be expanded in a series involving the
degrees of displacement 9 ,

2 2 2 3 4
W ()= +29+p7+8T +72 +... (1)
a 42
where, otz (m%,/hi)[hqms ),/3' E%B%IBf‘{:;..,

Using equation (7), equation (5) is reduced to res

3 Ly2 _ 2 - 3
9Lyl g 1.7 T (e q), (o)

. 2 2 2 ex
where, w; = W, + VU, (‘Qzﬂ_d/w;d)/u%’)
& = /243 yT(J-oLB/w,;)/wm X
- 2
B =P/3 421, (27-,3/%-1041(/1‘7/;)/%0 "

Here it is notieed that the disappearance of the density
inhoﬁogeneity cancels the nonlinear effect due to thermal
state. But the opposite is not true, unless under certain
conditions as we shall see later on.,

In the linear case (1st approximation) equation (8) has
the following solution

where, )CE"CF,,,/‘UC“)

i.e,, oscillations with the frequency of an external high-
frequency wave are excited in the plasma. It is clear that
the contribution from the next order approximation,~ V; V¥,
is associated with a parametric-type resonance for the
system being considered. Ignoring all non-linear resonance
components it is easy to get the zone of instability as

following _ 2
) h h, 3k
23 1- 2-3E]¢ e (2 14504 3 ]
where, h E(zotf/gmu;*) <L 1-

It is important to observe that in inhomogeneous plasma
the thermal state tends to cancel the mechanism of para-
metric excitation under the following condition

Vo zoteh /6 (Pl - ). (10)

But in cold plasma ( Y—>0), the absence of parametric mech-
anism cannot be approached unleas the density inhomogeneity
itself disappears (=0 ) (Demchenko & El-Naggar, 1971).

Taking into consideration all the nonlinear components

one, can get an equation for 7Y, from equation (8) as follows
2

- s T BE (2Bt
+fyf=0- (11)
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The solution of equation (11), corresponding to the l1lst
approximation as suggested by Bogoliubov and Mitropoloskii,
1958 to the presence of the basic subharmonic resonance in
the system considered, is found to be of the form

Y = a (os %‘tw?) ;’l//=“7)"2‘t+9) (12)

I datde = hA (a,0) (13)
dordt = a ey 2 +hB(a,0). (14)

The magnitudes of/}‘ and BI are determined from the following
equations % (250 2FaT — ey :
At -z ) € Nh@uswme Snvdsdv,

o é
B@b)z- 2o e ({"f(auru) e losydsdy

Res 1

L = 0y STy e Cstgp) Gy -4 2 G5 v+ SEE Gupels,

3 A3 - 5
One may g:/%aﬁ%lfx equations (13) & (14) the following

. /’ —2
oaldr =-ay, - ehie Sin 26 5 (15)

ex. 2 —2
= (o _ %Y, z5a _ hip '

Abldt = az - Gy T = 2 (s 20 (163

For stationary case equations (15) & (16) yield the re-
lation between the amplitude A and the frequency of the ex-
ternal force

d= L[ o 2 WG - v ]

With the help of this relationéhip one may construct a re-
sonance curve as shown in Fig,(1)

2

Ml

—Z _ 2

«— 4 480 = ug,

. It is very interest to observe that a certain value of
thermal velocity may cancel the nonlinear effect (which

depends on both thermal and density inhomogeneity) and the
amplitude of the oscillation increases infinitely. This
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thermal condition is as follows ( }E: 0 )

2
Y 2 By [6(F+228) an

It is easy to get the width of the parametric resonance
zone ( AC region ) which equal$ to

24 -2 3!
A =2 /th-/swaéJ‘

One notes that the presence of collision reduces the inter-
val inside which the parametric resonance arises. It is
obvious that A will be real if the inequality

h>dl)ep ,

is satisfied. This inequality determines the minimum modu-
lation percentage necessary for parametric resonance when
collision is given, Again, it is found that under the ther-
mal condition (10) the last inequality does not exist and
the increment A will mot be real,
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BIAS LIMITER EXPERIMENTS ON FT-2 TOKAMAK

V.0.Aleksandrov*, B.N.Budnikov, L.A.Esipov, E.R.Its,
S.I.Lashkul, A.D.Iebedey,I.E.Sakharov*,S.V.Shatalin®.

Tofte Physicb—Technical Institute,
St.Petersburg, 194021, Russia
*Technical University,St.Petersburg, Russia

The experiments on FT-2 tokamak (R=55 cm,  8=6.5...7.T
cm, H=1.95 T, I=20 kA, t=40 ms) have been performed in order
to study the influence of the drift flows in the poloidal
limiter .shadow upon the particle confinement in the plasma
core. It 1s kmown [1,2] that the vertical drift of .lons and
electrons 1n a toroidal magnetic <field and the boundary
conditions on the pololdal limiter surface must cause the
appearance of the pololdal electric field in the Ilimiter
shadow. Radial plasma drift V In this fileld can 1nIluence the
particle confinement.

" In our experiments two Insulated movable segments of" the
poloidal limiter, Fig.1, have been differentially biased by the
~ 250 V voltage at the 10-th ms after the origin of discharge
current plateau. Before blasing the segments had been
short-circulited forming an ordinary poloidal 1limiter. The
polarity of eleciric field E was chosen so, that  the drift .

1fu[EXH]/H on the outboard side of the -torus was directed
opposite “to the drift Vd. We supposed that the suppression of
the particle losses from the bulk plasma should take place in
the presence on thls drift. In order to obtain the magnetic
Tield lines resting with both ends on the same segment, we
limited plasma current by rather high value of the safety
Tactor, g>4. In -these conditions the electric field E should
appear around the whole toroldal circumference of tokamak.

Plasma current, loop voltage, mean electron density,
bolometric signal along the central chord, H, and CIII lines
emission are shown in Fig.2. Radlation losses profile have been
measured by bolometer. These losses localized mainly on the
Plasma periphery. The calculated total radiation losses iIn
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assumption of toroidal symmeiry correspond to ohmic power input
45 kW before and' 57 kW after bilasing (for maximum plasma
density). It should be pointed out that after bilasing the
‘radiation increases more significantly on the innerboard side
o the torus. The electron temperature value, calculated from
the power balance and conductivity, T,=300 eV cofresponds with
the microwave FM-radiometer and soft X-Tay measurements for
Zgpp=1-6- The small decrease of microwave FM-radiometer and
soft X-ray signals during blasing can testify to thereduction
of Tg. In this case the calculated value of Zopt remalns
constant. The increase of radiation losses AP.g4q during blasing
does not exceed (Ane)z, i.e. we dld not observe the addltional
impurity input. :

Radial distributions of T, and ng in the limiter shadow
had been measured by the movable four electrode probes for filve
values of poloidal angle (e = 0%, 30%, 100°, 130°, 160°). Fig 3
shows Te(r) and ne(r) on the 13-th msoafter the begining of
bias pulse for two angles, e =0and ¢ =160°. These
distributions are rather complicated, but the tendency of the
surves shift to the lower R side, 1.e. in the drift Vg
direction can- be seen. Arrows Indicate the profiles shift
compared to that without biasing. The largest shift corresponds
to0 ¢ =0°. When the polarity of blas pulse changed the profiles
shifts reversed.

Electron density profiles ng(r), illustrating the
influence of the electric fileld E on bulk plasma
characteristics, ave shown on Fig.4. The significant (30%-40%)
increase of the central electron density ne(O) during biasing
can be seen, what, taking Into account the constancy of
particle sources, indicates the improvement of the particle
confinement time.

So, the foregoing experimental data permits us to make the
previous conclusion about the improvement of plasma -confinement
by the suppression of the particles drift in the limiter shadow
reglon. i
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OBSERVATION OF ENHANCED PLASMA CONFINEMENT AT FT-2 TOKAMAK
AFTER THE LH PULSE HEATING.

V.O.Aleksandrov*, V.N.Budnikov, V.V.Dyachenko, L.A.Esipov,
E.R.Tts, S.I.Lashkul, A.D.Lebedev, K.A.Podushnikova,
I.E.Sakharov*, S.V.Shatalin*, O.N.Zherbinin, A.Yu.Stepanov.

Ioffe Physico-Technical Institute,
St.Petersburg, 194021, Russia
x Technical University, St.Petersburg, Russia

The improved confinement regime was obtained at lower
hybrld (LH) plasma heating in the FT-2 tokamak (R=55cm, a=Scm,
B=2T, I=22kA), when RF driven current did not arise, but
wave-particle interaction did exist and electron/ion heating
was registered. The 3 ms RF power pulse was introduced into
plasma from the lower fleld side at frequency 920 MHz and
could be changed In the range 230...120kW. The IH waves 1in
plasma were excited by the 2-waveguide grill operated
out-of-phase with slowing factor 2...4 [1].

The improved confinement arose after the RF pulse (2].
The increased level of central density lasted up to the end of
the discharge, Fig.!. The peripheral density in'the shadow. of
the limiter decreased several times during the RF pulse and
then recovered in several milliseconds after the RF pulse. The
temperature and density profiles in the peripheral region
measured by Langmuir probes are presented in Fig.2. Note that
the increase of the electron temperature AT, is Independent of
the RF power in the range 40...120kW and equal to 180eV. TFor
less power the axial temperature continues to rise or keeps
constant for 2 ms after the RF pulse. These data as well as
the density increase an, the ion temperature irncrease ATi and
radiation losses PLqq are presented in Fig.3. It 1s worth to
mention the lon temperature rise from 120eV up to 420eV for
Ppp=120KW.

The change of energy content <nT> was determined by dia-
magnetic slgnal. It 1s significant that the latter was
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conserved or even increased after the RF pulse, Fig.4. Taking
into account the constant level of ohmic power (P 1MSSKW) one
can conclude about 1ncrease of energy 1life time R in the
post-heating phase. The calculations of the energy life time:

j‘(neTe + niTi)dV

"E T T, Prag * Pia

have been made under conclusion d<nT>/8t~0 for ohmic regime
and for the end of RF pulse. The calculation of =p from the
diamagnetic slgnal coincides very well with calculations based
on measured density and temperature profiles. We obtained that
for Pyy=100kW 7, decreases from 0.9 ms 1n ohmic heating to
0.6 ms at the end of HF pulse and In the post-heating phase
increase up to 1.8...2.0 ms The calculations by neoalcator
scaling Lo —{X1O ‘ I)aROq [om_B,om] gives rgH 1.6ms and
v =2ms. It should be mentioned that the increase of dlamagne-
tic signal AV 31gy Quring LH pulse corresponds to temperature
measurements, shown in Fig.3, and the relation:

1.5HAVdiam =<neATE> + <AneTe> + yOH<neATe>,
Where » u=(Zy-Zopp)/ (Zy=1), Zy=b6, ZoH 0.3 1s true. ALl

OH "1 “eff’ 1, = 177 “eff

three parts in the right side of the latter relation give
approximately equal input in the diamagnetic slgnal.

Now we discuss the reascn of the energy -confinement
improvement. The increase of T, and accordingly O(r)MTeS/2
causes the current chanal LOHLId(tiOﬂ followed by  1ts
expansion after the RF pulse. Loop voltage characteristics
V_, as well as the suppression of MHD activity Vy,, in the
post-heating phase durlng current chanal expansion, Fig.5,
indicates on the existence of this processes. The hard X-ray
signal X, growths after RF pulse can also confirm our
hypothesis about the approach of the current boundary to the
limiter. Simulation of the poloidal magnetic field diffusion
shows the enhancement of Z,py during RF pulse from 2...3 10
3...4 and its decrease to the ohmic regime value 1In the
post-heating phase. The contraction of the current chanal 18
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possibly responsible to the cooling and particle losses in the
boundary plasma, what in 1ts turn diminishes hydrogen (see Hﬁ
emisslon in Fig.5) and impurity fluxes from -+the walls. I.e.
peripheral processes causes the improvement of plasma
1solation especilally in the post-heating phase, when the fast
lons bombardment and the corresponding additional hydrogen
fluxes from the limiter ceases.

Thus, the compatible lon and electron heating was carried
out in tokamak plasma by IH waves. In the post-heating phase
the essentlal enhancement in particle and energy confinement
time was observed. This phenomenon was accompanied by typlcal
processes In plasma periphery, which had been observed during
transition to IOC and H-mode in various large tokamaks. The
reason for this transition, as we suppose, is comnected with
the bhange In the current density profile, which follows the
IH electron heating.
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TRANSPORT STUDIES IN OHMIC H-MODE
BEFORE AND AFTER BORONIZATION IN TUMAN-3
L.G.Askinazi, V.E.Golant. A.I.Kanaev , V.A.Kornev, S.V.Lebedev,
L.S.Levin, S.V.Mirnov**, K.A.Podushnikova, G.T.Razdobarin,
V.V.Rozhdestvensky, A.I.Smirnov, A.S.Tukachinsky, V.M.Sharapov*,
A.P.Zakharov*. S.P.Jaroshevich

A.F.Ioffe Phys.-Techn. Institute, Russian Academy of Sciences
194021, St.Petersburg, Russia
* Inst. of Phys. Chemistry, Russian Academy of Sciences, Moscow
** TRINITI, Troitsk, Moscow region

Transport analysis in Ohmic H-mode before boronization

In ordinary ohmic regime transition into improved
confinement mode was found [1]. This Ohmic H-mode has typical
signatures of the H-mode in bigger devices with powerful
auxiliary heating: increase of the energy and particle content,
suppression of the density fluctuations near the edge, drop of
the.D, radiation. Transport analysis were performed for the

a
regime' with following plasma parameters: Ip= 0.115 Ma, qcy1=
2.45, 0 = (2-3.5) 10°°n™%. T__ = 0.4-0.6 keV, T,p = 0.12 keV.

Integration of the 1-D particle balance equation taking
into account experimental density profile evolution showed that:

(1) in the outer region (r=0.9a) Dgff drops by a factor of 7
after transition into H-mode, fig.1: (2) in the core region
anomalous inward flux exceeds outward diffusion [2]. Steep

gradient formation and boundary diffusion suppression are in
agreement with a results obtained on ASDEX [3], DIII-D [4].
Decisive role of the convection was found also in [5].

Electron temperature profile evolution in the bulk plasma
was measured by Thomson scattering technique. Edge Te behavior
was chosen to fit loop voltage derived from reducing of
diffusion equation for poloidal field and measured Up. This
procedure gave also heat source radial distribution assuming
neoclassical conductivity, Zeff = 2.0 and wvalidity of the
Kadomtsev . model [6] for internal disruptions. Effective
therﬁaldiffusivity coefficient was obtained under the following
assumptions: heat source distributed as j2/0, energy transfer
from electrons to ions - collisional, radiative losses are
negligible. In Fig.2 the temporal evolution of the Xfo at r =

o
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0.65a = 0.15m is shown. Observed sharp drop of x:rf
suppression of the heat transport in the entire

[2]. Taking into account convection term 5/2 Tern we
confinement after

evidences
part of the

plasma
found that improvement in the bulk energy
transition is mainly due to the changes in thermal convection.

Boronization procedure and plasma performance after boronization

Boronization were performed using Helium Glow with

Carborane (CzBlole) admixture [7] (partial pressure of

is 5-30 %). In order to produce more uniform coating

Carborane
positions. Solid

the vapor sources were placed in two toroidal
begins: to evaporate being heated up to 350-370 deg(K).
up to 450 deg(K).
After May

Carborane
During process metallic walls were baked
Duration of the boronization procedure was 2 hours.

1992 procedure was repeated 3 times.
Best plasma performance was observed during two weeks after

each boronization (200-300 shots). Then effect gradually

decreased but didn't disappear after 3-4 months of operation. As

a result of the boronization Oxygen and Carbon concentrations

reduced by a factor of 4-8 and 2-3 respectively. Drop in the SXR

intensity was about 10 times. Reduction of the impurity content

allowed to reach higher densities in the boronized vessel. Fig.3
open circles present

shows Hugill diagram for Tuman—-3. Here
H-mode Dbefore

ordinary ohmic regime and filled circles — Ohmic

boronization. Stars correspond to the Ohmic H-mode . after

boronization. In the last case highest density exceeds Greenwald

limit (2.7Ip/a2), Hugill parameter q®'nR/BL  (10°m™>.m,T)

reaches 17.

Plasma resistance became.by a factor of 1.5-2.0
Resistance decrease couldn't Dbe
account Dbootstrap current we
measured and calculated

less than

before boronization. explained

by Zeff drop only. Taking into
found reasonable agreement between
is 17-20% I_ in Ohmic H-mode. We

resistance. Fraction of the Ibs
of the input ohmic

should mention that in spite of reduction
power after boronization electron temperature didn't change

significantly. There was no noticeable difference between Te

profiles during Ohmic H-mode fig.4a and only small decrease in

central Te was observed in ordinary ohmic regime fig.4b.




IvV-1511 1-86

Corresponding loop voltages for the shots with plasma current
0.115 MA are shown in fig.5. Data presented on figs.465 indicate
enhancement of the confinement properties as a result of
boronization. Energy confinement time as function of density is
given on fig.6. Note that after wall coating TE became by a
factor of 1.5-2.0 longer than before. Similar effect was
observed in VH-mode on DIII-D [9]. TE values 13-15 ms exceed
linear fit for ordinary ohmic confinement by a factor of 3—-4 and
Neo—Alcator scaling prediction by a factor of 4-6.
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RECENT RESULTS FROM THE ROTAMAK PROJECT
N. Donaldson, P. Euripides, LR. Jones and S. Xu

School of Physical Sciences, Flinders University
G.P.O. Boz 2100, Adelaide 5001, AUSTRALIA

The Rotamak

The Rotamak is a very simple magnetic configuration: it is a small aspect ratio,
toroidal plasma current ring kept in horizontal and vertical equilibrium by a ‘vertical’
(tokamak terminology) magnetic field, in other words, a toroidal z-pinch. The unique
feature that distinguishes it from other configurations is the fact that the toroidal current
is driven in a steady, non-inductive manner by means of the application of a rotating
magnetic field (RMF). By now, the possibility of using an RMF to drive steady plasma
currents has been amply demonstrated and a straight forward description of the technique
and its application in the Rotamak can be found, for example, in the review papers by
Jones /1/ and the references contained therein. A description of the various components:
of a typical Rotamak device can also be found in these papers.

During the past 2-3 years Rotamak experiments have been undertaken using RF gener-
ators which are capable of operating at power levels of up to ten times those of previously
available generators /2/. The purpose of this paper is to present some of the latest results
obtained in high-powered experiments made with 10-litre and 50-litre spherical discharge
vessels. )

The 10-litre Rotamak Results

The toroidal plasma current, I, which is ostensibly driven by the applied RMF pro-
duces a steady poloidal magnetic field; the total steady poloidal magnetic field is the sum
of this component and the pre-determined vertical field. The radial variation of the z-
component of the total poloidal field (B,) in the equatorial (2 =0) plane (with the RMF
rotating in planes of constant z) is shown in Fig. 1 (a) for two discharges having the
following parameters:

Case (i) Case (ii)

Filling pressure of H, (mTorr) 8 8
Pre-determined vertical field, By (Gauss) 38.5 88.8
I (amps) 2070 5590
In cylindrical coordinates, the toroidal current density is given by:
. 10B, 10B,
Jp=—— T

o O po 0z

An examination of the Solov’ev solution /3/ of the Grad-Shafranov equation for a spherical
separatrix configuration shows that the 9B, /0z term contributes only 20% to the total
value of j,. We take advantage of this fact and obtain an acceptable estimate of jy by
using the simplified version:
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The radial profiles of j; obtained in this manner for the two cases are shown in Fig. 1
(c). These graphs show that a major toroidal shell of current exists in the vicinity of the
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discharge vessel wall. More interestingly, Liowever, they show that a second toroidal belt
of current is driven, in the same direction, in the interior region of the discharge, that is,
in the region r < 8 cm. As the value of By and, hence, the total current 1, is increased,
the amount of current driven in this interior region also increases.

_ The measured radial variation of the amplitude of the toroidal component of the RMF,
| bg |, are shown in Fig. 1 (b) for the two cases under consideration. These show that
the penetration of the RMF into the plasma is poor and, in particular, we note that | 54, |
is very small for 7 < 10 cm. This begs the question: What drives the toroidal plasma
current in the interior region of the discharge if

o there is no steady induced toroidal electric field present in the Rotamak discharge,

o the RMF is small and the < j x b > current drive mechanism cannot be operative
in that region?

A theoretical investigation by Auerbach and Condit /4/ sheds light on this question.
They considered a Solov’ev compact torus equilibrium in which the emf necessary to
drive the toroidal plasma current was supplied completely by the diffusion of the plasma
across the steady poloidal field. We have repeated their calculations and in Fig. 2 (which
complements Fig. 2 of the Auerbach and Condit paper) we show the flow lines of the
diffusing plasma in the interior region which is of interest in the present context. Our
interpretation of the experimental results is that the outer toroidal current ring is primarily
driven by the applied RMF whilst the inner current ring is driven by the dynamo action
of plasma transport across the poloidal magnetic field i.e. by the v X Bpgioidal term in
Ohm’s law. We conclude that a substantial fraction of the driven toroidal current in
high-powered Rotamak discharges is bootstrap current of this type.
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The 50-litre Rotamak Reéults

Measurements made with the 10-litre discharge vessel showed that the total toroidal
plasma current, I, was primarily determined by the amplitude of the vertical field By
and that I varied linearly with By (see, for example, Donaldson et al. /5/ ).

For a spherical, axisymmetric, compact torus equilibrium, the Solov’ev solution pre-
dicts a linear relationship between Iy and By, namely,:

I, 5R

=% == 1

By o )
where R is the radius of the spherical separatrix. This relationship was found to describe
well the results obtained in the 10-litre experiment (R = 0.14 m).

Fig. 3 shows the (I, By) measurements obtained in the 50-litre vessel experiment for
a variety of filling pressures of hydrogen. The experimental points fall on two straight
lines with a transition from one line to the other occurring for the higher filling pressures.
Magnetic probe measurements showed that points corresponding to reversed compact
torus configurations fell on the upper line while points on the lower line were associated
with non-reversed (i.e. mirror) magnetic configurations.

The slope of the upper straight line is 91 amps/gauss. Substituting R = 0.24 m into
the Solov’ev relationships yields

1% = 95 amps/gauss
By

which, again, is close to the observed value. This agreement does not necessarily imply
that the observed compact torus equilibria are of the Solov’ev type; it is more likely the
case that the relationship between I, By and R encapsulated in equation (1) is relatively
insensitive to the functional dependence of the pressure upon the flux function. For the
moment, we consider equation (1) to be a convenient empirical recipe which relates I, By
and R.

/1/ LR. Jones, Small Plasma Physics Experiments II (World Scientific, Singapore, 1990)
pages 3-51.

/2/ G. Besson and G.R. Cottrell, Meas. Sci. Technol 2, 581 (1991).

/3/ L.S. Solov’ev, Reviews of Plasma Physics (Consultants Bureau, New York, 1976) Vol.
6, page 239.

/4/ S.P. Auerbach and W.C. Condit, Nucl. Fusion 21, 927 (1981).

/5/ N. Donaldson et al. Europhysics Conference Abstracts Vol. 16C, Part I, page 647
(1992).
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STUDY OF PLASMA TURBULENCE IN THE T-10 AND TUMAN-3
TOKAMAKS BY REFLECTOMETER WITH CROSS-DETECTION.

V.V.Bulanin, D.O.Korneev, V.V.Dreval®

St.Petersburg Technical University, 195251, St.Petersburg, Russia
*Russian Sci. Center "Kurchatov Institute”, 123182, Moscow, Russia

INTRODUCTION

During the last years phase reflectometry has been used on tokamak plasma
experiments in an effort to measure both density profiles and fluctuation levels. In some
of these experiments the phase ramping inconsistent with the cut off layer actual position
was happened under the high level fluctuation conditions [11 - [3] This anomalously
large phase changing named "phase run away" was just observed while using the
quadrature (cross-detection) reflectometers [2], [31, where no one apparatus distortions
could induce the phase runaway. Now there is a view that this event is a result of Doppler
frequency shift associated with the poloidal rotation of the grating-like cut off layer
surface [3]. In this work study of the phase runaway effect started previously in Tuman-
3 with cross-detection reflectometer [3] was continued in T-10 tokamak experiments.
Thus it became possible to compare the data obtained in two different installations. The
alternative approach was developed in Tuman-3 while using the tangential microwave
probing in a course of L-H transition when the phase runaway could be directly
connected with the poloidal rotation of the plasma density waves.

MEASUREMENTS IN T-10 TOKAMAK

The experiments in the T-10 tokamak were performed with the O-mode cross-
detection reflectometer. The similar single-antenna reflectometer has been used in the
Tuman-3 and described in detail elsewhere [3]. The diagnostic layout is shown in Fig.1.
The antenna of the 40*26 mm?2 aperture was used to probe the plasma along the minor
radius by microwave at two fixed frequencies 18 and 24,3 GHz. The measurements were
carried out during the electron cyclotron current drive experiments (Ip =200-300 kA, B¢
=2.5T). The time dependencies of the plasma current (I) and the ECR diagnostic signal
(T) are shown in Fig.2 and Fig.3. Using sine and cosine signals the amplitude and phase
of the reflected signal were computed separately. Some features of amplitude and phase
spectra were similar to those of the Tuman-3. Namely the amplitude spectra were
observed to be broader than the phase ones. The typical phase spectrum frequency band
was about 5-10 KHz, as compared to the amplitude one of 100-300 KHz. The phase
runaway effect which was found in the Tuman-3 was observed in the T-10 tokamak as
well (see Fig.2 and Fig.3). The most value of the run away rate attributed to Doppler shift
fp=1/2%td & /dtis nearly 5-6 KHz as it seen from Figs.2 and 3. The incident frequency
transition from 18 to 24.3 GHz was accompanied by larger phase run away. Note that
minor radius dimension in phase units is 609Tonly. The phase run away rate and sign
were happened to be connected with the discharge condition variation such as the current
transition to the plateau phase (see Fig.3) or electron temperature uprise after gyrotron
switching on (Fig.2). In some discharges the phase runaway rate seems to be dependent
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on the cut off layer position. The cut off displacement to the last close flux surface
(LCFS) with the plasma density growth causes the run away slowing down.

Both the T-10 and Tuman-3 experiments were arranged with the incident
microwave beam directed nearly transversely to the LCFS. In this condition the phase
runaway phenomena may be induced essentially by two reasons. The poloidal rotation of
the grating- like cut off layer surface may produce the Doppler shift fq provided the
grating groove is asymmetrical [3]. The frequency fq may be estimated as
fdzZVGSO/ ,\a(here y) is blaze angle, Vg is the velocity of plasma grating poloidal
rotation,/\ois the incident wave length in reflecting region). Another reason is connected
with the possible deviation of the antenna axis from the normal direction [4]. This
deviation may be caused by the magnetic surface small displacement. As is shown
qualitatively in [4] in such a case the Doppler shift could be explained in the term of the
first order diffraction on the plasma grating and fq is determined by the formula written
above (Sa—diffraction angle). One can see that in both cases the phase run away contains
the information on the poloidal rotation pattern in tokamak.

REFLECTOMETRY EXPERIMENTS IN TUMAN-3
WITH TANGENTIAL PROBING

The diagnostic schematic diagram of the Tuman-3 experiment is shown in Fig.1.
Two antenna horns were used to transmit the O-mode microwaves under the angle of 50
with respect to the LCFS and to receive the reflected signals. In this condition accounting
for the wave refraction process the back scattering grazing geometry approximation is
valid and the Doppler frequency shift for large diffraction angel ((p=772) is to be written
as follows fq ¥ 2Vg /A o TWo similar quadrature reflectometers have been used in Tuman-
3 for simultaneous measurements of signals reflected back from the high and low magnetic
field side regions.

The temporal development of the phase for the different incident frequencies are
shown in Fig.4. The moment of the transition to ohmic H-mode induced by gas puffing is
marked by arrow. Before the L-H transition the sign of phase runaway was consequent of
the plasma grating rotation in the ion diamagnetic drift direction for both the inside and
outside probing. Just after the L-H transition one readily observes the drastically change
of the phase temporal variation in outside region (see Fig.4b). This effect could be
accounted for the strong shear of the plasma wave rotation. This particular rotation
pattern is in accordance with the scrape off layer plasma rotation pattern measured
recently in the JFT-2M tokamak [5]. The actual shear radial position in the Tuman-3
may be determined after the ray tracing simulation which are going to be done. As for the
inside probing the phase runaway shows the different rotation behavior which depends
on discharge scenario (see Fig.4a and Fig.6). The phase run away sometimes was
observed to remain constant (see Fig.4a) or to ramp in the L-H discharges (Fig.6). These
variations however are less pronounced compared to the outside probing. This distinction
may be connected with the difference of the radial position of the microwave reflection
region. In other hand it could be referred to the actual poloidal asymmetries of the
rotation pattern (see for example [6]).

The distinction between the amplitude oscillations was observed as well. Fig.5
shows the time dependence of the RMS amplitude averaged over frequency band above
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200 KHz. Here the upper trace corresponds the inside probing. The amplitude
suppression of the low magnetic field side after the L-H transition is well known [3]. The
observed oscillation uprise with the inside probing demands more detail investigations. It
may be for the displacement the reflecting region towards the antenna after the L-H
transition.
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FIGURE CAPTIONS

Fig.1 Reflectometry diagnostié layout. ANT-antenna.

Fig.2 Time evolutions of plasma current (I), ECR diagnostic signal (T) and phase (Ph)
in T-10 experiment F=18 GHz.

Fig.3 Temporal dependences of I, T and phase, F=24.3 GHz.

Fig.4 Phase run away in Tuman-3 a) inside probing, b) outside one.

Fig.5 Temporal dependences of RMS amplitudes.

Fig.6 Phase run away at inside probing (another series of shots).
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X-Ray VisioN TECHNIQUE FOR PROTON AND
ALPHA-PARTICLE DiAGNOSTICS

V.G.Kiptilyj,
Ioffe Physico-Technical Institute, 184021 S.Petersburg, Russia

Escaping proton and alpha-particle diagnosties based on
the particle induced X-ray detection is proposed.

A diagnostic device, which mounted near the edge of the
tokamak plasma, consist of a radiation shielded camera, inner
target and a pipe to transfer the X-ray image. Unconfined
particles penetrate into the camera through an entrance
apertures closed by thin foil and interact with 1low-Z target
atoms. Several kinds of the target (single element, complex,
multi-layer) can be used for different diagnostic purboses.

The yield of X-rays produced by ¢-particle bombardment
of thin target is

szpd*(NA*p/A)*L*GI(EG)*wK’

F, - the o-particle flux on the target, (ﬁ/cnzs);
NA*P/A - the density of target atoms, (atons/cn3);
L - the thickness of target, (cm);

GI - the ionization cross-section, (cnz);

wK - the fluorescence yield.

In the case of 1#m Mg target and Ea= 3.5 HeV the
energetic losses of c-particles will be equal to ~ 130 keV' and
thin target spproximation will be valid. Then

6. =1.2 1079 ca? |
w, = 0.0265 ,

K
EKG: 1.25 keV .
If we suppose that
B % 1011 d/cnzs

o
then

Y~ 1.3 107 x/en’s
In the case of 1um Si targdet :
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6. = 4.3¢ 10721 cn® |
wp = 0.047 ,
EKaz 1.7398 keV
and
Yx ~ 108 x/cnzs &
As can see targets with lower Z may be used, too.
The detector counting rate is
- 2
Px = Yx*St*(SD/4ﬂ*R )*Tx*s , epSs,
St, SD - the square of target and detector (or mirror);
R - the target-detector distance;
Tx - the X-ray transmission;

e the detector efficiency.
One can see that

2 ~ -4 -3 2
St*(SD/4ﬁ*R )*TX*S 10 - 10 cm

is needed for time resolution of the diagnostics.

According to X-ray emission rate calculation the thin
tardget yield of the Mg Ka—rays induced by 3.5-MeV alpha
particles is 10—2 X-rays per particle. The yield factor is more
higher in the case of protons. If escaping alpha-particle flux

11en_z* s_1 and apertures of the order of 1 enz,

the X-ray intensity would then be > 10° s 1.

is more than 10

In general, the estimates indicate that this technique
can be utilized. As to the X-ray detector system the research
and development are needed to demonstrate feasibility of the

diagnostics at high neutron and gamma-ray background.

For the calculation the following data have been used :
G.G.Johnson,Jr. ,E.M.White. ASTM Data Series DS 46 (1870).
C.H.Rutledge,R.L.Watson. At.Data & Nucl.Data 12, 195(1973)
R.Woldseth, “X-Ray Energy Spectrometry” (Kevex Corp.,
Burlingame, California, 1973)
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