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Introduction

Determination of the threshold island width for stability of the neoclassical tearing mode in
tokamaks is important for understanding the conditions for its growth, and for developing
experimental control techniques. The polarisation current may provide such a threshold
mechanism when the width of the island, w, is comparable to the trapped ion banana orbit
width, pg. We present a kinetic formalism for investigating the impact of the perturbed
bootstrap and neoclassical ion polarisation currents on stability of NTMs in tokamaks while

retaining full finite-ion-banana-width effects, focusing on small islands with W~ py;.

The Model
We consider a single dominant helicity perturbation propagating in the toroidal direction with

frequency w such that in a stationary laboratory frame of reference the total magnetic field is
given by B, =1V@¢+VoxVy+VegxVy, where y = y?cos(m@—n(qﬁ—a)t)) and (;(, 9,¢)
are partially orthogonal flux coordinates with V@g-Vy=V¢-VA=0. The island is centred
on a rational surface y =y, with q(y,)=0q,=m/n, where q=(B-V¢)/(B-V6)=JIR™
and J7' =VyxVO-Vg=B,, -V is the Jacobian, and has a half-width w, which in units of

magnetic flux is given by Wf( =47q./q;, where g, =(dq/dy)

=z
We assume that the time variation of the system is due solely to the propagation of the island

and hence can be eliminated by transforming into its rest frame with coordinates ( 2,0,¢ ),
where {=¢—wt. In this rotating reference frame the drift-kinetic equation for the gyro-

phase independent part of the distribution function f, for plasma species s is given by

(V|| +VD)'st +(V|| +VD)'(mszV_qsv®rot)%:C( fs)’ (1)

where w = w2 with 2 being the unit vector in the direction of toroidal axis, V = R’V ¢,

2V v - L (wx(2v,+V)), &= V., = %Ba

D I
Brot W O 2 m;

, Q, and m, are
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the electric charge and mass of the species s, and C is a collision operator. In the non-
relativistic limit, i.e. neglecting terms of order V /¢ <1 where c is the speed of light, the

electro-magnetic fields in the rotating and laboratory frames are related via B, , =B, and

E. =E. +VxB,,. Since we will be working exclusively in the rotating frame, we drop the
subscripts on the electro-magnetic fields from now on. We will make use of two coordinate
systems: (y,60,&) with E=mé-n¢, and (Q,6,&) with Q=2(x -z, )2 /W, —cos& where

the parallel derivative operator near the island is given by

:ii _ (Z_ C)iii ~S|n§i_ ,
JB 00 2 q. JB o0& P JB o
1 0 "1 0
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JB 00|, ; q. JB o0& 00

respectively, where b = B / B. We express the distribution function as

fs=( qu ]FMS-FQS,

where Fy (7, w) is the Maxwellian, and define a small parameter A=w/r, <1, where r, is
the minor radius of the surface with g =m/n, and adopt the following orderings

W aFMs - qs(Dl - gs ~A and W 895 . qSCDO ~£
Fus OF T, Fus Fus OF T, o,
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1
where o,; = L1 is the ion diamagnetic frequency.
i N

dn;
dy

Electron Response
In addition to the assumptions set out in the preceding section, we further define a second

small parameter for electrons o = p,, /W<1, where p,, is the width of the electrons’

banana orbits, and perform a double expansion of g,: g, = 225 TAKg 9,
ik

The details of the calculation may be found in [1], while here we just present the results:

gé()l) (Z Zc+h(01)( ))LagZMeI +qe_||_:Me dch;)KOI J
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and
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where the free function h{®" (Q) arising from integration along a field line is determined

oy |9]§ T, dy

e
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from considerations of radial transport.

Ion Response

For ions we assume that the width of their banana orbits is comparable to the half-width of

the magnetic island and expand g; as g; = > A’g{” . Thus, at order O(Al) the drift-kinetic
i
equation (1) for ions is given by

Vi 0 (IVIIJ vy 0 [' j
+ = —
. B\, orl|, Bbla,)

Defining p= y —1v,/ @, we note that
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and equation (4) can be expressed as

ﬁ agl(l)
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where we have introduced a function G; =G, (¢, ¢) such that . Thus,
ox |9,¢ T dx 0.2
9" =Hi(p.&,5,2,0)=Fy =G =" +(x - 1) P G Iy +0(a%) )
oy |9,.§ T dy |9,§ i

where h =H, - F, (1..¢)-G (x..¢)=h" (p.&, 6, 1,0).
At order O(AZ) , after substituting the form (5) for g , expanding equilibrium quantities

around the surface y = y, and keeping only the lowest order terms, transforming to ( p,o,& )

coordinates and applying orbit-averaging operators defined as

<f>:(f—d6j jf de and [ZIJBMJ ;aj;f‘vl‘

-z || o —g,

for passing and trapped particles respectively with the integral performed at fixed ( p, &, e, Z) ,
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we find that the drift-kinetic equation may be expressed in the following form

I a(I)1| | a/aBi| oD, n5®1| [5FN"| +tiMi d(I)O| j
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for passing particles and
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for trapped particles. A benefit of this formalism is that it permits a non-perturbative

=}

treatment of finite banana width effects while reducing the dimensionality of the system by
eliminating one of the spatial coordinates. This in turn significantly reduces the demand for
computational resources thus allowing for the problem to be solved on a moderate computer
cluster and a new kinetic code that uses this formalism is currently under development. This
code will use an electric potential self-consistently determined through quasi-neutrality to
accurately describe the polarisation current and the role it plays in the evolution of the island

and, in particular, its impact on the stability threshold — an important issue for ITER.
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