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A new resolvent technique for calculating linear eigenspectra in tokamaks
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Introduction

The nonlinear, two-fluid, fully electromagnetic, global tokamak plasma turbulence code CUTIE
[1] has consistently reproduced many features of experimental tokamak plasmas, see for exam-
ple [2] and [3], but a full linear investigation of the code has never been undertaken. Simulations
are presented here both using a new linear CUTIE initial value code to calculate the dominant
linear mode, and introducing a new resolvent eigenvalue technique to find the entire linear spec-
trum of unstable, neutral and stable modes present in the same system.By starting with reduced
physical systems it has been possible to benchmark the linear CUTIE code against existing
simulations, beginning with resistive tearing modes using results from both Thyagaraja [4] and
Militello [5]. The full linear eigenspectra and corresponding eigenfunctions of each mode is
revealed for a variety of different conditions. As tearing modes have been extensively investi-
gated, both in slab geometry [6] where growth rate can be shown to depend on resistivity as
yo< /5, and in cylindrical geometry, where a more complicated dispersion relation exists [5],
they are particularly suitable for the purposes of benchmarking a numerical code as there are
numerous analytical and numerical results available for comparison.
CUTIE physical model

We do not list the full equations of the nonlinear CUTIE code here and direct the readers
to Refs. [1] and [3]. Instead presented is the first reduced system under consideration, namely
visco-resistive MHD in which the vorticity and electromagnetic potentials are evolved. The
system is based on a periodic cylinder model (r, 8, { = z/R) with flux surfaces as concen-
tric circles. All plasma properties are written as a sum of a flux surface averaged mean, e.g.
no(r,t), depending only on radius which in the linear model are fixed equilibria, and a fluctu-
ating part on depending on (r, 0, £, t). These fluctuations are Fourier expanded as ny+ on =

oo Yo oo Fim.n (1, 1) €xp(im0 + in{) where ng is the m = n = 0 Fourier component. Using
these conventions and assuming no mean electric field and ng(r) = ng the standard MHD equa-

tions for an incompressible plasma with isotropic resistivity and viscosity linearise to
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where O, ¢ and y are the fluctuating vorticity, electrostatic potential and magnetic potential
(where the m, n suffix is dropped). The differential operators V| and V act along and perpen-
dicular to the toroidal magnetic field By, ps = V;;/ @ is the ratio of the thermal velocity to the
ion cyclotron frequency, V4 is the Alfvén velocity, and jj is the equilibrium current density in
the kink term of Equation 2 which drives the tearing mode. Viscosity and resistivity appear as v
and 1) in Equations 2 and 3. It is worth noting that the use of the vorticity-electrostatic potential
relation in Equation 1 prevents the appearance of a fourth order derivative in the viscous term
of Equation 2, which makes the finite differencing of these equations more straightforward.
These PDEs are time evolved for a single value of m and n using the linear CUTIE code
until the mode with the largest growth rate dominates the system. The same system is solved
for single values of m and n using the resolvent eigenvalue technique which we describe in the
following section.
The resolvent technique v
While the initial value code evolves the
linear CUTIE system in time until only
the dominant linear mode is visible, the

Low

resolvent technique assumes ny,(rt) =

fimn(r) exp(—iAt), where A € C so that % =
—iA, and finds the entire spectrum of A (we Figure 1: Poles of solution of inhomogeneous visco-
note an analogy here to the Laplace trans- resistive MHD system found by resolvent technique.

form). To find A by using the resolvent method we consider the inhomogeneous system
(L—A"Dx=g “)

where L is a linear operator derived from the PDEs with delta-function approximated g on the
right hand side. Equation 4 is numerically solved for x as a function of the parameter A *, which
is iteratively improved from an initial guess of a true eigenvalue A. Using delta-function right
hand sides is crucial since it helps ensure the right hand side vector is not orthogonal to any
eigenvector, and it acts as a Greens function for the system. Starting from our guess A * we seek
poles of the solution vector to the inhomogeneous system in the complex plane, see Figure 1,
and at each iteration refine A* closer to the true eigenvalue A. The technique is analogous to
driving the system at a complex frequency A* and searching for resonances. Finally, as A* — A
the solution vector approaches an eigenvector corresponding to that eigenvalue. This method

is a development of a similar idea used by Thyagaraja et al in [7], and is applicable to a wide
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range of systems whether the full system is self adjoint or not.

Results
The simulations presented here used to benchmark the linear CUTIE code and the resolvent

CUTIE code were based on results from Thyagaraja [4] and Militello [5].

Eigenvalues of A
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1 x 107. Here 14 = a/V4 with a = 100cm, 95—
R/a =25 and V4 = 2.17 x 108cm s~!. In

both cases the g-profile was defined to be Figure 2: Linear eigenspectrum the visco-resistive MHD
a(r) = g(0)[1 + (r/0.62)8]1/+ where g(0) = system with S = 7, /74 = 2 x 10* and M = 1, /74 = 400.

1.38 with the mean current and resistivity pro-

The complex plane measures growth rate and frequency

in units of s 7!
files consistently calculated. For the former

value of S cases corresponding to M = 7, /T4 = 25,400 and 10* were considered for both the
2/1 and 3/2 modes. For the latter value of S values of M were chosen to be 10°,107 and 10° and
were considered only for the 2/1 modes. Low mode numbers are used in most cases since large
wavelength modes are more unstable to linear tearing modes.

For all cases considered the growth rates and eigenfunctions from the linear CUTIE initial
value code were an excellent match to the existing results. When simulated using the resolvent
eigenvalue code the dominant modes were confirmed for all cases considered. In addition the
stable part of the linear spectrum was found, and this can be seen in Figure 2 where the initial
grid used to estimate the eigenvalue location in the complex plane is plotted as a contour, with
the final calculated eigenvalues over-plotted for the case of S =2 x 10% and M = 400 for the 2/1
modes. The eigenfunctions of y for three distinct modes from these results are shown in Figure

3, corresponding to the tearing mode, an Alfvén wave close to marginal stability and a highly
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Figure 3: Eigenfunctions of y for unstable tearing mode (left panel), stable Alfvén wave (middle panel) and highly
stable mode (right panel) in visco-resistive MHD system. The growth rates and frequencies have been normalised

using 4.
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stable mode exhibiting small scale structure.

The Militello eigenvalue code has been successfully tested against analytic results for tearing
modes in cylindrical geometries [5]. For these benchmark simulations using the CUTIE sys-
tem ¢(r) = g(0)[1 4+ 16¢*]'/2 with ¢(0) = 1.0, a = 25cm and R/a = 10, with the equilibrium
current density and resistivity profiles consistently calculated. Viscosity was held fixed at a neg-
ligible amount while resistivity was varied such that 11(0) was varied through several orders of

magnitude, always considering the 2/1 mode.
Tearing mode growth rates

The calculation of the growth rates of the 10T e o
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good agreement is achieved both in the region 1075l , , , , ,
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of very low 1 in which the FKR [6] scaling of Resistivity 7

n3/5 is recovered, and in the region of high

. . Figure 4: Growth rates of dominant tearing modes for dif-
where the effects of cylindrical geometry alter
ferent resistivities from the linear CUTIE code, the resol-

this scaling [5]. Linear eigenspectra and cor- vent eigenvalue code, and the Militello eigenvalue code.
responding eigenfunctions of all modes are A % scaling over-plotted for comparison, and the growth
also recovered from the resolvent code. rate is normalised using 74.
Conclusions

The resolvent eigenvalue code is a powerful technique for revealing the eigenspectra and the
associated eigenfunctions of linear systems, including non self-adjoint systems and in princi-
ple higher dimensional systems involving coupled modes. This is a universal method which
can be robustly applied to a variety of systems since it relies only on the ability to solve the
inhomogeneous system. Here the method has been demonstrated to successfully find the full
eigenspectra of visco-resistive MHD systems in a range of parameter spaces, and future work

aims to shows its application beyond this including drift wave turbulence, ITG turbulence and

curvature effects.
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