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Introduction
The nonlinear, two-fluid, fully electromagnetic, global tokamak plasma turbulence code CUTIE

[1] has consistently reproduced many features of experimental tokamak plasmas, see for exam-

ple [2] and [3], but a full linear investigation of the code has never been undertaken. Simulations

are presented here both using a new linear CUTIE initial value code to calculate the dominant

linear mode, and introducing a new resolvent eigenvalue technique to find the entire linear spec-

trum of unstable, neutral and stable modes present in the same system.By starting with reduced

physical systems it has been possible to benchmark the linear CUTIE code against existing

simulations, beginning with resistive tearing modes using results from both Thyagaraja [4] and

Militello [5]. The full linear eigenspectra and corresponding eigenfunctions of each mode is

revealed for a variety of different conditions. As tearing modes have been extensively investi-

gated, both in slab geometry [6] where growth rate can be shown to depend on resistivity as

γ ∝ η3/5, and in cylindrical geometry, where a more complicated dispersion relation exists [5],

they are particularly suitable for the purposes of benchmarking a numerical code as there are

numerous analytical and numerical results available for comparison.

CUTIE physical model
We do not list the full equations of the nonlinear CUTIE code here and direct the readers

to Refs. [1] and [3]. Instead presented is the first reduced system under consideration, namely

visco-resistive MHD in which the vorticity and electromagnetic potentials are evolved. The

system is based on a periodic cylinder model (r, θ , ζ = z/R) with flux surfaces as concen-

tric circles. All plasma properties are written as a sum of a flux surface averaged mean, e.g.

n0(r, t), depending only on radius which in the linear model are fixed equilibria, and a fluctu-

ating part δn depending on (r, θ , ζ , t). These fluctuations are Fourier expanded as n0 + δn =

∑∞
m=−∞ ∑∞

n=−∞ n̂m,n(r, t)exp(imθ + inζ ) where n0 is the m = n = 0 Fourier component. Using

these conventions and assuming no mean electric field and n0(r) = n0 the standard MHD equa-

tions for an incompressible plasma with isotropic resistivity and viscosity linearise to

Θ = ρ2
s ∇2

⊥φ , (1)

∂Θ
∂ t +VA∇||ρ2

s ∇2
⊥ψ = VAρs

1
r

∂ψ
∂θ

4πρs
cB0

d jo
dr +ν∇2

⊥Θ, (2)
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∂ψ
∂ t +VA∇||φ =

c2η
4π

∇2
⊥ψ. (3)

where Θ, φ and ψ are the fluctuating vorticity, electrostatic potential and magnetic potential

(where the m,n suffix is dropped). The differential operators ∇|| and ∇⊥ act along and perpen-

dicular to the toroidal magnetic field B0, ρs = Vth/ωci is the ratio of the thermal velocity to the

ion cyclotron frequency, VA is the Alfvén velocity, and j0 is the equilibrium current density in

the kink term of Equation 2 which drives the tearing mode. Viscosity and resistivity appear as ν

and η in Equations 2 and 3. It is worth noting that the use of the vorticity-electrostatic potential

relation in Equation 1 prevents the appearance of a fourth order derivative in the viscous term

of Equation 2, which makes the finite differencing of these equations more straightforward.

These PDEs are time evolved for a single value of m and n using the linear CUTIE code

until the mode with the largest growth rate dominates the system. The same system is solved

for single values of m and n using the resolvent eigenvalue technique which we describe in the

following section.

Figure 1: Poles of solution of inhomogeneous visco-
resistive MHD system found by resolvent technique.

The resolvent technique
While the initial value code evolves the

linear CUTIE system in time until only

the dominant linear mode is visible, the

resolvent technique assumes nm,n(r, t) =

ñm,n(r)exp(−iλ t), where λ ∈ C so that ∂
∂ t =

−iλ , and finds the entire spectrum of λ (we

note an analogy here to the Laplace trans-

form). To find λ by using the resolvent method we consider the inhomogeneous system

(L−λ ∗I)x = g (4)

where L is a linear operator derived from the PDEs with delta-function approximated g on the

right hand side. Equation 4 is numerically solved for x as a function of the parameter λ ∗, which

is iteratively improved from an initial guess of a true eigenvalue λ . Using delta-function right

hand sides is crucial since it helps ensure the right hand side vector is not orthogonal to any

eigenvector, and it acts as a Greens function for the system. Starting from our guess λ ∗ we seek

poles of the solution vector to the inhomogeneous system in the complex plane, see Figure 1,

and at each iteration refine λ ∗ closer to the true eigenvalue λ . The technique is analogous to

driving the system at a complex frequency λ ∗ and searching for resonances. Finally, as λ ∗ → λ

the solution vector approaches an eigenvector corresponding to that eigenvalue. This method

is a development of a similar idea used by Thyagaraja et al in [7], and is applicable to a wide
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range of systems whether the full system is self adjoint or not.

Results
The simulations presented here used to benchmark the linear CUTIE code and the resolvent

CUTIE code were based on results from Thyagaraja [4] and Militello [5].

Figure 2: Linear eigenspectrum the visco-resistive MHD
system with S = τη/τA = 2×104 and M = τν/τA = 400.
The complex plane measures growth rate and frequency
in units of s−1.

In comparison with Ref. [4] there are two

main parameter spaces of interest, one a

physically unrealistic regime in which the

Lundqvist number S = τη/τA = 2× 104 and

the other a tokamak-like regime with S =

1 × 107. Here τA = a/VA with a = 100cm,

R/a = 2.5 and VA = 2.17 × 108cm s−1. In

both cases the q-profile was defined to be

q(r) = q(0)[1+ (r/0.6a)8]1/4 where q(0) =
1.38 with the mean current and resistivity pro-

files consistently calculated. For the former

value of S cases corresponding to M = τν/τA = 25,400 and 104 were considered for both the

2/1 and 3/2 modes. For the latter value of S values of M were chosen to be 105,107 and 109 and

were considered only for the 2/1 modes. Low mode numbers are used in most cases since large

wavelength modes are more unstable to linear tearing modes.

For all cases considered the growth rates and eigenfunctions from the linear CUTIE initial

value code were an excellent match to the existing results. When simulated using the resolvent

eigenvalue code the dominant modes were confirmed for all cases considered. In addition the

stable part of the linear spectrum was found, and this can be seen in Figure 2 where the initial

grid used to estimate the eigenvalue location in the complex plane is plotted as a contour, with

the final calculated eigenvalues over-plotted for the case of S = 2×104 and M = 400 for the 2/1

modes. The eigenfunctions of ψ for three distinct modes from these results are shown in Figure

3, corresponding to the tearing mode, an Alfvén wave close to marginal stability and a highly

Figure 3: Eigenfunctions of ψ for unstable tearing mode (left panel), stable Alfvén wave (middle panel) and highly
stable mode (right panel) in visco-resistive MHD system. The growth rates and frequencies have been normalised
using τA.

37th EPS Conference on Plasma Physics D4.514



stable mode exhibiting small scale structure.

The Militello eigenvalue code has been successfully tested against analytic results for tearing

modes in cylindrical geometries [5]. For these benchmark simulations using the CUTIE sys-

tem q(r) = q(0)[1+ 16r4]1/2 with q(0) = 1.0, a = 25cm and R/a = 10, with the equilibrium

current density and resistivity profiles consistently calculated. Viscosity was held fixed at a neg-

ligible amount while resistivity was varied such that η(0) was varied through several orders of

magnitude, always considering the 2/1 mode.

Figure 4: Growth rates of dominant tearing modes for dif-
ferent resistivities from the linear CUTIE code, the resol-
vent eigenvalue code, and the Militello eigenvalue code.
A 3

5 scaling over-plotted for comparison, and the growth
rate is normalised using τA.

The calculation of the growth rates of the

dominant tearing mode is shown in Figure 4

and clearly shows excellent agreement to the

Militello code from both the CUTIE initial

value and resolvent codes. It is notable that

good agreement is achieved both in the region

of very low η in which the FKR [6] scaling of

η3/5 is recovered, and in the region of high η

where the effects of cylindrical geometry alter

this scaling [5]. Linear eigenspectra and cor-

responding eigenfunctions of all modes are

also recovered from the resolvent code.

Conclusions
The resolvent eigenvalue code is a powerful technique for revealing the eigenspectra and the

associated eigenfunctions of linear systems, including non self-adjoint systems and in princi-

ple higher dimensional systems involving coupled modes. This is a universal method which

can be robustly applied to a variety of systems since it relies only on the ability to solve the

inhomogeneous system. Here the method has been demonstrated to successfully find the full

eigenspectra of visco-resistive MHD systems in a range of parameter spaces, and future work

aims to shows its application beyond this including drift wave turbulence, ITG turbulence and

curvature effects.
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