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The Fast Ignition Scenario (FIS) for Inertial Confinement Fusion (ICF) has prompted in re-

cent years many theoretical [7], numerical and experimental works on relativistic beam plasma

instabilities [4]. Due to the density gradient of the pre-compressed target (the center is about

104 denser than the border), the beam-plasma interaction is collisionless near the REB emitting

region, and collisional near the center.

For the collisionless part, it has been established on the one hand that modes propagating per-

pendicularly (or obliquely) to the beam are the fastest growing ones for typical FIS parameters

[2]. The beam is therefore broke-up into finite length filaments, which transverse typical size

is the background plasma skin-depth λp = c/ωp. On the other hand, the unstable transport in

the dense collisional region reveals a qualitatively different picture: the beam is still filamented,

but the typical size of the filaments is now the beam skin-depth λb = c/ωb [3]. Within the FIS

context, this means filaments about 100 times larger than in the collisionless region. The ques-

tion comes immediately as to know how exactly is operated the transition from one regime to

another. Such a bridge is important from the conceptual point of view, and necessary to describe

the beam propagation in the intermediate region.

Some recent work investigated this question for the FIS [1]. In addition, the influence of

partial electronic plasma degeneracy near the pellet core was discarded, at least with respect

to the unstable spectrum. Given the number of effect accounted for, this investigation was re-

stricted to a single set of typical FIS parameters. As a consequence, the transition between the

two regimes was not documented in details. The goal of the present work is to fill this gap,

accounting for a simpler theoretical model and highlighting the transition threshold in terms of

the main variables.

We thus consider a relativistic beam of density nb, velocity vb and Lorentz factor γb =

(1− v2
b/c2)−1/2 passing through a plasma of electronic density np. The plasma electrons are

drifting with velocity vp such as nbvb = npvp and the plasma ionic density ni is such that

ni = nb + np. The return current velocity vp = (nb/np)vp can be considered non-relativistic

since we are not interested in the fully collisionless region where nb ∼ np. Collision-wise, the

electrons from the beam are supposed collisionless due to their large velocity [3]. The terms

collisional/collisionless rather refers to the background electrons. Their collisionality is here

characterized by the plasma electron/ion collision frequency νei.
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The partial degeneracy of the core electrons is neglected, since it has been found that its

role on the unstable spectrum is negligible. Finally, the orientation of the perturbation wave

vector k needs to be arbitrary. While this is a source of significant analytical difficulties, such

framework is necessary if one wishes to capture the most unstable mode. As will be checked,

the fastest growing modes is each regime are usually oblique. An investigation focussing on

the filamentation instability with k ⊥ vb, would thus render improperly the beam response by

bypassing the most relevant modes in this respect.

After the background plasma ions, which are assumed et rest, electrons from the beam and

the plasma share the same continuity equation,

∂n j

∂ t
+∇ · (n jv j) = 0, (1)

where the subscript j = b or p for the beam or the plasma. The Euler equation reads for the

beam electrons,
∂pb

∂ t
+(vb ·∇)pb =−q

(
E+

vb×B
c

)
− ∇Pb

nb
, (2)

and for the plasma ones,

∂vp

∂ t
+(vp ·∇)vp =−

q
m

(
E+

vp×B
c

)
−νvp−

∇Pp

np
. (3)

The beam equation is thus collisionless and relativistic, while the plasma one is non-relativistic

and collisional. The pressure terms are expressed in terms of the temperatures through ∇Pj =

3kBTj∇n j, where kB is the Boltzmann constant. Such an adiabatic treatment demands sub-

relativistic temperatures, a requirement stronger for the beam than for the plasma [6, 5]. Though

lengthy, the derivation of the dispersion equation is quite standard and expressed in terms of the

dimensionless variables,

α =
nb

np
, Z =

kvb

ωp
, β =

vb

c
, τ =

ν
ωp

, ρ j =

√
3kBTj

mv2
b
. (4)

Calculations have been conducted aligning the beam velocity vb with the z axis, and considering

k = (kx,0,kz). Components kz and Zz are therefore the parallel ones, while kx and Zx are the

perpendicular ones.

Figure 1: Growth-rate map in terms of Z.

Figure 1 shows a typical growth-rate map aris-

ing from the numerical resolution of the dispersion

equation. Modes localized around Zx ∼ Zz ∼ 1 are

collisionless ones and produce filaments of trans-

verse size ∼ c/ωp. Note their oblique location, im-

possible to capture if restricting the exploration to
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the main axis. Unstable modes at small Z are col-

lisional ones, as one can check they vanish when

setting ν = 0. The full spectrum is here clearly gov-

erned by these collisional modes. The fastest growing mode is found for Zz = 0.014 and

Zx = 0.11, producing much larger filaments than the collisional modes. The simple relation

between the beam and plasma skin-depths, λb = λp/
√

α shows that their size fits here the beam

skin-depth, as expected when dealing with resistive filamentation [3].

The unstable spectrum is thus clearly divided into two parts: the “lower” collisional spectrum,

and the “upper” collisionless one. Our goal from this junction is two-fold: on the one hand,

studying the evolution of the fastest growing mode (and its growth rate) of each part and on the

other hand, documenting the transition between the two regimes. In view of the vast numbers

of free parameters, we focus on the (τ,α) mapping, choosing for the other variables some

FIS relevant values. We thus explore the parameters space α ∈ [0,10−1], τ ∈ [0,0.5], γb = 4,

ρp = 4.2×10−2 (Tp=1 keV) and ρb = 0.42 (Tb=100 keV).
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Figure 2: Hierarchy map.

While collisionless modes are mitigated by col-

lisions, collisional ones are numerically found to

scale like τ1/3 and α2/3. These τ trends make it

clear that beyond a given collisionality threshold,

collisional modes must surpass collisionless ones.

The resulting partition of the (τ,α) domain is pic-

tured on Figure 2, where the beam trajectory from

the pellet border to the core is superimposed. Insta-

bility wise, the beam clearly starts from the colli-

sionless region to end up in the collisional one. The

upper-spectrum is thus relevant at the beginning while the lower one is more important by the

end.

Figure 3: Zxm component of Zm.

We finally turn to the most unstable wave-vector

analysis. Our goal is mainly to check the size of

the structures generated. To this extent, Figure 3

pictures the perpendicular Zxm components of the

most unstable wave-vector Zm = (Zxm,Zzm. A de-

tailed analysis (not shown) shows that this quantity

Zx scales like α1/2 when Zzm = 0, and α∼1/3 other-

wise. Interestingly, the α1/2 scaling is exactly what
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would be expected following the beam skin-depth

instead of the plasma one. In the oblique collisional

regime, we still witness an increase of the filaments size when decreasing α , but the scaling is

too slow to keep up with the beam skin-depth.

The present theory presents therefore an unified view of the unstable spectrum in terms of

collisionality, and correctly bridges between what was already known about the two regimes.
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