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1. Introduction

We address the impact of small scale magnetic islands on drift wave stability, focusing on the
ion temperature gradient (ITG) mode. The islands modify the density, temperature and flow
profilesin their vicinity, which influences both the structure of the ITG mode, and its growth rate.
These results suggests that very small magnetic islands may be beneficial for confinement by
suppressing turbulent transport near arational surface, and perhaps triggering the formation of an
internal transport barrier there. The following section describes the plasma equilibrium in the
idand’s vicinity, and analyses that equilibrium for stability. Section 3 illustrates some of the 2D
mode structure properties. We provide a reduced model that is anayticaly tractable to interpret

the numerical resultsin terms of a WKB theory. Section 4 provides a summary and conclusions.

2. Equilibrium and I TG stability

Our model is described in detail in Ref [1]; here we reproduce the essential steps. The
equilibrium magnetic geometry is taken to be of the form B =B, Vz+Vy xVz. We expand
about a sheared slab reference state, with y=Box?/Ls with a Maxwellian distribution function that
(spatialy) depends only on x. The coordinates (X, y, 2) are standard Cartesian coordinates. The
magnetic island is introduced as a perturbation to this state, with y = Byx* /L, +y cosK,y. The

island width, w, isthen given by w” = 2yl_/ B, and we consider the islands to be long and thin,

i.e. Kyw<<1l. We evaluate the plasma response to this imposed magnetic perturbation and the
electrostatic perturbation, which must be calculated from the quasi-neutrality constraint. We
work in the frame where the island is stationary, in which case there is an ExB flow around it

associated with areference radia electric field, E, with potential ®y=— Ex. Thisis an input to the
model, parameterised by wg=—eL,E/T.. There are two more contributions to the electrostatic

potential: ¢ isindependent of time and results from the plasma response to the magnetic island,

and a fluctuating piece, g;e““" , represents the ITG mode fluctuations. We linearise with respect

to fluctuating quantities, but retain non-linearities in the time independent quantities.

The electrons are described by an adiabatic response, which is constant on the perturbed flux
surfaces of the island. The new profile is parameterised by the profile function h(y), which
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independent of time and some fluctuating. The fluctuating and time-independent electron and ion
densities must balance independently. Thus, quasineutrality provides two equations. one
determining the equilibrium profiles (i.e. the electrostatic potential) and one determining the
fluctuations and hence stability to the ITG mode. Figure 1 shows the resulting equilibrium

density and flow profiles.

The eigenmode equation for the fluctuating quantities is simplified by assuming long
wavelengths compared to the ion Larmor radius, and treating the sound wave perturbatively:

0% o’k?* [ (@-wks)-(1-Sk .||~
axz{(g—%ks)zx {(Q—wEkS)+(1—S)kn+k =0 1)

Thisisthe same asthat in a standard sheared slab except that the complex mode frequency, Q, is
Doppler-shifted due to the equilibrium flow shear parameterised by S(x,y)=1-0h/ox. There are

also modifications to the diamagnetic frequency due to the influence of the island on the density
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gradient, also described by S. These equilibrium modifications vary on a short length scale ~w.
Note, we have Fourier transformed in the y-direction, introducing the Fourier wave-number, Kk,
normalised to the sound speed gyroradius, ps. Finally n=(1+n;)/t, where t is the ratio of electron
to ion temperatures and n; is the standard ITG stability parameter, proportiona to the ion
temperature gradient. We can convert back to real space through the transformation k—ips0/dy to
deduce the full 2D equation. The growth rate as a function of island width is shown in Fig 2a.
Note that the island suppresses the growth rate compared to the sheared dlab situation. For long,
thin islands the dependence of h on y is weak. We can then consider alocal approximation, and
solve Eq (1) for Q(k,y). Fig 2b is a contour plot showing a peak in the growth rate at k~0.4 and a
value of y corresponding to the island X-point (i.e. where the drive is strongest).

3. Modestructureanalysis

Naively, one might expect the mode to localise around the y-position of maximum instability.
Returning to the 2D calculation again, we plot the full 2D mode structure in Fig 3a. Note that it
isnot in fact localised at the X-point, but half way between X and the O-points. As afirst step to
understanding this, let us try to construct a 2D eigenmode structure localised at the position of
maximum instability. We write ¢=F(x,y)exp(-ifk dy) where the exponential describes the short
wavelength behaviour, which dominates the y variation. The leading order again provides Eq (1)
which is solved to yield Qo(k,y) (Fig 2b). The next order provides the solubility condition that
0Q/0k=0. As Qg is complex, it is generally only stationary for a complex vaue of k. Thisis the
key point. The next order provides a solution for F that is a Gaussian, centred on the most
unstable y-position, y=y, (corresponding to the X-point in our model). Thus, writing k=kg+ik;,
when k=0, this provides the expected mode structure, peaked at y=yo. However, in the more
genera case, one finds that the mode peaks at y=yotki/(25). While this violates our assumption
of a mode localised about
Yo, it does demonstrate that
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isdand and the impact of the profiles on the diamagnetic drift. We retain a modulation of the ion
temperature gradient drive, writing n=no(1-ecosK,y)/(1+¢). Performing the full 2D calculation
for this model, we derive the mode structure shown in Fig 3b. Note that the mode is again not
centred at the position of maximum drive, Kyy=n. The reduced model is analytically tractable.
Thus, adopting an eikonal form, ¢=exp(-ifk dy), results in Eq (1), but with S=0, which can be
easily solved to yidd k(Q,y) as an eigenvalue. Now taking the limit of ng>>1, this equation has

an analytic solution:

__@+ile oot 1
k= \/ﬁ 20m| & +o0+1|+0 773/2 (2)

The solution must be periodic in Kyy, so k is quantised with mode number n>>1 and
Q=—nK,ps(ono/2)**(1-i). Using this in Eq (2) yields k= nK,ps—i(e/4)(c—1+n0(nKyps)?)cosKyy.
Thefirst term is real, representing the short wave-length nature of the mode. The second term is
the small imaginary correction in 1/ne"? and represents the slowly varying envelope in y, that
peaks at Kyy=n/2. This corresponds to the position of the maximum found in the 2D calculations.
4. Conclusions

We have shown that in general, when one has a non-Hermitian system with a complex
eigenvalue, it is not possible to localise the mode around the position of maximum instability.
Thus, ITG modes in the presence of magnetic islands are not localised around the island X-point
where the drive is strongest, but rather haf-way between the positions of maximum and
minimum drive. The eigenmode structure is rather localised in y, and does not exhibit the plane
wave nature of the conventional sheared dlab. Thus, only a fraction of the flux surface is
influenced by the ITG mode when a magnetic island is present. In addition, the growth rate of
the ITG mode is suppressed. The combination of these two effects is expected to dramatically
reduce the level of transport when an island is present. This, in turn, raises the intriguing
possibility that small scale magnetic islands might actually be beneficial for confinement and
may help to establish internal transport barriersin the vicinity of rational surfaces in tokamaks.
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