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Dynamics of two-dimensional turbulence in a pure electron plasma
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Highly magnetised pure electron plasmas confined in Malmberg-Penning traps [1] allow for
the experimental study of two-dimensional (2D) fluid turbulence, when the experimental con-
ditions are such that the cold non-relativistic guiding center approximation is valid. In this case,
the transverse dynamics of the electron plasma column is well described by the drift-Poisson
equations [2, 3], which are isomorphic to the 2D Euler equations for an incompressible, inviscid
fluid, whose vorticity corresponds, up to a constant of proportionality, to the electron plasma
density. The behaviour of freely decaying 2D turbulence in pure electron plasmas has been ex-
tensively studied both by using variational principles (see e.g. Refs. [4, 5, 6]) and by analysing
the time scaling of the vortices present in the flow [7]. More recently, the statistics and dynamics
of 2D turbulence in an electron plasma has been studied with both Fourier transforms [8] and
wavelet analysis [9, 10]. In this work the dynamics of freely decaying 2D turbulence in a pure
electron plasma confined in a Malmberg-Penning trap is studied experimentally by performing
measurements of the axially averaged electron density. The analysis of these data through the
Proper Orthogonal Decomposition (POD) technique [11] allows to extract from the flow the co-
herent structures that are energetically dominant and to identify the main dynamical processes
which drive the time evolution of turbulence.

The experimental data have been obtained in the Malmberg-Penning trap ELTRAP [12]. The
time evolution of the system is investigated through an injection-hold-dump cycle and moni-
tored by means of an optical diagnostic system. After being injected into the device, the elec-
trons are trapped for a given time and then dumped onto a phosphor screen. The light emit-
ted by the screen is collected by a charge-coupled device (CCD) camera, so that the light
intensity measured at a given position on the CCD sensor is proportional to the axially aver-
aged electron density. A 2D image acquired by the CCD provides thus the density distribu-
tion and represents also the vorticity {(x,y,z) of the 2D fluid. The time evolution is studied
by repeating the above described machine cycle several times with fixed injection parameters

and increasing the trapping time. The shot-to-shot reproducibility of initial conditions is very
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Figure 1: Evolution of the plasma density for the analysed sequence. The trapping time is indi-

cated at the top left corner of each frame.

high, as the typical variation of the measured charge at a given position is less than 0.1 %.
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rotating within a diffuse background. for the sequence of Fig. .
The sequence under study consists of

N = 250 frames with a trapping time step of 2 us. The POD expansion of the 2D vorticity
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where @;(x,y) are orthogonal basis functions and a(t) are temporal modal coefficients. The
functions @;(x,y) are eigenfunctions of an eigenvalue equation obtained by imposing that the
average projection of  (x,y,7) onto @;(x,y) is maximised, constrained to the unitary norm [11].
The eigenvalues A ; represent the mean enstrophy of each mode j. As expected, it is found that
the first POD mode j = 0 nearly corresponds to the enstrophy time average, having a much
larger eigenvalue with respect to the other modes and an almost constant modal coefficient.
Since the focus here is on investigating the dynamics of the system, in the rest of the paper only

the modes j > 1 are considered.
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The spectrum of normalised eigenvalues of
POD modes for the vorticity sequence of Fig.
1 is shown in Fig. 2. The normalised eigen-
values represent the fraction of mean enstro-

phy contained in each POD mode. The kink at

Jj = 12 suggests the presence of different dy-

namical regimes described by the modes with

Figure 3: Empirical eigenfunctions of the
Jj<12and j > 12 respectively. The empirical |, qoq j=1and j =9 obtained from the POD

eigenfunctions of the first 12 modes (two of

of the sequence in Fig. 1.
which are shown in Fig. 3) are characterised

by the presence of coherent structures with a size of the order of 5-6 mm, in agreement with
the results of Ref. [10] based on wavelet analysis. The modal coefficients of the modes j < 12
show oscillations dominated by few discrete frequency components between ~ 14 kHz and
~ 84 kHz with a separation of ~ 14 kHz between nearby components. From Fig. 4 it can be
seen, for instance, that the mode j = 1 shows a main oscillation at ~ 56 kHz and the j =9
mode at ~ 84 kHz. The fact that the oscillation frequencies are equally spaced suggests that the

dominant POD modes can be identified with diocotron modes [2].
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Figure 4: Frequency spectra of the modal coefficients a;(t) for the modes j =1 and j =9

obtained from the POD of the sequence in Fig. 1.

In the case of an annular electron layer with constant density, the diocotron eigenfrequencies
can be computed analytically [2]. For the data of Fig. 1 the linearly unstable diocotron modes
are characterised by azimuthal mode numbers / =2,...,7, with [ = 5 being the most unstable, in
agreement with the spatial structure of the first POD eigenfunctions. The frequency separation
between the unstable modes can be estimated to be Av >~ 13.2 kHz, also in agreement with the
POD analysis results. The time behaviour of the modal coefficients indicates that these modes
are active and dominating over the whole evolution of the plasma, that is, both during the initial

onset phase of the instability and the subsequent relaxation of turbulence.
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In conclusion, in the present work the dynamics of 2D turbulence in a pure electron plasma
was studied through the POD technique. A time sequence of 2D fluid vorticity (electron den-
sity) measurements, obtained from an annular initial vorticity distribution, was analysed. The
structure of the eigenfunctions of the POD modes with the major enstrophy content and the
evolution of the corresponding temporal coefficients indicate that these modes are dominated
by the contribution of diocotron modes. This method provides a new dynamical characterisation
of 2D turbulence in a pure electron plasma and can be applied to the analysis of experiments
with different initial conditions.
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