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The problem of a spherical emissive probe immersed in a time-independent low-density
plasma is consider. A fairly general theoretical scenario based on trajectory integration of
the Vlasov equation is formulated and specialized to the particular situation considered
in [Bernstein and Rabinowitz, Physics of Fluids 2, 112 (1959)], however with the addition
of electrons emitted from the probe surface with zero tangential velocity and a waterbag
distribution with respect to the radial velocity. Comparison of the potential profiles for the
emissive and non-emissive cases shows visible differences, thus demonstrating the effect
of electron emission from the probe. Full details can be found in [A. Din, PhD thesis,

Universty of Innsbruck, Austria (March 2010)].

Introduction

We consider a spherical probe immersed in a low-density plasma, assuming time-
independent conditions. We moreover assume that collisions are negligible in the per-
turbed region lying between the probe (radius r,) and the “unperturbed” plasma, the
“plasma-probe transition (PPT)” region (outer radius 7). It is well known that the PPT
region exhibits a space-charge dominated “sheath” region, adjacent to the probe and gov-
erned by Poisson’s equation, and a practically quasi-neutral “presheath plasma” region,
leading over to the unperturbed plasma and well approximated by the quasineutrality
condition (“plasma equation”). According to [1], the presheath plasma region considered
here corresponds to the “geometrical presheath” because the relevant curvature radii are
much smaller than the dominant (i.e., smallest) collisional length.

Accordingly, in our PPT region the species-s velocity distribution function (VDF)

f? (¥, 7) satisfies the Vlasov equation
D
Ef (.I’,U) = 07 (1)

which is formally solved by means of trajectory integration [2]. In a time-independent

situation as the one considered here, eq. (1) states that

f1(@0) = f* (2.5) = £ (T ) 2)
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where (Z,7) is the point under consideration, (%, 5) is any arbitrary point along the

collisionless trajectory passing through (Z,7), and <%st,5st> is the starting point of the
trajectory.

For the spherically symmetric case considered here, the collisionless trajectories are
well known to be characterized by the two constants of motion W (total particle en-
ergy) and J (angular momentum). The total energy can be rewritten in the form
W (r,v,, J) = m*v?/2 + U* (r,J), where U®(r,J) = Z%V (r) + J?>/2m*r? is the “ef-
fective potential energy”, which governs the radial motion of a particle with angular
momentum J. For the particular scenario considered here, the collisionless trajectory
passing through a given phase point (#, 7)) can be of one of the following three types:
(i) trajectories entering the PPT region at the “presheath-entrance surface (PSES)” (i.e.,
at 1,5); (i7) trajectories entering the PPT region at the probe surface (i.e., at r,); and
(i) trajectories confined within the PPT region. In the present case, we consider par-
ticles entering at the PSES and at the probe surface, so the trajectories of types (i)
and (ii) are relevant while in [3] only type-(i) trajectories were considered. Hence from

eq. (2) the ion VDF satisfies f (r,v,,v;) = f*(,0r,01) = figin (Orpss Vups) = fiy s and,

’ ) P i Pps,in
in terms of the constants of motion f* (r,v,,v;) = g, (W, J) with f} W, J)

the incomming-ion VDF. Similarly the emitteds electron VDF reads [ (r,v,,v;) =

foem <\/ml (W —Us (1, J)), =2 ) = fyem (W, J). Both incomming-particle VDFs are

? s
m° Tp

s, in gps,in

assumed to be known at the boundaries.

Number densities of plasma electrons and ions
As in [3], the electrostatic potential V (r) is assumed to be negative at the probe
surface and rises monotonically to V,s at the PSES. The electron density in the PPT

region is approximated by the Boltzmann distribution n® (r) = nf eV (/"

, where ng is
the electron density at the PSES and T is the (constant) electron temperature.
Integrating the ion VDF over velocity space and transforming the integration variables
from (v,,v;) to (W, J), the ion density is found as described in detail in [4, 5]). If in ad-
dition we assume (as in [3]) the VDF of ions incident at the PSES to have a monoenergetic
and isotropic VDF (i.e., gi, ;,, (W, J) = G in (W) = m?nl ;1,0 (W — Wy in) 270/ 2mWps i),

we finally arrive at the following expression for the ion number density

i i ZeV (r ZeV (r Ii

where 7 is the “separating radius” (the regions r < r9 and r > 1 are characterized by

the absence and the presence of reflected ions, respectively) [4, 5].
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Emitted-electron VDF and velocity moments

We assume emission of electrons from the spherical probe surface directed radially

outward, i.e., with zero tangential velocity component:

Fy™ (s ) = gy (vr)

where the radial part is assumed to be a “waterbag” distribution and the delta function

is normalized to 1. The emitted-electron number density, fluid velocity and radial effec-

2
tive temperature at some arbitrary radius r are found to be n®*" (r) = n;’em:—g%,
P

e 2
ueem (r) = M and Te™ (r) = ™ gg}:;r) , respectively.

By appropriately combining these emitted-electron velocity moments and introducing

normalized quantities as defined in [4], we get the normalized emitted-electron density

_ T 2
1) =1 o
1—V*(F) [V1 = are + aze? + VI + aie + aze?]
whete & = \/Tp" Jagen, V*(r) = V(1) = Vy/ (™), on o= V6/1 = V* (r) and

Qg = 3/{2 [1—17*(70)}}.

With the normalized quantities of [4], the normalized form of Poisson’s equation reads

1d [ ,dv 1 Zv - Zv I
S|P = 3 1+ — +sgn (7 —7) |14+ = B
rear T Wps,in Wps,in Wps,inf2
~ Feem 72 3 Te,em 2+ “N/* (f))
e (6)

ol L el ]

where the last term on RHS is the emitted-electron density in the small emission-temperature
approximation (i.e., for ¢ << 1), which yields the cold-emitted-electron density for
T 5™ — 0. Equation (6) is to be solved for given Wps,ina I, ny™, T;’em, fﬁ. The above
definition of 7y implies the two conditions

ZV (7o) I d ZV (7) I

= — O, f ]. + =~ - — — 0, (7)
Wps,in \/ Wps,inf(% " Wps,in \/ Wps,in":Z -
)

which for given 7 yield V (7o) and V' (79). The correct value of 7y will be determined
by applying as a third condition, the “matching condition” using the analytic-numerical

1+

procedure developed in [4].
Calculating the potential profile

Upon setting the RHS of eq. (6) equal to zero and rearranging terms we obtain, inde-

pendently of the value of sgn(r — rg), the quasineutrality condition (“plasma equation”)
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[5], the solution of which, 17(;:” (7), is shown in fig. 1 for two cases. By using our analytic-
numerical procedure [4] we find 7y and 7, (the radius where the sheath and plasma
solutions match in an optimum manner) for the emissive case. Using this value of 7y we
calculate the values V() and V'(7) via egs. (7). Then, using these as initial conditions,
we integrate the Poisson’s equation (eq. (6)) numerically with sgn(7 — 79) = —1 to obtain

the potential curves as shown in fig. 2.
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Fig 1: Vo™ for i®e™ = 0.2, I = 320, Fig 2: V5"~ for i®“™ = 0.2, I = 320,
W = 0.1 with ‘Z;f (solid line) W = 0.1 with %;"e (solid line)
Conclusion

We have developed a very general theoretical framework for spherical probes in low-
density plasmas, accounting for particles from the probe, from the plasma and trapped.
This framework has been specialized to [3], with addition of waterbag-distributed emitted
electrons from the probe surface. To our knowledge, this is the first attempt at developing
a kinetic theory of the emissive spherical probe. Our first results show that emitted
electrons may have a visible effect on the potential profile.
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