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The problem of a spherical emissive probe immersed in a time-independent low-density

plasma is consider. A fairly general theoretical scenario based on trajectory integration of

the Vlasov equation is formulated and specialized to the particular situation considered

in [Bernstein and Rabinowitz, Physics of Fluids 2, 112 (1959)], however with the addition

of electrons emitted from the probe surface with zero tangential velocity and a waterbag

distribution with respect to the radial velocity. Comparison of the potential pro�les for the

emissive and non-emissive cases shows visible di¤erences, thus demonstrating the e¤ect

of electron emission from the probe. Full details can be found in [A. Din, PhD thesis,

Universty of Innsbruck, Austria (March 2010)].

Introduction

We consider a spherical probe immersed in a low-density plasma, assuming time-

independent conditions. We moreover assume that collisions are negligible in the per-

turbed region lying between the probe (radius rp) and the �unperturbed� plasma, the

�plasma-probe transition (PPT)�region (outer radius rps). It is well known that the PPT

region exhibits a space-charge dominated �sheath�region, adjacent to the probe and gov-

erned by Poisson�s equation, and a practically quasi-neutral �presheath plasma�region,

leading over to the unperturbed plasma and well approximated by the quasineutrality

condition (�plasma equation�). According to [1], the presheath plasma region considered

here corresponds to the �geometrical presheath�because the relevant curvature radii are

much smaller than the dominant (i.e., smallest) collisional length.

Accordingly, in our PPT region the species-s velocity distribution function (VDF)

f s (~x;~v) satis�es the Vlasov equation

Ds

Dt
f s (~x;~v) = 0; (1)

which is formally solved by means of trajectory integration [2]. In a time-independent

situation as the one considered here, eq. (1) states that

f s (~x;~v) = f s
�b~x;b~v� = f s �b~xst;b~vst� ; (2)
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where (~x;~v) is the point under consideration,
�b~x;b~v� is any arbitrary point along the

collisionless trajectory passing through (~x;~v), and
�b~xst;b~vst� is the starting point of the

trajectory.

For the spherically symmetric case considered here, the collisionless trajectories are

well known to be characterized by the two constants of motion W (total particle en-

ergy) and J (angular momentum). The total energy can be rewritten in the form

W (r; vr; J) = msv2r=2 + U
s (r; J) ; where U s (r; J) = ZseV (r) + J2=2msr2 is the �ef-

fective potential energy�, which governs the radial motion of a particle with angular

momentum J . For the particular scenario considered here, the collisionless trajectory

passing through a given phase point (~x;~v) can be of one of the following three types:

(i) trajectories entering the PPT region at the �presheath-entrance surface (PSES)�(i.e.,

at rps); (ii) trajectories entering the PPT region at the probe surface (i.e., at rp); and

(iii) trajectories con�ned within the PPT region. In the present case, we consider par-

ticles entering at the PSES and at the probe surface, so the trajectories of types (i)

and (ii) are relevant while in [3] only type-(i) trajectories were considered. Hence from

eq. (2) the ion VDF satis�es f i (r; vr; vt) = f i (r̂; v̂r; v̂t) = f ips;in (v̂r;ps; v̂t;ps) =: f̂
i
ps;in and,

in terms of the constants of motion f i (r; vr; vt) = gips;in (W;J) with f
i
ps;in = g

i
ps;in (W;J)

the incomming-ion VDF: Similarly the emitteds electron VDF reads f e;em (r; vr; vt) =

f e;emp

�q
2
ms (W � U s (rp; J)); J

ms rp

�
= f s;emp (W;J) : Both incomming-particle VDFs are

assumed to be known at the boundaries.

Number densities of plasma electrons and ions

As in [3], the electrostatic potential V (r) is assumed to be negative at the probe

surface and rises monotonically to Vps at the PSES. The electron density in the PPT

region is approximated by the Boltzmann distribution ne (r) = nepse
eV (r)=kT e, where neps is

the electron density at the PSES and T e is the (constant) electron temperature.

Integrating the ion VDF over velocity space and transforming the integration variables

from (vr; vt) to (W;J) ; the ion density is found as described in detail in [4, 5]). If in ad-

dition we assume (as in [3]) the VDF of ions incident at the PSES to have a monoenergetic

and isotropic VDF (i.e., gips;in (W;J)! Gps;in (W ) = m
2nips;in� (W �Wps;in) =2�

p
2mWps;in),

we �nally arrive at the following expression for the ion number density

ni (r) = nips;in

(s
1� ZeV (r)

Wps;in

+ sgn (r � r0)

s
1� ZeV (r)

Wps;in

� jI
i
totj
Ir

)
; (3)

where r0 is the �separating radius�(the regions r < r0 and r > r0 are characterized by

the absence and the presence of re�ected ions, respectively) [4, 5].
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Emitted-electron VDF and velocity moments

We assume emission of electrons from the spherical probe surface directed radially

outward, i.e., with zero tangential velocity component:

f e;emp (vr; vt) := g
e;em
p (vr)

� (vt)

2�vt
= B�(vr � v1p)� (v2p � vr)

� (vt)

2�vt
; (4)

where the radial part is assumed to be a �waterbag�distribution and the delta function

is normalized to 1. The emitted-electron number density, �uid velocity and radial e¤ec-

tive temperature at some arbitrary radius r are found to be ne;em (r) = ne;emp
r2p
r2
(�vr)(r)
(�v)p

;

ue;em (r) = vr1(r)+vr2(r)
2

and T e;emr (r) = me(�vr)
2

12k
; respectively.

By appropriately combining these emitted-electron velocity moments and introducing

normalized quantities as de�ned in [4], we get the normalized emitted-electron density

~ne;em (~r) = ~ne;emp

~r2p
~r2

2q
1� ~V � (~r)

�p
1� �1"+ �2"2 +

p
1 + �1"+ �2"2

� ; (5)

where " :=
q
~T e;emp =~ue;emp ; ~V � (r) := ~V (~r) � ~Vp=

�
~ue;emp

�2
; �1 :=

p
6=1 � ~V � (r) and

�2 := 3=
n
2
h
1� ~V � (r)

io
:

With the normalized quantities of [4], the normalized form of Poisson�s equation reads

1

~r2
d

d~r

"
~r2
d ~V

d~r

#
=

1

2

264
s
1 +

Z ~V
~Wps;in

+ sgn (~r � ~r0)

vuut1 + Z ~V
~Wps;in

�
~Iq

~Wps;in~r2

375
�e� ~V �

~ne;empr
1 +

��� ~V � (~r)���
~r2p
~r2

2641� 3
4

~T e;emp

(~ue;emp )2

2 +
��� ~V � (~r)����

1 +
��� ~V � (~r)����2

375 ; (6)

where the last term on RHS is the emitted-electron density in the small emission-temperature

approximation (i.e., for " << 1), which yields the cold-emitted-electron density for

~T e;emp ! 0: Equation (6) is to be solved for given ~Wps;in; ~I; ~n
e;em
p ; ~T e;emp ; ~r2p: The above

de�nition of ~r0 implies the two conditions

1 +
Z ~V (~r0)
~Wps;in

�
~Iq

~Wps;in~r20

= 0;

24 d
d~r

0@1 + Z ~V (~r)
~Wps;in

�
~Iq

~Wps;in~r2

1A35
~r0

= 0; (7)

which for given ~r0 yield ~V (~r0) and ~V
0
(~r0). The correct value of ~r0 will be determined

by applying as a third condition, the �matching condition�using the analytic-numerical

procedure developed in [4].
Calculating the potential pro�le

Upon setting the RHS of eq. (6) equal to zero and rearranging terms we obtain, inde-

pendently of the value of sgn(r � r0) ; the quasineutrality condition (�plasma equation�)
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[5], the solution of which, ~V emqn (~r) ; is shown in �g. 1 for two cases. By using our analytic-

numerical procedure [4] we �nd ~r0 and ~rmtch (the radius where the sheath and plasma

solutions match in an optimum manner) for the emissive case. Using this value of ~r0 we

calculate the values ~V(~r0) and ~V
0
(~r0) via eqs. (7). Then, using these as initial conditions,

we integrate the Poisson�s equation (eq. (6)) numerically with sgn(~r � ~r0) = �1 to obtain
the potential curves as shown in �g. 2.

14 15 16 17 18 19
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig 1: ~V emqn for ~ne;em = 0:2; ~I = 320;

~W = 0:1 with ~V neqn (solid line)
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Fig 2: ~V em�sh for ~ne;em = 0:2; ~I = 320;

~W = 0:1 with ~V �neqn (solid line)

Conclusion
We have developed a very general theoretical framework for spherical probes in low-

density plasmas, accounting for particles from the probe, from the plasma and trapped.

This framework has been specialized to [3], with addition of waterbag-distributed emitted

electrons from the probe surface. To our knowledge, this is the �rst attempt at developing

a kinetic theory of the emissive spherical probe. Our �rst results show that emitted

electrons may have a visible e¤ect on the potential pro�le.
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