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I. Introduction 
In recent years the physics of the interactions of dust grains with plasmas was studied intensively 
both experimentally and theoretically [1-8]. However, practically all theoretical studies (with few 
exceptions [9-13]) assume that dust grain is made of homogeneous material and have spherical 
shape. Meanwhile in many cases (e.g. in fusion plasmas [4, 6]) the material dust grain is made of 
can be inhomogeneous and the shape of the grain can be far from spherical. These features can 
significantly alter the very basic properties of grain-plasma interactions and result in new 
phenomena [14, 15]. In this report we follow Ref. 14, 15 and consider an impact of grain shape on 
grain dynamics in plasma ignoring the effects of the inhomogeneity of dust material.  
 
II. Equations 
Consider a grain immersed into homogeneous plasma flowing with velocity   

€ 

 
U . The dynamics of 

the grain, which we assume to be a rigid body, is completely described by 6D equations dealing 
with the motion of the centre of mass of the grain and grain spinning (e.g. see Ref. 16) 

  

€ 

m d
 
V 

dt
=
 
F ,  (1)   

  

€ 

d
 
M 
dt

=
 
K ,   (2) 

where m is the mass of the grain,   

€ 

 
V  is the velocity of the grain centre of mass,   

€ 

 
M  is the grain 

angular momentum calculated in the frame of the grain centre of mass, 

€ 

Mα = IαβΩβ , 

€ 

Iαβ is the 

inertia tensor,   

€ 

 
Ω  is the angular velocity of the grain,   

€ 

 
F  and   

€ 

 
K  are, respectively, the force and 

torque, calculated in the frame of the grain centre of mass, which are imposed on the grain from 
plasma. In the absence of magnetic field, and the effects associated with asymmetric properties of 
grain material, which can lead to both forces and torques discussed in the Introduction (e.g. 
“rocket” force), the direction of vectors   

€ 

 
F  and   

€ 

 
K  can only depend on the spatial orientation of the 

grain with respect to the vectors   

€ 

 
W =

 
U −
 
V  and   

€ 

 
Ω . Moreover in this case both   

€ 

 
F  and   

€ 

 
K  vanish 

if   

€ 

 
W =

 
Ω = 0.  
In many applications dust grain spins rather slowly so that 

€ 

|Ω | τch <<1, where 

€ 

τch  is 
the characteristic charging time. We notice that for example in fusion plasmas 

€ 

τch ~ 10
−9s [6] 

and inequality 

€ 

|Ω | τch <<1 holds in a large range of the magnitude of angular velocity. For this 
case, both charging processes and the forces imposed on the grain by plasma can be considered in 
a quasi-stationary approximation. Then for subsonic relative speed W we can keep only linear 
dependence of both   

€ 

 
F  and   

€ 

 
K  on   

€ 

 
W  and   

€ 

 
Ω . Moreover, if the grain shape does not have intrinsic 

propeller-like properties, the directions of both   

€ 

 
F  and   

€ 

 
K  reverse with reversing directions of   

€ 

 
W  

and   

€ 

 
Ω . As a result, under these assumptions, we can write the expressions for   

€ 

 
F  and   

€ 

 
K  as 

follows 

€ 

Fα =Φαβ
(W)Wβ +Φαβ

(Ω)Ωβ, (3) 

€ 

Kα = Tαβ
(W)Wβ + Tαβ

(Ω)Ωβ ,  (4) 
where the tensors 

€ 

Φαβ and 

€ 

Tαβ  are determined only by the shape of the grain and plasma 
parameters. The physical meaning of the terms in Eq. () is rather transparent. In Eq. (3) the first 
term describes the generalized drug force, which for non-spherical grain shape is not necessarily 
aligned with vector   

€ 

 
W , the second term describes the force caused by the interactions of the 

spinning of non-spherical grain with plasma. In Eq. (4) the first term describes the torque imposed 
on non-spherical grain by relative velocity of plasma and grain, and, finally, the second term 
describes the relaxation of grain spinning due to grain-plasma interactions.   
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 In general case the calculation of the tensors 

€ 

Φαβ and 

€ 

Tαβ  is only possible numerically. 
However, for the grains having rather simple shapes the structure of these tensors can be found 
just from geometrical arguments. One of such examples will be considered in next section.  
  
II. Dynamics of rotationally symmetrical grain in plasma 
Here we consider the main features of the dynamics of the grain having rotationally symmetrical, 
around some axis, properties (e.g. mass density, shape, etc.). In this case spatial orientation of the 
grain can be characterized by unit vector   

€ 

 
D , which is directed along symmetry axis (see Fig. 1).  

We note that   

€ 

 
F ,   

€ 

 
W , and   

€ 

 
D  are the vectors, while 

  

€ 

 
M ,   

€ 

 
K  and   

€ 

 
Ω  are the pseudo-vectors. Therefore, 

€ 

Φαβ
(W)  and 

€ 

Tαβ
(Ω) should be tensors, while 

€ 

Φαβ
(Ω)  and 

€ 

Tαβ
(W)  should be pseudo-tensors. However, rigid 

body with rotationally symmetrical properties can 
only be characterized by the second-order tensors, 
which in the frame of principal axes of inertia have 

diagonal form with two equal components associated with the axes perpendicular to the axis of 
rotational symmetry. As a result, they can be expressed in terms of tensors 

€ 

δαβ and 

€ 

DαDβ, 
where 

€ 

δαβ is the Kronecker delta. On the other hand, rigid body with rotationally symmetry can 
only be characterized by second-order pseudo-tensor 

€ 

εαβγDγ , where 

€ 

εαβγ  is the Levi-Civita 

symbol. Therefore the tensors 

€ 

Φαβ
(W) , 

€ 

Tαβ
(Ω), 

€ 

Φαβ
(Ω), and 

€ 

Tαβ
(W)  can be expressed as follows 

 

€ 

Φαβ
(W) =Φ1

(W)δαβ +Φ2
(W)DαDβ,      (5) 

 

€ 

Tαβ
(Ω) = T1

(Ω)δαβ + T2
(Ω)DαDβ,      (6) 

 

€ 

Φαβ
(Ω) =Φ(Ω)εαβγDγ ,        (7) 

 

€ 

Tαβ
(W) = T(W)εαβγDγ ,        (8) 

where the scalars 

€ 

Φ1
(W) , 

€ 

Φ2
(W) , 

€ 

T1
(Ω), 

€ 

T2
(Ω), 

€ 

Φ(Ω) , and 

€ 

T(W)  are determined by particular 
properties of the grain and plasma parameters.  
 As a result, the equations (1, 2) can be written as follows [14, 15] 

  

€ 

m d
 
V 

dt
=Φ1

(W)  W +Φ2
(W)  D 

 
D ⋅
 

W ( ) +Φ(Ω)  Ω ×
 
D ( ) ,    (9) 

  

€ 

d
 
M 
dt

= T(W)  W ×
 
D ( ) + T1

(Ω)  Ω + T2
(Ω)  D 

 
D ⋅
 
Ω ( ) .    (10) 

 Although to calculate the scalars 

€ 

Φ1
(W) , 

€ 

Φ2
(W) , 

€ 

T1
(Ω), 

€ 

T2
(Ω), 

€ 

Φ(Ω) , and 

€ 

T(W)  in Eq. (9, 
10) for a non-spherical grains is still possible only numerically, we, nevertheless, can make some 
evaluation of their magnitudes. First, we take into account that the magnitude of the force on the 
grain from plasma can be estimated as, 

€ 

Fest ~ ξFπR2nTW /Cs ≡ ˆ F W  (e.g. see Ref. 15), where 
n and T are the plasma density and temperature, R is the effective size of the grain, 

€ 

Cs is the 
plasma sound speed, and 

€ 

ξF ~ 10  is the form-factor depending on the ratio of the Debye length 
to the grain size. Second, due to grain spinning, there is differential speed of different grain parts 
and plasma with the magnitude 

€ 

δW ~ RΩ , which cause corresponding forces. Therefore, 
assuming that the grain centre of mass is displaced from the centre of force at the distance ~R we 
find: 

€ 

Φ1
(W) ~ Φ2

(W) ~ ˆ F , 

€ 

Φ(Ω) ~ ˆ F R , 

€ 

T(W) ~ ˆ F R , and 

€ 

T1
(Ω) ~ T2

(Ω) ~ ˆ F R2 . Taking these 
estimates into account we find the effective slowing down frequency, 

€ 

νΩ , of grain spinning due 
to plasma-grain interactions, which is described by the second and third terms on the right-hand 
side of Eq. (10) can be estimated as 

Dplasma flow

U

grain

 
Fig. 1. 
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€ 

νΩ ~ T1
(Ω) /I ~ T2

(Ω) /I ~ ˆ F R2 /I ~ ξFn TMi /Rρ,    (11) 

where 

€ 

ρ  is the mass density of grain material, 

€ 

I ~ ρR5 is the grain moment of inertia, and 

€ 

Mi is 
the plasma ion mass. For a micron-size grain of mass density 

€ 

ρ ~ 2 g /cm3 and plasma 
parameters typical for the edge of fusion devices 

€ 

n ~ 3×1013cm−3 , T~10 eV (e.g. see Ref. 4, 6 
and the reference therein) we find 

€ 

νΩ ~ 10 s
−1. Thus, in fusion plasmas, slowing down of grain 

spinning occurs on the time-scale much larger than the life-time of the grain 

€ 

τlt ~ 10
−2 s  (e.g. 

see Ref. 20) and, therefore, can be neglected. On the other hand, rotation of the grain over angle 
~π, caused by the torque associated with plasma flow, requires time 

€ 

τπ ~ πI
ˆ F RW

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1/2

~ πρR2

ξFn TMiW

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/2

.     (12) 

For the same plasma parameters and grain size as before and rather typical speed 

€ 

W ~ 0.1×Cs, 
from Eq. (12) we find 

€ 

τπ ~ 10
−5s << τlt . So that the impact of torque should be taken into 

account. 
 In fusion plasma the grain speed reached few hundred meters per second [6], which 
usually is much smaller than the speed of plasma flow 

€ 

U ˜ > 0.1×Cs ~ 3×105cm/s . Therefore in 
Eq. (9, 10) we can approximate   

€ 

 
W ≈

 
U . As a result, the equations for grain centre mass velocity 

and angular momentum in fusion plasma become decoupled 

  

€ 

m d
 
V 

dt
=Φ1

(W)  U +Φ2
(W)  D 

 
D ⋅
 
U ( ) +Φ(Ω)  Ω ×

 
D ( ) ,    (13) 

  

€ 

d
 
M 
dt

= T(W)  U ×
 
D ( ) .        (14) 

We note that in Eq. (14) we neglected the terms describing slowing down of grain spinning due to 
grain-plasma interactions. Directing unit vector   

€ 

 e z  of the coordinate Z along plasma flow 
velocity   

€ 

 
U  we find that Eq. (14) becomes identical to the equations describing the motion of 

symmetrical top with fixed lowest point in effective the gravity field such that   

€ 

m g = −T(W)  U , 
where   

€ 

  is the distance from the top’s lowest point to the top’s centre of mass (e.g. see Ref. 16). 
However, since Eq. (14) is written in the frame of the grain center of mass and not in the frame of 
top’s lowest point, as in Ref. 16, the moment of inertia   

€ 

ʹ′ I 1 = I1 + m2 in the calculations in Ref. 
16 should be replaced with 

€ 

I1, which is the principal moment of inertia in the frame of the grain 
center of mass calculated with respect to the axis perpendicular to the axis of rotational symmetry 
of the grain.  
 From the solution of the problem of the motion of heavy symmetric top [16] we find that 
the vector   

€ 

 
D , characterizing the grain orientation, will experience both precession around vector 

  

€ 

 
U  and nutation. For a simple case, corresponding to so-called “fast” top, the precession angular 
velocity 

€ 

Ωpr  is much larger than nutation angular velocity and equals to 

   

€ 

 
Ω pr = T(W)  U cosα /M ,       (15) 

where M is the magnitude of total angular momentum and 

€ 

α  is the angle between grain angular 
momentum and the axis of grain rotational symmetry, which determines the “nutation cone”. For 

€ 

α <<1, averaging Eq. (13) over fast nutation and using Eq. (15) we find 

  

€ 

m d
 
V 

dt
=Φ1

(W)  U +Φ2
(W)  D 

 
D ⋅
 
U ( ) +

Φ(Ω)T(W)

M
 
U ×
 
D ( ) ,   (16) 

where the vector   

€ 

 
D  precesses around vector   

€ 

 
U  with angular velocity 

€ 

Ωpr . As we see from Eq. 
(16) both second and third terms on the right hand side will cause the oscillation of grain 
trajectory in the direction perpendicular to the plasma velocity.  
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To estimate the amplitude of the trajectory oscillation and relative contributions to it of 
second and third terms in Eq. (16) we note that the “fast” top approximation is valid when 

€ 

Ωpr  is 
much smaller than the angular velocity of grain spinning around the axis of symmetry, 

€ 

Ω0 . Then 
estimating M as 

€ 

IΩ0 , using the expression (15), and the estimates for 

€ 

Φ2
(W) , 

€ 

Φ(Ω) , 

€ 

T(W) , and 

€ 

ˆ F  we find that the “fast” top approximation is valid for  

 

€ 

Ω0 >> T(W)U /I( )
1/2

≡ ΩU ~
πξFnMi

ρ
UCs
R2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/2
,    (17) 

and the second term dominates for plasma speed such that 

€ 

U /Cs >> ξFnMi /ρ ~ 10
−10 , which, 

in practice, always occurs (we notice that for plasma and grain parameters discussed before 

€ 

ΩU ~ 1s
−1).  As a result, the magnitude of the trajectory oscillation, 

€ 

Δ , can be estimated as 

 

€ 

Δ ~ Φ
(W)

mU
IΩ0
T(W)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2
~ ρ
πξFnMi

Ω0
2R2

UCs
.     (18) 

From Eq. (18) it follows that 

€ 

Δ ˜ > 1cm, which can be observed in fusion plasmas with fast 
cameras, can be reached for 

€ 

Ω0 ˜ > 3×104 s−1, which, however, is well within the limits of 
approximation made while deriving the equations (13, 14).  
  
IV. Conclusions 
We perform the analysis of the dynamics of non-spherical dust grain in plasma. Starting with very 
general principals we derive the equations of motion of non-spherical grain (which, however, 
does not have propeller-like properties, does not exhibit “rocket” force effects, etc.) immersed in a 
subsonic plasma flow assuming that the grain spins relatively slow and spinning does not alter 
grain charging processes. We find that in this case the dynamics of the grain is determined by 
some tensors, which depend on plasma parameters and grain properties (including shape and mass 
density distribution). For the grain with rotationally symmetric properties we find the structure 
and evaluate the magnitude of the components of these tensors. We demonstrate that the 
dynamics of rotationally symmetric grain spinning is equivalent to the motion of symmetric top in 
the gravity field. We show that the precession of the grain axis can result in significant 
oscillations of grain trajectory in the direction normal to plasma velocity. 
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