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Introduction

Geodesic acoustic modes (GAMs) can be a significant agent controlling and modulating the

turbulence in the edge. This has been shown by turbulence simulations [1, 2, 3] and possibly

recently by experiments [4, 5]. The proximity of the plasma boundary causes the rather short

gradient lengths typical for the edge, comparable to the ambient turbulence and GAM scale

lengths. Since there is no clear scale separation between fluctuations and background, the back-

ground can not be taken as infinitely large and immovable, i.e., the Boussinesq approximation

breaks down. This breakdown is described by the local ratio of turbulence to background gra-

dient scale lengthsλ−1 = L⊥/Ln ∝ ρ∗ = ρs/R, with the turbulence scale lengthL⊥, whereby

λ ∼ 5−50 for typical edge scenarios. The rapid change of the parameters – in particular that

of the sound speed being proportional to the linear GAM frequency – renders the radial inter-

action of the GAMs on neighbouring flux surface [6, 7] quite important, and raises the question

in what spatial pattern the GAMs will organize themselves. This could involve reflection lay-

ers exhibiting a peaking of the GAMs, radial propagation of GAM energy away from turbulent

regions generating it, or nonlinear changes of the GAM dispersion relation.

Several different turbulence scenarios have been examinednumerically with the NLET code

[3] using two-fluid electrostatic Braginskii equations withmodified parallel heat conduction

coefficient implementing a collisionless heat flux limit. The magnetic geometry was represented

for this study by simples−α geometry.

Slow parameter variation — λ ∼ 200

Fig. 1 shows a typical case of GAMs being excited by high gradient ITG modes in case of still

relatively slow parameter variation. From the flow pattern (a) it is obvious that the oscillation

frequency decreases towards the edge, which is due to the decreasing sound speed, otherwise

apparently rather unaffected by the parameter variation. As is seen in Boussinesq simulations

[1], the GAMs are excited with a preferred radial wavenumber, which together with the linear

GAM frequency sets the observed inward and outward phase velocities. The Fourier transform

of the poloidal flow velocity with respect to time (b) revealsthat the frequency depends con-

tinuously on the spatial variable. An asymmetry is however conspicuous in the spectrum: there

is an amplitude of the GAMs of a particular frequency even at somewhat larger radii than the

37th EPS Conference on Plasma Physics O4.114



(a)

(b)

(c)

Figure 1: (a) GAM poloidal flow velocity for linear density and temperature profile,ηi =

Ln/LT = 2.4,εn = .05,αd = 0.5 (for definitions see [3]).fGAM,0 is the GAM frequency atr = 0.

(b) Radial dependence of frequency spectrum; linear GAM frequency (blue line). Note the

GAM activity at x = 300ρs at 140% of the linear frequency. (c) Filtered component atf =

1.02fGAM,0; fit with r(t) = α(t − t0)2/3 (black),r ∝ (t − t0)1/2 (green),r ∝ (t − t0)4/5 (yellow).

one corresponding to their linear frequency (blue line), but not the other way round. The GAMs

radiate outward from a given radius. The cause for this effect can be gleaned by transforming

selectively one frequency of the Fourier representation into real space, as shown in (c). The

particular GAM is seen to correspond to a wave travelling inward (to lower radii) and being

reflected by the surface corresponding tokr = 0. This can be comfirmed by comparison of the

shape of the waves close to the reflection with the one obtained from a generic GAM dispersion

relation. We approximate the GAM dispersion relation closeto kr = 0 by

ωGAM(r,kr) = ωGAM(r,0)(1+αk2
r ) = γcs(r)(1+αk2

r ), (1)
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whereγ is the geometry dependent ratio of GAM frequency and sound speed andα sets the

strength of the dispersion (the linear term has to vanish forsymmetry reasons). (As it turns out

α is much larger than expected from the linear dispersion.) Since the frequency is fixed in Fig. 1

(b), one obtains from a WKB argument

kr =

√(
ωGAM

γcs(r)
−1

)
/α ≈

√
∂rωGAM

αωGAM(r0,0)
(r0− r), (2)

with cut-off/reflection occuring atr0 with ωGAM,0 = γcs(r0). Any curver(t) of constant phase

has to follow the equation

r′∂rφ = ∂tφ ⇒ r′kr(r) = ωGAM ⇒ r′
√
(∂rωGAM/(αωGAM,0))(r0− r) = ωGAM (3)

⇒ 2
3

√
−∂rωGAM/(αωGAM,0)(r(t)− r0)

3/2 = ωGAM(t − t0) (4)

⇐⇒ r(t) = r0+

[
−9αω3

GAM(t − t0)2

4∂rωGAM

]1/3

. (5)

The predicted curve of formr(t) = r0+ c(t − t0)2/3 has been fitted to one of the wave fronts in

(c). A slightly different exponent results already in a misfit, corroborating the correctness of the

ansatz (1) for the nonlinear dispersion relation. The dispersion coefficientα ≈ 100ρ2
s extracted

from the fit is much larger than expected from linear GAM dispersion relations (∼ ρ2
s ) – it is

thus a predominantly nonlinear effect. (The sign ofα depends on the turbulence parameters.

E.g., for higherηi ∼ 5 and otherwise identical parameters, the reflection scenario of the GAMs

turns out to be exactly reversed.) The correspondingnonlinear group velocity of the GAMs

selected by the turbulence of order 4ρsωGAM is even significantly larger than the maximum

curvature drift velocitiesvd ∼ ρscs/R which limit the linear group velocity of the GAMs [6, 7].

In other words, the GAM frequency in the presence of turbulence differs from the linear GAM

frequency by a factor 1+αk2
r (∼ 30% here), whereby, owing to the observed reflection layers,

the actualkr will depend also on the radial profile of the sound speed.

Strong parameter variation — λ ≤ 50

For sufficiently strong parameter variation, the GAMs may begenerated only in a part of the

computational domain, as shown in Fig. 2 forλ = 50. The GAMs radiate outward from the

generation region atr ∼ 0, maintaining their frequency, which indicates a radial energy transfer.

The short radial decay length prohibits the straighforwardapplication of the WKB method. The

phase velocity is nevertheless directed outward from the point where the GAMs are generated,

i.e., in the direction of the energy flow. The fact that phase velocity and energy flow point in

the same direction is again consistent with (1) for positiveα. In contrast to the case of weak

37th EPS Conference on Plasma Physics O4.114



Figure 2: GAM poloidal flow for strong parameter variation. Parameters at centerλ = 50,ηi =

2.5,εn = 0.3 (for details see [3] fig. 1b).

parameter variation in the preceding section, the GAMs are damped by the turbulence away

from the generation region and can therefore not propagate significant distances.

Summary

In the presence of non-Boussinesq effects, i.e., a significant parameter variation on turbu-

lence scale lengths, the turbulent modifications of the dispersion relation of the GAMs become

important, completely dominate linear dispersive effectsand greatly increase the radial group

velocities. In the case of an extended region of GAM generating turbulence, propagation of

the GAMs rather far away from the point of their base frequency can be observed. In the op-

posite case only a weak propagation into regions where GAMs are damped occurs. The fact

that the turbulence nonlinearly modifies the GAM dispersionrelation, can lead to the set-up

of completely nonlinear reflection and absorption layers. This allows for complex global mode

structures, depending on the variation of the turbulence parameters.
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