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Non-Boussinesq properties of Zonal Flows and GAMs
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Introduction

Geodesic acoustic modes (GAMSs) can be a significant agetrtotlorg and modulating the
turbulence in the edge. This has been shown by turbulenadations [1, 2, 3] and possibly
recently by experiments [4, 5]. The proximity of the plasnoauhdary causes the rather short
gradient lengths typical for the edge, comparable to thei@amburbulence and GAM scale
lengths. Since there is no clear scale separation betwestndtions and background, the back-
ground can not be taken as infinitely large and immovable,the Boussinesq approximation
breaks down. This breakdown is described by the local rdttarbulence to background gra-
dient scale lengtha 1 = L, /L, 0 p* = ps/R, with the turbulence scale length , whereby
A ~ 5—50 for typical edge scenarios. The rapid change of the pasasie in particular that
of the sound speed being proportional to the linear GAM fezmy — renders the radial inter-
action of the GAMs on neighbouring flux surface [6, 7] quitgoontant, and raises the question
in what spatial pattern the GAMs will organize themselvasisTcould involve reflection lay-
ers exhibiting a peaking of the GAMs, radial propagation 8iMGenergy away from turbulent
regions generating it, or nonlinear changes of the GAM dpa relation.

Several different turbulence scenarios have been examunaerically with the NLET code
[3] using two-fluid electrostatic Braginskii equations wittodified parallel heat conduction
coefficient implementing a collisionless heat flux limit.&limagnetic geometry was represented

for this study by simples— o geometry.

Slow parameter variation — A ~ 200

Fig. 1 shows a typical case of GAMs being excited by high gnadiTG modes in case of still
relatively slow parameter variation. From the flow patteahi( is obvious that the oscillation
frequency decreases towards the edge, which is due to theasdéty sound speed, otherwise
apparently rather unaffected by the parameter variati@isAeen in Boussinesq simulations
[1], the GAMSs are excited with a preferred radial wavenumidrich together with the linear
GAM frequency sets the observed inward and outward phaseities. The Fourier transform
of the poloidal flow velocity with respect to time (b) reve#isit the frequency depends con-
tinuously on the spatial variable. An asymmetry is howewarspicuous in the spectrum: there

is an amplitude of the GAMs of a particular frequency evenoatewhat larger radii than the
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Figure 1: (a) GAM poloidal flow velocity for linear density driemperature profilen; =
Ln/LT = 2.4,6, = .05,a4 = 0.5 (for definitions see [3])fcam o iS the GAM frequency at = 0.
(b) Radial dependence of frequency spectrum; linear GAMuieegy (blue line). Note the
GAM activity at x = 30005 at 140% of the linear frequency. (c) Filtered component at
1.02fcam.o; fit with r(t) = a(t —t9)%/2 (black),r O (t —to)*/? (green)r O (t —to)*/> (yellow).

one corresponding to their linear frequency (blue line) imi the other way round. The GAMs
radiate outward from a given radius. The cause for this effect can be gleagdadabnsforming
selectively one frequency of the Fourier representatioo ieal space, as shown in (c). The
particular GAM is seen to correspond to a wave travellingardv(to lower radii) and being
reflected by the surface correspondingte= 0. This can be comfirmed by comparison of the
shape of the waves close to the reflection with the one olatdinen a generic GAM dispersion

relation. We approximate the GAM dispersion relation clusle = 0 by

woam (1, k) = weam (r,0) (1 + ak?) = yes(r)(1+ ak?), (1)
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wherey is the geometry dependent ratio of GAM frequency and soueedanda sets the
strength of the dispersion (the linear term has to vaniskyormetry reasons). (As it turns out
o is much larger than expected from the linear dispersiongésihe frequency is fixed in Fig. 1
(b), one obtains from a WKB argument

_ | weam Ny O teaAm B
= \/ (et 1) /a= \/ atsa(10,0) 0 @

with cut-off/reflection occuring aty with weam 0 = Ycs(ro). Any curver (t) of constant phase

has to follow the equation

' =0 =r'k(r) = weam = r’\/(drweAm/(aabAmo))(ro— r = weam 3)

= g\/_dr weam /(0 @eam,0) (1 (t) — o) ¥? = weam (t —to) “)
3 2-1/3
—=r{t)=ro+ |- 902%/:,\2)((;& o) } . (5)

The predicted curve of form(t) = ro + c(t —to)%/3 has been fitted to one of the wave fronts in
(c). A slightly different exponent results already in a ntjgforroborating the correctness of the
ansatz (1) for the nonlinear dispersion relation. The disipa coefficientr ~ 10002 extracted
from the fit is much larger than expected from linear GAM disjn relations { p2) — it is
thus a predominantly nonlinear effect. (The signootlepends on the turbulence parameters.
E.qg., for highem; ~ 5 and otherwise identical parameters, the reflection smeabthe GAMs
turns out to be exactly reversed.) The correspondioginear group velocity of the GAMs
selected by the turbulence of ordepsdsam is even significantly larger than the maximum
curvature drift velocitiesy ~ psCs/R which limit the linear group velocity of the GAMs [6, 7].

In other words, the GAM frequency in the presence of turbcaediffers from the linear GAM
frequency by a factor 4 ak? (~ 30% here), whereby, owing to the observed reflection layers,
the actuak; will depend also on the radial profile of the sound speed.

Strong parameter variation — A < 50

For sufficiently strong parameter variation, the GAMs maybgrerated only in a part of the
computational domain, as shown in Fig. 2 for= 50. The GAMs radiate outward from the
generation region at~ 0, maintaining their frequency, which indicates a radiargy transfer.
The short radial decay length prohibits the straighforvagglication of the WKB method. The
phase velocity is nevertheless directed outward from thet pdhere the GAMs are generated,
i.e., in the direction of the energy flow. The fact that phaskeity and energy flow point in

the same direction is again consistent with (1) for positiven contrast to the case of weak
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Figure 2: GAM poloidal flow for strong parameter variatiomar&mneters at centdr= 50, n; =
2.5, &, = 0.3 (for details see [3] fig. 1b).

parameter variation in the preceding section, the GAMs arapd by the turbulence away

from the generation region and can therefore not propagatédisant distances.

Summary

In the presence of non-Boussinesq effects, i.e., a signifigarameter variation on turbu-
lence scale lengths, the turbulent modifications of theadspn relation of the GAMs become
important, completely dominate linear dispersive effestd greatly increase the radial group
velocities. In the case of an extended region of GAM genegaturbulence, propagation of
the GAMs rather far away from the point of their base freqyeten be observed. In the op-
posite case only a weak propagation into regions where GAfglslamped occurs. The fact
that the turbulence nonlinearly modifies the GAM dispergielation, can lead to the set-up
of completely nonlinear reflection and absorption layefgs Rllows for complex global mode
structures, depending on the variation of the turbulencarpaters.
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