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The issue of plasma rotation is crucial for current and future fusion devices as it tends to

stabilize certain magnetohydrodynamic modes, and appears to play a role in sustaining trans-

port barriers via turbulence saturation by the rotation shear. It has been observed in existing

tokamaks that intrinsic core rotation is generated even in the absence of external torque. This is

particularly relevant for ITER, where injected momentum will be very small. The radial trans-

port of angular momentum is of great importance as it pertains not only to intrinsic rotation but

also allows the inwards propagation of rotation initially external to the core, either injected or

originating from the large scale flows experimentally observed in the scrape-off layer.

We investigate the turbulent generation and transport of toroidal angular momentum using

the full- f , global gyrokinetic code GYSELA in the flux-driven regime1. We show that the gy-

rokinetic equations, as formulated by Brizard and Hahm2, lead to an exact conservation law of

toroidal momentum. This equation is conservative, i.e. the force derives from a tensor, which is

the sum of a stress tensor and the electric part of a Maxwell stress. We also present a numerical

test of this local conservation law.

Local equation for toroidal angular momentum

We consider the gyro-averaged guiding-center distribution function F̄(χ,θ ,ϕ,vG‖,µ) where

χ is the opposite of the poloidal magnetic flux, θ and ϕ are the poloidal and toroidal angles,

vG‖ is the parallel velocity and µ is the magnetic moment, which is an adiabatic invariant. The

equilibrium magnetic field is axisymmetric: B = I∇ϕ +∇ϕ ×∇χ . The gyrokinetic equation

for each species s can be written in its conservative form2, valid at order one in the small

parameter ρ∗: ∂t F̄ + 1
B∗||

∇z ·
(

żB∗||F̄
)
= C (F̄) where z = (χ,θ ,ϕ,vG‖,µ) and ż = dtz. B∗|| = B+

mvG‖/eb ·(∇×b) is the Jacobian of the gyrocenter transformation. The collision operator C (F̄)

must satisfy some basic properties: relaxation towards a Maxwellian (Boltzmann H-theorem),

and conservation of particles, momentum and energy. We restrict the analysis to electrostatic

turbulence (the extension to electromagnetic fluctuations does not raise any problem). Self-

consistency is then ensured by a quasi-neutrality equation which reads

−∑
s

∇ ·
{neqms

B2 ∇⊥φ
}
= ∑

s
es

∫
2πB∗||dµdvG‖J · F̄ (1)
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where J is the gyro-averaging operator, and neq is the equilibrium density of guiding-centers. In

the simplest version, electrons are adiabatic.

In the gyrokinetic ordering, the toroidal canonical momentum is Pϕ = msuϕ − eχ where we

define uϕ = I
BvG‖. If the system is axisymmetric, Pϕ is an exact motion invariant. Otherwise, for

instance when turbulence breaks axisymmetry, dtPϕ = −e∂ϕ φ̄ . Considering the expression of

Pϕ , it is consistent to define the local angular momentum as Lϕ = ∑s ms
∫

dτ∗uϕ F̄ where
∫

dτ∗

corresponds to the integration over all phase-space variables other than χ . From the conservative

Fokker-Planck equation we obtain

∂tLϕ +∂χΠχ
ϕ +∂χTχ

ϕ = J (2)

where

Πχ
ϕ = ∑

s
ms

∫
dτ∗F̄uϕvχ

G (3a)

Tχ
ϕ = ∑

s
es

∫ χ
dχ
∫

dτ∗F̄∂ϕ φ̄ (3b)

J = ∑
s

es

∫
dτ∗vχ

GF̄ (3c)

where vχ
G = ż ·∇χ is the guiding-center toroidal velocity in conventional contravariant nota-

tions, which contains both the E×B drift and the magnetic drifts. Eq.(2) is an exact equation

of toroidal angular momentum conservation, i.e. it is not dependent on any assumption on or-

dering once the gyrokinetic and electro-neutrality equations are given. It can be shown that

Eq.(2) reduces to the one given by Parra and Catto3 assuming the ordering considered in their

derivation.

The tensor Πχ
ϕ is the off-diagonal (ϕχ) component of the conventional Reynolds stress. The

interpretation of Tχ
ϕ is less straightforward. An explicit expression can be found by using the

quasi-neutrality equation (1) and the low wavenumber expression of the gyroaverage operator

J ' 1+ 1
2∇ ·

(
msµ
e2B ∇⊥

)
. One then finds the following expression

Tχ
ϕ =−∑

s

∫ dθdϕ
B ·∇θ

{
1
2

ms

esB2

(
EχPϕ +PχEϕ

)
+

neqms

B2 EχEϕ

}
(4)

where conventional covariant notations are used, E = −∇φ is the electric field and P =

−B∇(P̄⊥/B) where P̄⊥ is the gyrocenter perpendicular pressure (the average of µB over the

distribution F̄). This expression is close to the expression given by McDevitt et al.4 Consider-

ing the limit case P̄⊥≈ 0 (cold plasma limit), using an analogy with a dielectric medium one can

identify the term Tχ
ϕ as the off-diagonal component of the electric part of the Maxwell stress
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tensor built with the polarized field. In other words it is obtained from the vacuum Maxwell

stress by replacing the vacuum permittivity ε0 by neqm/B2. The pressure terms account for

finite Larmor radius effects, and lead to generalization of the Maxwell stress in a hot plasma.

The right-hand side of Eq.(2) is crucial to the conservation of angular momentum, as any

departure from ambipolarity would lead to unphysical sources of momentum. However, all gy-

rokinetic simulations must verify a charge conservation law that is derived from the gyrokinetic

equation and reads ∂t ρ̄+∂χJ = 0 where ρ̄ =∑s es
∫

dτ∗F̄ . In other words, since boundary con-

ditions impose a vanishing current at the edges, one must have J = 0 in steady-state regime.

Numerical test of this balance

In this section, we present a numerical test of equation (2) for the local balance of toroidal

angular momentum using the full- f , gyrokinetic code GYSELA in the flux-driven regime1. The

model equations implemented correspond to the standard gyrokinetic formulation by Brizard

and Hahm2. The collision operator is a simplified Lenard-Bernstein5 operator for ion-ion col-

lisions in the parallel direction. This operator ensures energy and momentum conservation by

relaxing the distribution function towards a shifted Maxwellian distribution6 and is sufficient to

recover neoclassical theory7.

In Figure 1 we present the main results for a simulation with the adimensional parameters

ρ∗ = 1/512∼ ρ ITER
∗ and ν∗ = 0.1. The 5D grid in (r,θ ,ϕ,vG‖,µ) for this case, which simulates a

quarter-torus, is (1024,1024,128,128,16), i.e. approximately 2.7 1011 grid points. The simula-

tion required approximately 3 million CPU hours, running on 8 192 cores. The results are time-
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Figure 1: Nonlinear simulation with ρ∗ = 1/512 and ν∗ = 0.1. Figure (a) shows the balance of toroidal angular

momentum (equation (2)) while figure (b) identifies the different contributions to this balance

averaged over a significant part of the non-linear saturation phase (approximately 104ω−1
c ). The
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quantities are normalized to minR0vT ω∗ where R0 is the major radius, vT is the thermal veloc-

ity and ω∗ is the diamagnetic frequency. Fig. 1(a) compares the time derivative of the toroidal

angular momentum to the sum of the other terms in Eq. (2), showing a very good agreement.

Fig. 1(b) compares the contributions of the different terms in Eq. (2) to this balance, separating

the Reynolds stress (Πχ
ϕ ) into its turbulent and neoclassical components, i.e. splitting vχ

G in ex-

pression (3a) into E×B and magnetic drifts. As expected, contributions from the radial currents

of guiding-centers (J ) are negligible in the steady-state regime (less than 0.1% of the other

terms). The balance of toroidal angular momentum results mainly from a competition between

turbulent and neoclassical stresses, with a significant contribution from the polarization stress.

Conclusion

The mean toroidal flows in gyrokinetics can be described by a local toroidal momentum con-

servation equation: ∂tLϕ +∂χΠχ
ϕ +∂χTχ

ϕ = J . Because of charge conservation and boundary

conditions, the radial current of guiding-centers (J ) must be vanishing in the steady-state

regime. Thus, the force in equation (2) derives from a tensor, which contains the off-diagonal

component of the Reynolds stress (Πχ
ϕ ) and the off-diagonal component of the Maxwell stress

built with the polarization field (Tχ
ϕ ), similar to the result of McDevitt et al.4. We recover this

local conservation equation numerically with excellent agreement using the gyrokinetic full-

f code GYSELA and verify that no significant departure from ambipolarity is observed (i.e.

J = 0). Thus gyrokinetic codes are capable of correctly predicting the mean toroidal flows.

The complete description of mean flows in gyrokinetics also requires the computation of their

projections on the radial direction, which is the so-called force balance equation, and on the

poloidal direction with a conservation equation similar to Eq. (2).
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