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Today, it is widely accepted that transport barrier formation is mostly caused by a sheared

radial electric field. The interplay between mean (i.e. zero-frequency, poloidally and toroidally

symmetric) sheared flows and turbulence was modeled in a simple way in Ref. [1]. Actually, it

was shown that several turbulence theories fitted the model, so it can be viewed as a paradigm

for the understanding of mean sheared flow amplification by the Reynolds stress and turbulence

suppression by shearing. In particular, the theory of resistive pressure-gradient-driven turbu-

lence has been analyzed in detail from the point of view of such a paradigmatic model. The

model consists of three ordinary differential equations for the level of turbulence, the mean flow

shear and the pressure gradient.

Some experimental results, e.g. the detection of long-range potential correlations in TJ-II

[2, 3], suggest that non-zero frequency, poloidally asymmetric zonal flows might play an im-

portant role in confinement transitions. The reason is that the observed long-range correlations

are dominated by frequencies below 20 kHz and thus are not likely to be explained by toroidally

and poloidally symmetric sheared flows. In Ref. [4] it was argued that long-range potential cor-

relations might be an experimental evidence for the existence of non- zero frequency, poloidally

asymmetric zonal flows and a phenomenological model within the aforementioned paradigm

was formulated.

In this conference contribution we will try to investigate from a more fundamental perspective

the effect of a zonal flow with poloidal mode number M=1 on the linear stability of resistive

pressure-gradient-driven turbulence in cylindrical geometry. Specifically, our aim is to learn

how the so-called g-modes are modified due to a zonal flow defined by a background electro-

static potential of the form

Φ0(r,θ) = Φav(r)+λΦZF(r,θ), (1)

where both Φav(r) and ΦZF(r,θ) have shear and λ controls the strength of the zonal flow.

This requires to work out the linear solution for the electrostatic potential with a ‘seed’ zonal
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flow. Such a calculation is quite more complicated than for mean sheared flows. The reason

is that for a seed mean sheared flow the linear eigenstate equation does not couple different

poloidal and toroidal modes. However, if the seed sheared flow has a non-zero poloidal mode

number, then the eigenstate equation ties together all poloidal modes and, strictly speaking, the

poloidal mode number is not a good quantum number anymore. We will see how to obtain an

approximate analytical solution to the problem. Once an appropriate expression for the linear

eigenstate has been obtained, one can tackle the question of how the model proposed in Ref. [1]

is modified and whether the phenomenological approach of Ref. [4] has some theoretical basis.

The strategy consists in carrying out a quasilinear calculation of the Reynolds stress using the

linear solutions. In this way, one can appropriately identify the structure of the Reynolds stress

term and formulate a useful model for the interplay of poloidally symmetric and asymmetric

sheared flows and the level of turbulence.

Resistive pressure-gradient-driven turbulence model

Our model consists of a reduced set of the resistive MHD equations (see Ref. [5]) formulated

on a periodic cylinder with length L = 2πR0. We use standard cylindrical coordinates (r,θ ,z)

so that the basis vectors are orthonormal and satisfy er×eθ = ez. The model in the electrostatic

approximation and neglecting damping terms is:

∂t∇2
⊥Φ+(v ·∇)∇2

⊥Φ =− B2
0

ρη
∇2
||Φ−

1
ρ

ez · (∇Ω×∇p), ∂t p+(v ·∇)p = 0, (2)

where Ω(r) is the average helical curvature, ρ is the mass density and η is the resistivity; the

last two quantities are assumed to be constant. Also, with q(r) = r
R0

Bz
Bθ

,

v :=−∇Φ× ez, ∇||Φ :=
(

1
R0q(r)

∂θ +∂z

)
Φ, ∇2

⊥Φ :=
1
r

∂r(r∂rΦ)+
1
r2 ∂ 2

θ Φ . (3)

Linear eigenstates in the presence of zonal flows

Consider equilibrium quantities Φ0(r,θ) and p0(r). We want to study the linearization of the

problem around this background:

Φ(r,θ ,z, t) = Φ0(r,θ)+ Φ̃(r,θ ,z, t), p(r,θ ,z, t) = p0(r)+ p̃(r,θ ,z, t), (4)

where Φ0(r,θ) has the form given in (1). It is obvious that a Fourier transform in z,

Φ̃(r,θ ,z, t) =
∞

∑
n=−∞

Φ̃n(r,θ)eγnt−inz/R0, p̃(r,θ ,z, t) =
∞

∑
n=−∞

p̃n(r,θ)eγnt−inz/R0 , (5)
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decouples the equations for different values of the toroidal mode number, n:

γn∇2
⊥Φ̃n +

1
r

[
∂rΦav∂θ +λ (∂rΦZF∂θ −∂θ ΦZF∂r)

]
∇2
⊥Φ̃n

=− B2
0

ρηR2
0

(
1

q(r)
∂θ − in

)2

Φ̃n−
Ω′(r)

ρr
∂θ p̃n,

γn p̃n +
1
r

[
∂rΦav∂θ +λ (∂rΦZF∂θ −∂θ ΦZF∂r)

]
p̃n−

1
r

∂θ Φ̃n p′0(r) = 0. (6)

However, for λ 6= 0, the Fourier transform in θ couples different poloidal mode numbers, m, due

to the θ -dependence of the background electrostatic potential. In order to find an approximate

solution we assume that the solution of (6) can be expressed as a power series in λ :

Φ̃n(r,θ) =
∞

∑
j=0

λ jΦ̃( j)
n (r,θ), p̃n(r,θ) =

∞

∑
j=0

λ j p̃( j)
n (r,θ), γn =

∞

∑
j=0

λ jγ( j)
n . (7)

The strategy is as follows. We assume that the desired approximate solution is a perturbation

of the zeroth order one, so that Φ̃n ≈ Φ̃(0)
n + λ Φ̃(1)

n . The zeroth order equation is diagonal in

the poloidal mode number and a solution Φ̃(0)
m,n(r), p̃(0)m,n(r), γ(0)m,n, labeled by m and n, can be

found [6]. Now, the equation for Φ̃(1)
m,n involves Φ̃(0)

m−1,n and Φ̃(0)
m+1,n. Our aim is to obtain a

satisfactory approximate solution to the first-order equations near a rational surface defined by

rM,N = q−1(M/N). The key point is to use that each Φ̃(0)
m,n is very localized around rm,n. The

calculation is a bit cumbersome and we only quote here the final result, that can be expressed in

terms of the width of the zeroth-order eigenfunction, Wmn, the average flow shearing rate ωmn =

V ′mWmn/rmn, the zonal flow shearing rate ωZF,mn =V ′ZFmWmn/rmn, and the zeroth-order growth

rate γ(0)mn . V ′ and V ′ZF denote the average and zonal flow shear amplitudes. Our approximate

analytical solution reads:

Φ̃m,n(r) = Φ̂m,n exp
(
−(r− rm,n + iξm,n)

2

2W 2
m,n

)

+ Φ̂m+1,n(am,n +bm,n(r− rm+1,n))exp

(
−(r− rm+1,n + iξm+1,n)

2

2W 2
m+1,n

)

+ Φ̂m−1,n(a∗−m,−n +b∗−m,−n(r− rm−1,n))exp

(
−(r− rm−1,n + iξm−1,n)

2

2W 2
m−1,n

)
.

≡ Φ̃(0)
m,n(r)+ Φ̃>

m,n(r)+ Φ̃<
m,n(r), (8)

where ξm,n/Wm,n ≈ ωm,n/γm,n and in the last line we have introduced a notation that will be

useful for writing the contributions to the Reynolds stress. A good approximation for the coef-

ficients am,n and bm,n is

am,n =−
ω∗ZF,m,n

γ(0)m,n

ωm,n

γ(0)m,n

(nWm,nq′(rm,n))
4

(nWm,nq′(rm,n))2 +1/2
, bm,n =−i

ω∗ZF,m,n

γ(0)m,n

1
Wm,n

(nWm,nq′(rm,n))
2

(nWm,nq′(rm,n))2 +1/2
.
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Note that the zeroth-order contribution, Φ̃(0)
m,n(r), is a tilted Gaussian localized around rm,n

[6], whose tilt is proportional to the mean flow shear. The effect of the zonal flow shear is

to generate non-negligible contributions for Φ̃m,n(r) around the neighboring rational surfaces,

namely Φ̃>
m,n(r) and Φ̃<

m,n(r).

Reynolds stress generation of zonal flows

A quasilinear estimation of the structure of the Reynolds stress shows how linear instabili-

ties in the presence of m = 1 zonal flows can generate a non-vanishing (ṽrṽθ )10 contribution.

Schematically, around rM,N ,

(ṽrṽθ )10 =−
i
r ∑

m,n
mΦ̃m,n∂rΦ̃∗m−1,n

≈− i
rM,N

∑
m,n

m/n=M/N

mΦ̃(0)
m,n∂rΦ̃>∗

m−1,n +(m+1)Φ̃<
m+1,n∂rΦ̃

(0)∗
m,n

− i
rM,N

∑
m,n

m/n=M/N

mΦ̃(0)
m,n∂rΦ̃

(0)∗
m−1,n +(m+1)Φ̃(0)

m+1,n∂rΦ̃
(0)∗
m,n (9)

After some manipulations and including the necessary dissipation term one can write a model

equation for the time evolution of the amplitude of the zonal flow shear, VZF
′,

∂tVZF
′ = (a1−a2V ′2)E2VZF

′+ cE2V ′−bVZF
′, (10)

like the one proposed in Ref. [4].

Conclusions

We have found an analytical approximation to the linear eigenstates of resistive pressure-

gradient-driven turbulence in the presence of a poloidally asymmetric sheared zonal flow. The

poloidal asymmetry is responsible for non-negligible contributions to the Φ̃m,n eigenfunction

around neighboring rational surfaces, which in a quasilinear computation of the Reynolds stress

produce new terms in agreement with those proposed in Ref. [4].

References

[1] P. H. Diamond, Y.-M. Liang, B. A. Carreras et al., Phys. Rev. Lett. 72, 2565 (1994).

[2] M. A. Pedrosa, C. Silva, C. Hidalgo et al., Phys. Rev. Lett. 100, 215003 (2008).

[3] C. Hidalgo, M. A. Pedrosa, C. Silva et al., Europhys. Lett. 87, 55002 (2009).

[4] I. Calvo, B. A. Carreras et al., Plasma Phys. Control. Fusion 51, 065007 (2009).

[5] B. A. Carreras et al., Phys. Fluids 30, 1388 (1987).

[6] B. A. Carreras et al., Phys. Fluids B 5, 1491 (1993).

37th EPS Conference on Plasma Physics P1.1014


