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Introduction

The ITER “hybrid” advanced scenario aims to provide a disghavith an extended burn
time (> 1000s) while still maintaining a moderately high fusion pow& (s > 350 MW) and
significant a-particle heating @ > 5), without the drawback of the stringent active control
requirements which characterize steady-state scenatbaliges [1]. The extended burn time
is achieved via reducing the flux consumption by operatintgpét reduced current= 11—
13 MA) and a higher non-inductive current fraction $0— 60%) compared to the ELMy H-
mode ITER reference scenario. In this work, we utilize the CRXS [2] integrated modelling
code in order to make predictions on the ITER hybrid scenavith particular emphasis on
gauging the relative merit of various heating and curreintedfH/CD) mixes, informing the
choices of proposed ITER H/CD future upgrades. Towards this the GLF23 [3, 4] first-
principles based transport model is applied for energyspart prediction.

M odelling techniques and methodol ogy

The central point of this work is assessing and comparin@bilgy of various heating and
current drive systems to provide a ’'satisfactory’ hybri@érsario for ITER. The target, 'satis-
factory’ hybrid scenario that we define here is one that plesia fusion power performance
of Prys = 350 MW, Q > 5, Ross <~ 110MW, andtgischarge > 1000s. In ITER, deleterious
NTM’s are predicted to be unstable even fé > 1.8 [5]. We assume @y > 1.8 scenario
without transport reduction from NTM's, or alternativelgsume that no auxiliary power need
be diverted to NTM control. Thus, we aim fgr> 1 throughout the simulations, or at least to
maximize the time until @ = 1 surface forms and/or minimize tlige= 1 radius at stationary
state, in order to avoid NTM triggering sawteeth.

The core of CRONOS is a 1.5D transport solver, whereby 1D ouwmdfusion, particle,
energy, and momentum transport equations are solved upetegpbaratrix, self consistently
with 2D magnetic equilibrium. The main assumptions madeaaréollows: Equal ratios of
D and T are assumed. Only electron and ion heat transporedigied, whereas the density

profile is prescribed flat. Rotation is set to zero - a consevatssumption. GLF23 is applied
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with a-stabilization off. Scenarios are considered with présatipedestal heights ranging from

3—5keV. Typical Z¢s s values of~ 1.7 are taken.

Results

The H/CD mix of NBI and EC was found to provide the best comborabf a high degree
of non-inductive current drive, due to the NBI, as well as gfije shaping capability for
core confinement maximization, through the depositionusdiexibility inherent in the EC
system. A summary of the optimum results achieved for patiesights between 3 5 keV
are displayed in table 1. 'Optimum’ in these cases refers maaimization of t(q=1) and
minimization of x(gq=1) at the target fusion power Bf,s = 350 MW, achieved by varying

the components and settings (such as ECCD launcher anglé®) df€D mix.

Table 1: Summary of results for optimum performance scesdar variousT,eq. Values are quoted at t=3000 s
for the Tpeq = 4,5 keV cases, and at t=1200 s for thgg = 3 keV case.

Tped | Ip fc NBIUEC fpoot/fi  Prus Q By Hes  Ros t(g=1) x(g=1)
[MA] MW] (MW]

11.5 0.9 33/17 0.36/0.62 365 72 215 1.23 99 o 0

11.8 0.95 33/37 0.31/0.59 351 5 202 1.08 114 1050 0.02
12.2 0.95 16.5/50 0.26/0.47 348 52 182 0.98 109 360 0.44

These results state that a satisfactory
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rather early in the discharge from t=360 s,
and x(g=1)=0.44 by t=1200 s. The flattopigure 1: GLF23 predicted sensitivity of fusion power
loop voltage of theTpey = 5/4/3 keV performance to ECCD deposition radius

cases isv 21.5/31/49.8 mV respectively,

calculated as an average up to 1200 s. For theVdand 5keV cases particularly, this loop-

voltage may be sufficiently low to allow a flattop of up to 3@)@rovided that flux consumption
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is saved during the ramp-up phase by application of earlyifgeb].

The degree of ITG dominated turbulence is predicted to aszeavith decreasing s/q, (for
s—a >~ 0.5) [7]. This leads to a sensitivity of the predicted fusiomfpamance to the position
of the deposited ECCD, as can be seen in figure 1. The volumegaeeslq parameter(
s/q >), as displayed in the figure, is compared in the region x£80%4which corresponds to
the region up to the pedestal in whish-~ 0.5.

Replacing some or all ECCD with

LHCD leads to a significant reduction in “2°°() 5 ,“:f::‘s —
predicted fusion performance due to fai; 1:2: _*_:333:'32705055%LH°D: 41 'i'iiﬁgiigfii “
off-axis current drive lowering the average% ;Z =" \ 1° z - ;,”'/
s/g. This can be seen in figure 2. The 0:3* | \f ==ss 1 —
decrease in fusion power in the LHCD ~ ° °2 °* %¢ 08 &1 0 02040608 1
case is almost purely due to the now non- z — ] 22 o]
optimal q and s profiles, and not due tog -~ il | ——

the reduction in heating at the more inner:' 1‘; T 3::\\

radii where the ECCD power is deposited. o
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This is a typical consequence of the highly
stiff GLF23 model, where pure heatingigure 2: GLF23 predicted sensitivity of fusion power
has a minor influence on the temperatuperformance to replacing some or all ECCD with LHCD
profiles, and the primary influence of the

H/CD mix on the temperature gradient lengths is through theeati drive g and s profile
shaping, setting the degree of GLF23 predicted turbuléieenote however that the capability
of LHCD of driving far off-axis current drive may still be a waittool for the ITER steady state
scenario [8].

In figure 3 we summarize the predicted

dependence OPfUS on < S/q > |n the 400 DGPEH‘de"CSOfP‘,HSO"aVEf‘ages/q 6lSDependenceofaverage RIL,, on average s/q
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a consequence of the linear relationship

betweens/q and the normalized inversé:igure 3: Correlation between volume averaged s/q andriusio
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ion temperature gradient scale length,

R/L+, which can be seen in the right panel of the figure. This linelationship can be expected
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from ITG dominated turbulence in the flat density limit, pewtarly since in our case neither
the T; /Te nor theZq¢+ profiles vary by more than 5% between the various simulatioribe
dataset, further isolating the instability threshold degence on the g-profile.

Finally, we note that replacing 17 MW of EC from the referenase with 17MW of ICRH
(53 MHz 2nd T harmonic) leads to both a marked decreasg@ia 1) to 420 s, and an increase
in the stationary stat&(q = 1) to 0.13, compared to the optimuiiyq = 4 keV case. The
reason for this is twofold: (i) no current is being driven bg itCRH scheme assumed here, (ii)
the central ICRH electron heating raisgssuch that the resistivity and thus current profile is

sharper, decreasing g near the magnetic axis.

Discussion and conclusions

A study of the H/CD mix for the ITER hybrid scenario has beerfgrened, with the GLF23
anomalous transport model predicting transport in the ggnehannel, and for a range of
prescribed pedestals. According to GLF23, the key poinsé@nario optimization is tailoring
the g-profile with a judicious choice of current drive, in erdo minimize the predicted
ands dependent transport. This then allows a minimizatiomoénd thusl, needed for the
scenario targels s = 350 MW, raising the g-profile towards 1 as desired in a hybrid seenar
For Tped = 5 keV, g > 1 was predicted to be maintained at stationary state with/&7381W
NBI/ECCD mix, with Q=7. For a more conservatiigey = 4 keV, x(q = 1) = 0.03 was
predicted at stationary state with a 33/37 MW NBI/ECCD mix, w@k5. Including LHCD
or ICRH in the H/CD mix is predicted to be sub-optimal. The inuasof LHCD reduces
confinement due to deleterious shaping of the g-profile. mbleision of ICRH, particularly in
a stiff model, does not lead to significantly increased fagower and furthermore does not
contribute to the non-inductive current fraction. An uptgaf the ITER EC system to 40 MW
is thus predicted to be highly beneficial for the hybrid sceEna
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