37" EPS Conference on Plasma Physics P1.1022

I mpact of the geometry of resonant magnetic perturbations on the control
of transport barrier relaxationsin fusion plasmas

F. de Solminihat, P. Beyet, M. Leconté, S. Benkaddy X. Garbet

1 International Institute for Fusion Science, CNRS — Uniitérde Provence, Marseille, France
2 Physique Statistique et Plasmas, Université Libre de BresxeBrussels, Belgium
3 CEA/IRFM, St. Paul-Lez—Durance, France

Transport barriers in tokamak plasmas are key ingredidntspyoved confinement regimes.
These barriers are thin layers in which turbulent transpbtieat and matter is strongly re-
duced. At the plasma edge, the barrier typically is not stabt exhibits relaxation oscillations
associated with high flux peaks [1]. Such barrier relaxatioave been studied by means of 3D
turbulence simulations [2, 3] and the possible control esthrelaxations by externally induced
resonant magnetic perturbations has been investigates].[#h this framework, it has been
shown recently that a single harmonic resonant magnettanpation localized at the barrier
position can also lead to a stabilization of the relaxati@sHowever, in this geometry, the
confinement is always degraded.

As shown in these turbulence simulations, a key elemenhstabilization of barrier relax-
ations is the convective energy flux associated with theaxasymmetric plasma equilibrium in
presence of magnetic islands. In fact, when a magneticdsihain is externally imposed inside
the plasma, the modified equilibrium pressure and electtergial give rise to a convective
flux that plays an important role in the local erosion of tlamgport barrier and the stabilization
of its relaxations [4, 5, 6]. The magnetic island chain cdheziresult from a single harmonic
resonant perturbation [6] or from a multiple harmonic resdrperturbation leading to a com-
plex geometry with stochastic regions and residual islhds]. The aim of the present work is
to get further insight into the non axisymmetric plasma Blgaiim and the associated convec-
tive transport in the presence of a magnetic island. Theutenice model studied here consists
of normalized equations for the plasma presguaad the electric potentiag [3],

a3 o+ {p.07¢} = —0fo—-Gp+vOie+uD? (Amp—0) (1)
ap+{e.p} = &Go+x,0fp+x.0%p+S, 2

In toroidal coordinategr, 8, ¢) and in a slab geometrgx,y,z) in the vicinity of a reference

surfacer =ro, i.e.X= (r —ro) /&pan Y = ro0/&pai, Z= Ro¢ /Ls, the normalized operators are

Lsro
Roébal ’

O =0+ (%—x) O —{WYrmp, - } with (= G =sinB dx+cosb 9 .



37" EPS Conference on Plasma Physics P1.1022

single harmonic MP single MP

BN W

0 00 0

i
i
e
red
conv

»

o
-

B p 1
o
4l
z
>

i T
o r N oW a o N @ ©

time/10° X

Figure 1:(left): Time evolution of the convective fluQ.on, at the barrier centex = 0 for different
amplitudes of the magnetic perturbation. Relaxations efttAnsport barrier are associated with strong
flux peaks (top), these peaks are strongly reduced in presanthe magnetic perturbation (bottom).
(right): Equilibrium convective fluxQggw as a function of the radial distance from the resonant seyfac

for different amplitudes of the magnetic perturbation.

Here,pa andLs are the normalization lengths in the directions perpendiqu_) and parallel
(I to the unperturbed magnetic field, respectively, Byds the major radius of the magnetic
axis. Time is normalized to the interchange timg. Note that the perpendicular and parallel
heat conductivity coefficients in Eq. (2) are normalizechgghe scalelength&,, andLs, re-
spectively. Therefore a ratio ofj/x. ~ 1 of the normalized coefficients used in the present
simulations corresponds to a non-normalized ratib%%€2, ~ 10" — 1C8.

In the present model, resistive ballooning turbulenceisedrby en energy sourcglocated
close to the inner boundary of the computational domain ¢batesponds to the annulus de-
limited by the the safety factor valugs= 2.5 andq = 3.5 surfaces and including the reference
surfaceq = qo = 3. When a poloidal rotatiod = dyx@mp with localized maximal shear gt= 3
isimposed (viathe lasttermin Eq. (1) whq}elenotes the axisymmetric componentpdndu
is a friction coefficient), a transport barrier formes at fpasition. The latter exhibits relaxation
oscillations [2, 3]. A typical time trace of the convectiveXIQcony = <pdy(p>y7z at the center of
the barrier is shown in Fig. 1 (left, top). When a resonant mesig perturbation described by
the normalized parallel component of the vector potential

Yrwp = W(X)cOS(MO —ng)  with w<x>:woexp<%%'x) 3)

is imposed at the| = 3 surface, (hereim,n) = (12,4), B1 = 0.6, &pal/rc = 1/590 are pa-
rameters typical for the DED device in the TEXTOR tokamalk,[#e barrier relaxations are
stabilized [Fig. 1 (left, bottom)]. This stabilization isiel to an erosion of the transport barrier

that is essentially caused by the convective g = <peqdygoeq>yz associated with the new
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Figure 2:Radial profiles of the real part of the pressure componpfisand the imaginary part of the

potential componentgn in an equilibrium in presence of a magnetic island.
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in the presence of the magnetic island chain [4, 5, 6]. 5
Typical profiles ofQgan are plottet in Fig. 1 (right).

In order to study this equilibrium, we run the turbu- o
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lence code for low amplitudes of the sou&such that

Figure 3:Convective energy fluQcgny in
the resulting pressure gradient —1/x, [y Sdx = g 0y fluleony

_ _ - an equilibrium in presence of a magnetic
const forx > Xq=25 is below the instability thresh-

island (same parameters as in Fig. 2.)

old. The 3D pressure and electric potential fields then

evolve to a stationary state corresponding to the equilibriAs a first approach, we focus on a

case without imposed rotation, i.e. without transportileartn this case, the numerical results

can be compared to analytical studies concerning the plgsessure in Ref. [8]. Profiles of

Pmh, Pmn and the associated convective fiQ¥an are shown in Figs. 2 and 3, respectively.
When inserting the expressions (3), (4) in Egs. (1), (2) amelkizing for low amplitudes

W(X), Pk @b < 1 andp= —kx, @ = 0, one obtains the following relations fpfh, @
i 1k
kS% (X_ Xm)z (H%%— édX <p‘rsn(11,n o p?nil,n) -52 [(m_ 1) p?anl,n + <m+1) prenil,n} =0 (5)
) 1
—ikyk @A+ X K& (x— Xmm)? ?nqn+x||Kk$x§ W(X)Omm, = O (6)

Here,mg = ngp, Xm = ({/do)(M—mg)/m, ky = Mépal/ro, Ls = Ro, the & term in Eq. (1) has
been neglected for simplicity)§ < 1) and the perpendicular dissipationgnd x ; terms) have
not been written. Without the terms related to the magnativature, Eqg. (5) would imply

@ = 0. Far from theq = 3 resonant surface, the perpendicular heat conductiorgiggitee



37" EPS Conference on Plasma Physics P1.1022

0.02—

, —— numerica 0.01
- - -analytical

0.005%

Im(,, )
o

—0.005

: :, : -0.01 - : : : : ‘
x O 10 20 -30 -20 -10 x 0 10 20

"230 -20 -10

Figure 4:Radial profiles of the real part gdn » and the imaginary part afis. » in an equilibrium with

magnetic island in a case with cylindrical curvature andstamty.

with respect to the parallel one and the pressure comp@ﬁ%’ratis determined — whegni=0
— by the balance of the last two terms in Eq. (6) [8]: Pran = —K)—l(@ : (7)

When accounting for the magnetic curvature, the pressurepooentpﬁ%,n is still approxi-
matively given by Eq. (7), and the potential harmonics aemttietermined by Eq. (5). This can
be verified in a simplified cylindrical geometry with = gody. Fig. 4 shows the corresponding
profiles ofpﬁf‘),n, (g?fj,n as well as the asymptotic solution (7) fgy = 0.7 andy/(x) = . Note
that close to the resonant surface, according to Ref. [8hmadytical prediction forpg n is
available, as the actual island wid= 4,/ = 7.9 is comparable to the critical island width
We =B (x/x.)"*/ /iy =18.

In conclusion, the plasma equilibrium in the presence of gmatc island chain is character-
ized by both, a non-axisymmetric pressure structure,mayisiainly from the balance between
parallel and perpendicular heat conductivity, and a ndayaxmetric potential structure, aris-
ing from the coupling between pressure and potential dueagnetic curvature. The phase
difference between these structures is such that they ggdo convective transport which is
known to play a significant role in the erosion of the transparrier in turbulence simulations

of barrier relaxations.
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