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Transport barriers in tokamak plasmas are key ingredients of improved confinement regimes.

These barriers are thin layers in which turbulent transportof heat and matter is strongly re-

duced. At the plasma edge, the barrier typically is not stable but exhibits relaxation oscillations

associated with high flux peaks [1]. Such barrier relaxations have been studied by means of 3D

turbulence simulations [2, 3] and the possible control of these relaxations by externally induced

resonant magnetic perturbations has been investigated [4,5]. In this framework, it has been

shown recently that a single harmonic resonant magnetic perturbation localized at the barrier

position can also lead to a stabilization of the relaxations[6]. However, in this geometry, the

confinement is always degraded.

As shown in these turbulence simulations, a key element for the stabilization of barrier relax-

ations is the convective energy flux associated with the non-axisymmetric plasma equilibrium in

presence of magnetic islands. In fact, when a magnetic island chain is externally imposed inside

the plasma, the modified equilibrium pressure and electric potential give rise to a convective

flux that plays an important role in the local erosion of the transport barrier and the stabilization

of its relaxations [4, 5, 6]. The magnetic island chain can either result from a single harmonic

resonant perturbation [6] or from a multiple harmonic resonant perturbation leading to a com-

plex geometry with stochastic regions and residual islands[4, 5]. The aim of the present work is

to get further insight into the non axisymmetric plasma equilibrium and the associated convec-

tive transport in the presence of a magnetic island. The turbulence model studied here consists

of normalized equations for the plasma pressurep and the electric potentialφ [3],

∂t∇2
⊥φ +

{
φ ,∇2

⊥φ
}

= −∇2
‖φ −G p+ν∇4

⊥φ +µ∇2
⊥
(
φimp− φ̄

)
, (1)

∂t p+{φ , p} = δcGφ +χ‖∇2
‖p+χ⊥∇2

⊥p+S, (2)

In toroidal coordinates(r,θ ,ϕ) and in a slab geometry(x,y,z) in the vicinity of a reference

surfacer = r0, i.e.x= (r − r0)/ξbal, y= r0θ/ξbal, z= R0ϕ/Ls, the normalized operators are

∇‖ = ∂z+

(
ζ
q0

−x

)
∂y−{ψRMP, · } with ζ =

Lsr0

R0ξbal
, G = sinθ ∂x+cosθ ∂y .
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Figure 1:(left): Time evolution of the convective fluxQconv at the barrier centerx = 0 for different

amplitudes of the magnetic perturbation. Relaxations of the transport barrier are associated with strong

flux peaks (top), these peaks are strongly reduced in presence of the magnetic perturbation (bottom).

(right): Equilibrium convective fluxQeq
conv as a function of the radial distance from the resonant surface,

for different amplitudes of the magnetic perturbation.

Here,ξbal andLs are the normalization lengths in the directions perpendicular (⊥) and parallel

(‖) to the unperturbed magnetic field, respectively, andR0 is the major radius of the magnetic

axis. Time is normalized to the interchange timeτint. Note that the perpendicular and parallel

heat conductivity coefficients in Eq. (2) are normalized using the scalelengthsξbal andLs, re-

spectively. Therefore a ratio ofχ‖/χ⊥ ∼ 1 of the normalized coefficients used in the present

simulations corresponds to a non-normalized ratio ofL2
s/ξ 2

bal ∼ 107−108.

In the present model, resistive ballooning turbulence is driven by en energy sourceS located

close to the inner boundary of the computational domain thatcorresponds to the annulus de-

limited by the the safety factor valuesq= 2.5 andq= 3.5 surfaces and including the reference

surfaceq= q0 = 3. When a poloidal rotationU = dxφimp with localized maximal shear atq= 3

is imposed (via the last term in Eq. (1) whereφ̄ denotes the axisymmetric component ofφ andµ

is a friction coefficient), a transport barrier formes at that position. The latter exhibits relaxation

oscillations [2, 3]. A typical time trace of the convective flux Qconv=
〈
p∂yφ

〉
y,z at the center of

the barrier is shown in Fig. 1 (left, top). When a resonant magnetic perturbation described by

the normalized parallel component of the vector potential

ψRMP = ψ(x)cos(mθ −nϕ) with ψ(x) = ψ0exp

(
m
β1

ξbal

rc
x

)
(3)

is imposed at theq = 3 surface, (here,(m,n) = (12,4), β1 = 0.6, ξbal/rc = 1/590 are pa-

rameters typical for the DED device in the TEXTOR tokamak [7]), the barrier relaxations are

stabilized [Fig. 1 (left, bottom)]. This stabilization is due to an erosion of the transport barrier

that is essentially caused by the convective fluxQeq
conv=

〈
peq∂yφeq

〉
y,z associated with the new
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Figure 2:Radial profiles of the real part of the pressure componentspeq
mn and the imaginary part of the

potential componentsφeq
mn in an equilibrium in presence of a magnetic island.
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Figure 3:Convective energy fluxQeq
conv in

an equilibrium in presence of a magnetic

island (same parameters as in Fig. 2.)

plasma equilibrium

peq

φeq


=


p̄(x)

φ̄(x)


+ ∑

m>0


peq

mn(x)

φeq
mn(x)


ei(mθ−nϕ) , (4)

in the presence of the magnetic island chain [4, 5, 6].

Typical profiles ofQeq
conv are plottet in Fig. 1 (right).

In order to study this equilibrium, we run the turbu-

lence code for low amplitudes of the sourceSsuch that

the resulting pressure gradientκ =−1/χ⊥
∫ x

xmin
Sdx′=

const for x ≥ xq=2.5 is below the instability thresh-

old. The 3D pressure and electric potential fields then

evolve to a stationary state corresponding to the equilibrium. As a first approach, we focus on a

case without imposed rotation, i.e. without transport barrier. In this case, the numerical results

can be compared to analytical studies concerning the plasmapressure in Ref. [8]. Profiles of

peq
mn, peq

mn and the associated convective fluxQeq
conv are shown in Figs. 2 and 3, respectively.

When inserting the expressions (3), (4) in Eqs. (1), (2) and linearizing for low amplitudes

ψ(x), peq
mn, φeq

mn ≪ 1 andp̄=−κx, φ̄ = 0, one obtains the following relations forpeq
mn, φeq

mn:

k2
y (x−xm)

2 φeq
mn−

i
2

∂x

(
peq

m−1,n− peq
m+1,n

)
− 1

2
ky

m

[
(m−1)peq

m−1,n+(m+1)peq
m+1,n

]
= 0 (5)

−ikyκφeq
mn+χ‖k

2
y (x−xm)

2 peq
mn+χ‖κk2

yx
1
2

ψ(x)δmm0 = 0 (6)

Here,m0 = nq0, xm = (ζ/q0)(m−m0)/m, ky = mξbal/r0, Ls = R0, theδc term in Eq. (1) has

been neglected for simplicity (δc ≪ 1) and the perpendicular dissipation (ν andχ⊥ terms) have

not been written. Without the terms related to the magnetic curvature, Eq. (5) would imply

φeq
mn= 0. Far from theq = 3 resonant surface, the perpendicular heat conduction is negligible
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Figure 4:Radial profiles of the real part ofpeq
m0,n and the imaginary part ofφeq

m0,n in an equilibrium with

magnetic island in a case with cylindrical curvature and constantψ .

with respect to the parallel one and the pressure componentpeq
m0,n is determined – whenφeq

mn= 0

– by the balance of the last two terms in Eq. (6) [8]: peq
m0,n =−κ

1
x

ψ(x)
2

. (7)

When accounting for the magnetic curvature, the pressure componentpeq
m0,n is still approxi-

matively given by Eq. (7), and the potential harmonics are then determined by Eq. (5). This can

be verified in a simplified cylindrical geometry withG = g0∂y. Fig. 4 shows the corresponding

profiles ofpeq
m0,n, φeq

m0,n as well as the asymptotic solution (7) forg0 = 0.7 andψ(x) = ψ0. Note

that close to the resonant surface, according to Ref. [8], noanalytical prediction forpeq
m0,n is

available, as the actual island widthW = 4
√ψ0 = 7.9 is comparable to the critical island width

Wc =
√

8
(
χ‖/χ⊥

)1/4
/
√

ky = 18.

In conclusion, the plasma equilibrium in the presence of a magnetic island chain is character-

ized by both, a non-axisymmetric pressure structure, arising mainly from the balance between

parallel and perpendicular heat conductivity, and a non-axisymmetric potential structure, aris-

ing from the coupling between pressure and potential due to magnetic curvature. The phase

difference between these structures is such that they give rise to convective transport which is

known to play a significant role in the erosion of the transport barrier in turbulence simulations

of barrier relaxations.
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