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I. Introduction. There is increasing experimental, numerical, and theoretical evidence that

transport processes in fusion plasmas can, under certain circumstances, depart from the stan-

dard local, diffusive transport description. Some experimental examples include fast pulse prop-

agation phenomena in perturbative experiments, non-diffusive scaling in L-mode plasmas, and

non-Gaussian statistics of fluctuations. Non-diffusive transport has also been documented in

numerical studies of turbulent transport in fluid and gyrokinetic simulations. From the theoret-

ical perspective, non-diffusive transport descriptions naturally arise from the relaxation of the

restrictive assumptions (e.g., locality, scale separation, and Gaussian/Markovian statistics) that

lay at the foundation of diffusive models, see for example [1] and references therein.
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Figure 1: Non-local tunneling across ITB. Left column:

spatio-temporal evolution of temperature perturbation, δT .

Right column: flux perturbation, δq. Top row: diffusive

transport in the absence of ITB. Middle row: diffusive trans-

port in the presence of ITB. Bottom row: non-local transport

in the presence of ITB.

In previous publications [2,3,4]

we proposed an alternative class

of models able to capture some

of the experimentally and nu-

merically observed non-diffusive

transport phenomenology. The

models are based on the use

of a type of non-local integro-

differential operators known as

fractional derivatives. These op-

erators provide a unifying frame-

work to describe non- Fick-

ian scale-free transport, non-

Markovian (memory) effects, and

non-diffusive scaling. In Ref.[4]

the model was applied to describe

perturbative experiments in JET

involving fast cold pulse propa-

gation and ICRH power modula-

tion. Here we present recent re-

sult on the role of internal transport barriers (ITB) on non-local transport. In particular we
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explore in detail the interplay between non-locality and transport suppression in perturbative

transport. Motivated by experimental results we consider two types of perturbations: cold edge

pulses and power modulation. A problem of specific interest is the “tunneling" of perturbations

through the ITBs.

II. Model. We consider one-dimensional radial heat transport in a constant density plasma in

the slab approximation

∂t [3/2nT ] =−∂xq+S , (1)

where n denotes the plasma density, T is the temperature, q is the heat flux, S is the source, and

x ∈ (0,1) is a normalized radial coordinate with x = 0 denoting the magnetic axis and x = 1 the

plasma edge. The flux, q = qd + qnl , is assumed to consists of a diffusive component, qd , and

a non-local component qnl . The diffusive component is modeled using the local Fourier-Fick’s

prescription qd =−χd n∂xT where χd the heat diffusivity which can depend on x, t, and in the

case of nonlinear models on T and its gradients. Following Refs. [3,4] we assume a non-local

flux of the form

qnl =−χnl n [l aD
α
x − r xD

α
b ]T , (2)

where

aD
α
x T =

1
Γ(2−α)

∫ x

a

T ′(y)−T ′(a)
(x− y)α−1 dy , xD

α
b T =

−1
Γ(2−α)

∫ b

x

T ′(y)−T ′(b)
(y− x)α−1 dy , (3)

with T ′ = ∂yT . The parameters l and r control the asymmetry of the integro-differential op-

erators. Here we will limit attention to the symmetric case l = r = 1/[2cos(απ/2)]. For the

boundary conditions we assume zero total heat flux at the magnetic axis, and fixed temperature

at the edge, q(x = 0, t) = [qd +qnl] (x = 0, t) = 0, and T (x = 1, t) = 0. Details on the physi-

cal motivation and mathematical properties of the non-local operator as well as the numerical

method used in the integration can be found in Ref. [1-4]. The local and non-local diffusivities

are assumed to be of the form

χd = χd0−ζ e−(x−x0)
2/w , χnl =

χnl0

2

[
tanh

(
x− xc

L

)
+ tanh

(xc

L

)]
−ζ e−(x−x0)

2/w . (4)

The tanh profile in χnl is introduced to guarantee the vanishing of the non-local flux in the core

region where transport is assumed to be dominated by diffusive processes. The ITB is modeled

by introducing a dip, e−(x−x0)
2/w, in the diffusivity profiles. In the calculations reported here

χd0 = 1, x0 = 0.5, ζ = 0.95, χnl0 = 1, xc = 0.1, and L = 0.025. For the cold pulse simulations

w = 0.005 and for the heat wave modulation simulations w = 0.0025. In the non-local simula-

tions, α = 1.25. The first step in the simulations is the computation of the steady equilibrium
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temperature profile, T0(x), in the presence of an on-axis source of the form

S = S0 exp
[
−(x−µs)

2

2σ2
s

]
, (5)

with µs = 0, and σs = 0.075. For each run, the source amplitude was selected so that T0(0) = 1.

The simulations followed the spatio-temporal evolution of the perturbed temperature, δT (x, t)=

T (x, t) − T0(x), and the perturbed flux, δq(x, t) = q(x, t) − q0(x)
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Figure 2: Temperature traces exhibiting heating response

from cold pulse due to non-local transport in the presence

of ITB. Black curve: diffusive transport with ITB at x = 0.5.

Blue curve: α = 1.25 non-local transport without ITB. Red

curve: α = 1.25 non-local transport with ITB at x = 0.5.

III. Perturbative transport. For

the cold pulse simulations we

considered an initial condition of

the form

δT (x,0)=−Aexp

[
−(x−µp)

2

2σ2
p

]
,

(6)

with A = −0.3, µp = 0.75 and

σp = 0.03. Figure 1 shows the

spatio-temporal evolution of δT

and δq. In the case of pure dif-

fusive transport, χnl0 = 0, in the

absence of ITBs the pulse spreads

throughout the plasma domain in

a diffusive time scale. As ex-

pected, in the presence of an ITB

the diffusive propagation of the

pulse is stopped and the diffusive

flux hardly penetrates past the ITB location. However, in the presence of non-local transport the

pulse dynamics is fundamentally different. As Fig. 1 shows, in this case the pulse can in fact

go through the ITB. This “tunneling" effect is a unique novel property of non-local transport

that results from the long range “tongues" in the flux. Another interesting unique signature of

non-local transport is observed in the time traces of the normalized temperature perturbation in

Fig. 2. Consistent with the results reported in Ref [4], in the absence of ITBS, long and short

time responses are observed in the diffusive and non-local cases respectively. However, as the

red temperature trace shows, in the presence of ITB, the non-local transport of the cold pulse

can give rise to heating right after the ITB.
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In the power modulation studies we considered, in addition to the on axis source an off-axis

source that includes a time-periodic amplitude modulation of the form

Soa = S0
8 [3− cos(2πνt)] exp

[
− (x−µoa)

2

2σ2
oa

]
where µoa = 0.75 and σ2

oa = 0.075.
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Figure 3: Heat wave propagation in the presence of ITBs.

Left column: diffusive transport. Right column: non-local

transport. Top row: spatio-temporal evolution of tempera-

ture perturbation. Middle row: amplitude of dominant har-

monic. Bottom row: phase of dominant harmonic. The

dashed vertical line indicates the location of the ITB. The

brown solid line indicates the location of the modulating

source.

The propagation properties of the

temperature perturbation are de-

termined by the amplitude pro-

files, An(x), and the phase pro-

files, Φn(x), for the different har-

monics n= 1,2 . . .. Here we focus

on the n = 1 dominant harmonic.

As shown in Fig. 3, in the purely

diffusive case it is observed that

the heat wave is strongly damped

and slowed down by the ITB.

However, the behavior is quite

different in the presence of non-

local transport. In this case it is

observed that the wave can tunnel

through the ITB and reappear on

the other with a smaller, but none-

glegible amplitude. Also, a region

of counter propagating waves is

observed on the inner side of the

ITB.
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