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I. Introduction
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Figure 1: Zonal flow bifurcation due to

FLR effects. The red curves indicate the

location of the shearless transport bar-

rier(s). The black curves denote the lo-

cation of the critical layer resonance

for different mode phase velocities, η =

0.6,0.5,0.4,0.3,0.2 and 0.1.

The relationship between transport and shear is

a problem of considerable interest in magnetically

confined plasmas. It is well known that there are

cases in which an increase of flow shear can lead

to a reduction of turbulent transport. However, this

is not a generic result, and there are transport prob-

lems in which the opposite is the case. In particu-

lar, barriers to chaotic transport can form in regions

of vanishing shear [1,2]. This property, which is

generic to the so-called non-twist Hamiltonian sys-

tems [3] explains the observed resilience of trans-

port barriers in non-monotonic zonal flows in plas-

mas and fluids and the robustness of shearless mag-

netic surfaces in reverse shear configurations. Here

we study the role of finite Larmor radius (FLR) ef-

fects on chaotic transport in non-monotonic shear

flows.

II. Test particle transport model

When FLR effects can be neglected, test particle transport is governed by the guiding center

equations of motion. In the E×B approximation with B = B0ẑ, and E =−∇φ(x,y, t) the equa-

tions correspond to a Hamiltonian dynamical system with (x,y) playing the role of canonically

conjugate variables and φ playing the role of the Hamiltonian. To incorporate FLR effects we

gyroaverage the E×B Hamiltonian system [4]

dx
dt

=−
〈

∂φ
∂y

〉

θ
,

dy
dt

=

〈
∂φ
∂x

〉

θ
(1)

where the gyroaverage, 〈〉θ , is defined as 〈Ψ〉θ ≡ 1
2π

∫ 2π
0 Ψ(x+ρ cosθ ,y+ρ sinθ)dθ . This
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is a good approximation provided the gyrofrequency is greater than other frequencies in the

system.

Following [1,2] we assume the system is near marginal stability and model φ as a superpo-

sition of regular neutral modes of the Hasegawa-Mima equation. As a paradigmatic example

of non-monotonic zonal shear flows we consider û0(x) = sech2x for which the Hamiltonian for

two modes (in the co-moving reference frame of mode 1) is

φ = tanhx−ηx+ ε1sech2x cos(k1y)+ ε2sech2x cos(k2y−ωt) . (2)

Substituting Eq. (2) into (1) and doing the gyroaverage leads to the following test particle model

for chaotic transport including finite Larmor radius effects

dx
dt = ε1k1Ik1,ρ(x)sink1y+ ε2k2Ik2,ρ(x)sin(k2y−ωt) ,
dy
dt = I0,ρ(x)−η −2ε1Kk1,ρ(x)cosk1y−2ε2Kk2,ρ(x)cos(k2y−ωt) .

(3)

where

Ik,ρ(x) =
1
π

∫ π

0
sech2 (x−ρ cosθ)cos(kρ sinθ)dθ , (4)

Kk,ρ(x) =
1
π

∫ π

0
sech2 (x−ρ cosθ) tanh(x−ρ cosθ)cos(kρ sinθ)dθ , (5)

III. Zonal flow and streamline topology bifurcations For ρ = 0 the zonal flow has a single

maximum since the velocity field has a simple sech2x dependence. However, as ρ increases

the flow u0(x) = I0ρ(x) exhibits a bifurcation leading to additional extrema, which are related

to shearless barriers. Fig.(1) tracks the location of the zonal flow shearless barriers defined as

σ0(x;η ,ρ) = ∂ 2〈φ〉θ/∂x2 = −2K0ρ(x) = 0. For ρ ≤ 1.33 there is only one shearless region

(single maximum of u0) and for larger ρ there is a bifurcation (two maxima and a central

minimum). The first step to understand the effect of normal modes on transport is to study

the location of the resonances located where the propagation velocity of the mode matches the

velocity of the zonal flow. For a single mode, these are defined by I0ρ(x)−η = 0 and are shown

in Fig.(1) with solid black lines for several values of η .

As discussed in [1,2], in the case ρ = 0, the streamlines (iso-contours of φ ) can exhibit

separatrix reconnection which is a global change in the phase space topology. For the case of

symmetric zonal flows the topology can change for heteroclinic (in which two hyperbolic points

are joined by the separatrix) to homoclinic (in which the separatrix joins the stable and unstable

manifolds of the same hyperbolic point). The FLR effects play a very interesting role in separa-

trix reconnection. In particular, it is observed that as the Larmor radius increases, the topology of

the Hamiltonian changes from the heteroclinic topology for small values of ρ to the homoclinic
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topology at intermediate values of ρ . Moreover, in the case for large enough ρ , the trapping re-

gions around the elliptic fixed points disappear and the dynamics is dominated by a strong wavy

parallel zonal flow.
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Figure 2: Double separatrix reconnec-

tion due to FLR effects with ρ = 3.25.

Top-left panel double heteroclinic topol-

ogy; Top-right panel double homoclinic

topology; Bottom-left panel heteroclinic-

homoclinic topology; Bottom-right panel

double reconnection topology;

It is also interesting to observe that, as Fig. 2

shows, for parameter values for which the zonal

flow has bifurcated and created two maxima (see

Fig. 1) it is possible to have double separatrix re-

connection.

IV. Shearless transport barrier

FLR can have also a remarkable effect on chaotic

transport. In particular, as Fig.3 shows, increasing

the Larmor radius can suppress chaotic transport

and restore transport barriers that would otherwise

be destroyed in the case ρ = 0. To quantify this we

have performed a numerical study of the destruc-

tion of the shear barrier as function of ρ and the

perturbation amplitude ε2. The results are shown in

Fig. 4. For each value of ρ there is a critical ε2 for

barrier destruction and this forms a boundary in the

ρ − ε plane as shown in Fig. 4, where red marks indicate where barrier first breaks up and

blue means a robust barrier. As anticipated, FLR effects in general restore destroyed barri-

ers but, interestingly, the critical ε2 is not a monotonic function of ρ . For ρ ≥ 0.5 barrier is

completely restored. The computation of the threshold was performed by following the evo-

lution of the so called indicator points (IP), which are defined as those conforming to the re-

lation, GT (x,y) = SI0(x,y) = (−x,−y+π/k1), where GT is the evolution operator for a time

equal to the period of the perturbation T , for the case k2 = k1 [5]. The symmetry transforma-

tions are: S = {x′ = −x;y′ = y+π/k1} and I0 = {x′ = x;y′ = −y}. To find the IP the function

r(x,y) = ||GT (x,y)− (−x,−y+π/k1|| is minimized, with the additional condition r(x,y) = 0.

For our case there is a single IP in the neighborhood of (0,1) whose iteration (Poincaré map)

generates the shearless curve (SC) for the corresponding topology. When the perturbation am-

plitude ε2 is increased, the SC transits from a 1D curve to a stochastic layer and finally to a

chaotic state. The later case is when the transport barrier is destroyed, which we define as the

state when the mapping of the IP crosses the unperturbed separatrix (ε2 = 0) in 3 ·104 iterations.
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Figure 3: Chaos suppression due to

FLR effects for ω = 2.3, k1 = k2 = 2,

ε1 = ε2 = 0.5, η . Top panel, ρ = 0.

Bottom panel ρ = 0.75.

V. Conclusions

The role of finite Larmor radius effects on chaotic

test particle transport was studied in the context

of a Hamiltonian dynamical systems. Based on the

marginal stability assumption, the Hamiltonian was

modeled as the superposition of a non-monotonic

zonal shear flow and two regular neutral models of the

Hasegawa-Mima equation. FLR effects where incor-

porated through a gyro-average of the E×B Hamilto-

nian. This paper has provided numerical evidence of

the following novel effects of the role of Larmor ra-

dius on chaotic transport: (i) Bifurcation of the zonal

flow leading to the creation of additional exrema in the

zonal flow profile; (ii) Double heteroclinic-homoclinic

separatrix reconnection; and (iii) Chaotic transport

suppression and transport barrier restauration.
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Figure 4: Threshold for transport barrier de-

struction. At and to the right of the red marks

barrier is broken.
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