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1. Introduction

The relationship between transport and shear is

Red=shearless black=resonance 1=0.1,0.2,0.3,0.4,0.5,0.6
T T T T T

a problem of considerable interest in magnetically =
confined plasmas. It is well known that there are
cases in which an increase of flow shear can lead

to a reduction of turbulent transport. However, this

is not a generic result, and there are transport prob-
lems in which the opposite is the case. In particu-

lar, barriers to chaotic transport can form in regions

of vanishing shear [1,2]. This property, which is

generic to the so-called non-twist Hamiltonian sys-

tems [3] explains the observed resilience of trans- Figure 1: Zonal flow bifurcation due to

port barriers in non-monotonic zonal flows in plas- LR effects. The red curves indicate the

mas and fluids and the robustness of shearless mag- 10cation of the shearless transport bar-

netic surfaces in reverse shear configurations. Here T€r(s). The black curves denote the lo-

we study the role of finite Larmor radius (FLR) ef- cation of the critical layer resonance

for different mode phase velocities, n =

0.6,0.5,0.4,0.3,0.2 and 0.1,

fects on chaotic transport in non-monotonic shear

flows.

II. Test particle transport model

When FLR effects can be neglected, test particle transport is governed by the guiding center
equations of motion. In the E x B approximation with B = Byz, and E = —V¢(x,y,?) the equa-
tions correspond to a Hamiltonian dynamical system with (x,y) playing the role of canonically
conjugate variables and ¢ playing the role of the Hamiltonian. To incorporate FLR effects we

gyroaverage the E x B Hamiltonian system [4]

@__<9_¢> @_<a_¢> (1)
dt Ay /e’ dt — \dx/,

where the gyroaverage, (), is defined as (V) = ﬁfom‘l’(x-i—pcos 0,y+psin0)do . This
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is a good approximation provided the gyrofrequency is greater than other frequencies in the
system.

Following [1,2] we assume the system is near marginal stability and model ¢ as a superpo-
sition of regular neutral modes of the Hasegawa-Mima equation. As a paradigmatic example
of non-monotonic zonal shear flows we consider fig(x) = sech®x for which the Hamiltonian for

two modes (in the co-moving reference frame of mode 1) is
¢ = tanhx — nx + &;sech’x cos (kyy) + &sech?x cos (koy — ot) . 2)

Substituting Eq. (2) into (1) and doing the gyroaverage leads to the following test particle model

for chaotic transport including finite Larmor radius effects

L = g1kilyy p(x) sinkyy + &xkoli, p (x) sin (koy — o) | 3
D — o p(x) =1 —2€ Ky, p(x)coskry — 26Ky, p(x) cos (kay — f) .
where
Iip(x) = % /On sech? (x — p cos @) cos (kpsin0)d6 4)
1 (7
Kip(x) = p /0 sech? (x — p cos @) tanh (x — p cos 8) cos (kp sin ) d6 ®)

II1. Zonal flow and streamline topology bifurcations For p = 0 the zonal flow has a single
maximum since the velocity field has a simple sech’x dependence. However, as p increases
the flow ug(x) = Ipp (x) exhibits a bifurcation leading to additional extrema, which are related
to shearless barriers. Fig.(1) tracks the location of the zonal flow shearless barriers defined as
oo(x;1,p) = 9*(9)g/dx> = —2Kop(x) = 0. For p < 1.33 there is only one shearless region
(single maximum of up) and for larger p there is a bifurcation (two maxima and a central
minimum). The first step to understand the effect of normal modes on transport is to study
the location of the resonances located where the propagation velocity of the mode matches the
velocity of the zonal flow. For a single mode, these are defined by Iy, (x) — 1 = 0 and are shown
in Fig.(1) with solid black lines for several values of 7.

As discussed in [1,2], in the case p = 0, the streamlines (iso-contours of ¢) can exhibit
separatrix reconnection which is a global change in the phase space topology. For the case of
symmetric zonal flows the topology can change for heteroclinic (in which two hyperbolic points
are joined by the separatrix) to homoclinic (in which the separatrix joins the stable and unstable
manifolds of the same hyperbolic point). The FLR effects play a very interesting role in separa-
trix reconnection. In particular, it is observed that as the Larmor radius increases, the topology of

the Hamiltonian changes from the heteroclinic topology for small values of p to the homoclinic
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topology at intermediate values of p. Moreover, in the case for large enough p, the trapping re-
gions around the elliptic fixed points disappear and the dynamics is dominated by a strong wavy

parallel zonal flow.

It is also interesting to observe that, as Fig. 2
shows, for parameter values for which the zonal

flow has bifurcated and created two maxima (see

Fig. 1) it is possible to have double separatrix re-

connection.

IV. Shearless transport barrier

FLR can have also a remarkable effect on chaotic

transport. In particular, as Fig.3 shows, increasing

the Larmor radius can suppress chaotic transport Figure 2: Double separatrix reconnec-
and restore transport barriers that would otherwise tion due to FLR effects with p = 3.25.
be destroyed in the case p = 0. To quantify this we Top-left panel double heteroclinic topol-
have performed a numerical study of the destruc- ogy; Top-right panel double homoclinic
tion of the shear barrier as function of p and the topology; Bottom-left panel heteroclinic-
perturbation amplitude &. The results are shown in  homoclinic topology; Bottom-right panel
Fig. 4. For each value of p there is a critical & for double reconnection topology;

barrier destruction and this forms a boundary in the

p — € plane as shown in Fig. 4, where red marks indicate where barrier first breaks up and
blue means a robust barrier. As anticipated, FLR effects in general restore destroyed barri-
ers but, interestingly, the critical & is not a monotonic function of p. For p > 0.5 barrier is
completely restored. The computation of the threshold was performed by following the evo-
lution of the so called indicator points (IP), which are defined as those conforming to the re-
lation, Gr(x,y) = SIy(x,y) = (—x,—y+ 7w /k;), where Gr is the evolution operator for a time
equal to the period of the perturbation 7', for the case k = kj [5]. The symmetry transforma-
tions are: § = {x' = —x;y = y+7/k; } and Iy = {x' = x;y/ = —y}. To find the IP the function
r(x,y) =1||Gr(x,y) — (—x,—y+ 7 /k;|| is minimized, with the additional condition r(x,y) = 0.
For our case there is a single IP in the neighborhood of (0,1) whose iteration (Poincaré map)
generates the shearless curve (SC) for the corresponding topology. When the perturbation am-
plitude & is increased, the SC transits from a 1D curve to a stochastic layer and finally to a
chaotic state. The later case is when the transport barrier is destroyed, which we define as the

state when the mapping of the IP crosses the unperturbed separatrix (€, = 0) in 3 - 10* iterations.
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V. Conclusions

The role of finite Larmor radius effects on chaotic
test particle transport was studied in the context
of a Hamiltonian dynamical systems. Based on the
marginal stability assumption, the Hamiltonian was
modeled as the superposition of a non-monotonic
zonal shear flow and two regular neutral models of the
Hasegawa-Mima equation. FLR effects where incor-
porated through a gyro-average of the E x B Hamilto-
nian. This paper has provided numerical evidence of
the following novel effects of the role of Larmor ra-
dius on chaotic transport: (i) Bifurcation of the zonal
flow leading to the creation of additional exrema in the
zonal flow profile; (ii) Double heteroclinic-homoclinic
separatrix reconnection; and (iii) Chaotic transport

suppression and transport barrier restauration.
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Figure 3: Chaos suppression due to
FLR effects for w = 2.3, k| =k, = 2,
& =& = 0.5, n. Top panel, p = 0.
Bottom panel p = 0.75.
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Figure 4: Threshold for transport barrier de-
struction. At and to the right of the red marks

barrier is broken.



