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Introduction: Impurities in fusion plasmas dilute the fuel and increase radiation losses
reducing core fusion power. At the edge where there is little fusion power, radiation spreads
heat loads reducing damage to plasma facing materials. Thus measuring the impurity
distribution, as well as overall concentration is important in order to identify regimes
achieving hollow profiles, where impurity concentrations are highest at the plasma edge.
Recent analysis of carbon charge exchange emission data was undertaken on MAST and C°
density profiles are now routinely calculated at 1cm spatial resolution. This paper presents a
summary of the typical carbon density distributions observed on MAST in various scenarios
along with preliminary analysis.

Carbon Densities Measured by Charge eXchange Recombination Spectroscopy (CXRS):
CX emission occurs as excited ions created by electron transfer from donor atoms, transit to
lower energy states. Emission brightness varies with the product of neutral donor atom and
acceptor ion density in the plasma. As most carbon CX emission in the plasma centre is a
result of charge exchange from the neutral beam, carbon density is given by the expression:
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where n. is carbon density, B is CX emission brightness, <ns> is sight line averaged beam

n

c

neutral density for each given energy species j, <ov'> is the charge exchange emission rate
coefficient and L is sight line length. CX emission is measured on MAST by a high spatial
resolution (~1cm) spectrometer CELESTE-3 [1]. The measured beam power and known beam
geometry is input into a code to calculate the beam attenuation and from this beam density
using stopping coefficients obtained from ADAS[2]. Due to uncertainties in ADAS cross-
sections and beam species fractions, errors are hard to estimate so cross diagnostic
consistency checks are essential.

Data Consistency Checks: To check the modelled beam density, the beam D, emission was
predicted using the beam density, electron density (n.) and ADAS D, rate coefficients. This

was compared with measured beam D, emission. The ratio between measured and predicted
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emission varied by only ~15% at different radial

points in spite of a factor of 5 difference in beam
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While the ratio was close to constant, it was ~0.7
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and not unity. Other tokamaks show similar  gig 1 7 ; profiles from CXRS (black) and
ZEBRA (red) for L-mode plasmas
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however this new data has not yet been used at experiment (bars)
MAST. Thus beam density was not inferred from beam D, but was taken from the code.

Zsr profiles calculated from carbon densities (CXRS) assuming carbon to be the
dominant impurity, were compared to visible bremsstrahlung Z¢ profiles from the ZEBRA[S5]
diagnostic (Fig. 1.). The profiles had similar central Z.s in L-mode with disagreement at edge
due to molecular emission and partial ionization of carbon while in H-mode Z. from CXRS
and ZEBRA tended to differ in magnitude though the shapes of both profiles looked similar.
A comparison with the forward modelled soft X-rays using Z.y from carbon agreed better
with the measurement than when Z.¢ =1 was assumed (Fig. 2.).

Observations: MAST carbon densities typically exhibit 3 main profile categories, (Fig. 3.),
centrally peaked profiles both in Z¢ and n (a), profiles with slight peaking in n, but with flat
Zr (b) and finally hollow n, profiles (c). Highly peaked profiles are typical immediately after
the start of NBI heating while plasmas are still Ohmic-like. These impurity profiles show

similarities to Ohmic profiles observed at CDX-U[6]. In MAST they are typified by a low,
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Fig 3. 3 carbon profile types mainly observed at (Left) beam cut on, (centre) L-mode and (right) H-mode
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flat level of impurities outside r/a ~0.5 with an increase in the n. gradient inside ( often
coinciding with negative shear region) and high central impurity concentrations. This profile
type is also seen well after the beam starts in discharges with counter current beam injection
and in cases of co-current injection with ITBs. Discharges with high central n, usually also
show central peaking for n, though this is less pronounced. Weak centrally peaked profiles
with flat Z.y profiles are typical of L-modes without ITBs. Hollow impurity profiles are
typical of H- modes. Both L-modes and H-modes occasionally have carbon density “bumps”
localized at mid-radius which are also sometimes observed in n. by Thomson Scattering (Fig.
4). Preliminary investigation of these bumps show they have a tendency to occur in regions of
minimum absolute shear close to the q=1 surface during weak ITBs. Similar mid-radius
bumps have been observed on JET[7] and NSTX[8]. In addition to generic profile features,
transient events (Fig. 5) also can have a large impact on carbon profiles. Large amounts of
carbon were seen to migrate towards the plasma centre from the edge following an Internal

Reconnection Event (IRE) that occurred during H-mode. Inwards migration of carbon was

also observed following pellet injection. Finally a 10° 23408 200ms
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Neoclassical Carbon Transport Comparisons: Fig. 4 mid-radius bump in carbon (top) from

The module NCLASS[9] was run through the driver CXRS radially coincides with bump in electron
density seen by Thomson Scattering (bottom)
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equal to the ratio (v/D). Agreement indicates o carbon density 23496 190ms
that neoclassical effects dominate impurity é ;gz ]
transport while disagreement  indicates g Mo
anomalous effects dominate. FORCEBAL was NCLASS transport comparison
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cases, the (v/D) terms’ magnitudes were mode pulse compared with inverse impurity scale
length (bottom) for carbon density profile (top)

similar in size to 1/L., but had opposite sign.

When inverted the v/D profile shared many qualitative short scale length radial features with
1/L.. This is being investigated further.

Summary

MAST H-modes frequently displayed hollow impurity profiles that in principle would be
beneficial for a reactor, however whether these can be maintained in steady state for long
periods remains uncertain. Many observations of MAST carbon behaviour, such as mid-
radius peaking are similar to observations on other machines[7][8]. Central accumulation was
observed to occur slowly during ITBs and rapidly after Internal Reconnection Events while
snake-like instabilities were seen to flush impurities from the core without significant
temperature reduction. These marked differences demonstrate that MAST carbon profiles are
highly sensitive to plasma conditions so understanding the effect of plasma events on
impurity distribution is essential for the impurity seeded plasmas of future reactors.
Preliminary comparisons of carbon density gradients with neoclassical v/D ratios from
FORCEBAL have been made though further investigation will be required to form definite

conclusions.
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