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Introduction

Reduced kinetic models such as gyrokinetic models are constructed by phase sysioe tra
mation from particle phase space to guiding-centre phase space. The quasitpeatndition
or the Poisson equation for electrostatic potential as well as the Vlasoti@ysihould be mod-
ified in the reduced models[1]. Since guiding-centre density which is obtaiaediftegration
of guiding-centre distribution function is generally different from particle dgrdiie to finite
Larmor radius effects, it is needed to represent the particle densitynis tef guiding-centre
things. It is called push-forward representation of particle density[2]eRyca reduced phase
space Lagrangian with large x B flow which is observed in transport barrier regions such as
a tokamak edge in an H-mode regime and an internal transport barrier in segarear toka-
mak was derived by modifying the standard guiding-centre transformation[3]. The ppase
Lagrangian for dynamics of a single particle with masand electric chargg is given by

Lp:qA*.mgué—H, (1)

whereZ = (X,U, u, &) are the guiding-centre coordinatés, = A + (m/q)UE), H the guiding-
centre Hamiltonian. The model can be regarded as a natural extension of thedstandat to

the large flow regime because the symplectic part of the Lagrangian is the sémeestendard
guiding-centre one formally, while the Hamiltoni&his not the standard one. In conventional
models with large flowA* includes a flow term which changes the standard symplectic structure
when the flow is time-varying[4]. The phase space Lagrangian similar to thenp@seis also
found in [5]. We derive the push-forward representation of particle densibcidsd with the
modified guiding-centre transformation. The representation can be derived byays @ne

is to expand the exact representation perturbatively. The other one is aoralatiethod by
which the representation is derived from the single particle Lagrangiann(ifid paper we

assume that a magnetic field is independent of time and consider only the el¢ictazsta.
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Perturbative expansion of the exact representation

A general particle fluid moment is defined by

ma(r) = [ (”;‘g?) v, £83(x—r)dxdv, )
wheref is the particle distribution functionw = |v, — vg| the perpendicular particle velocity
in a frame moving with th& x B velocity vg, v the parallel particle velocity. The particle fluid
moment can be written in terms of the guiding-centre distribution fundiicand the push-

forward transformation associated with the guiding-centre transformagighas

ma(r) = /dﬁz/u[ {(”;ﬁf) ¢|}]<Z>F<Z>53<Teéx—r>, @

where_# = B} /mis the Jacobian witB| = b-B*andB* = O x A*, andTgix = X +p + pg +
- denotes the particle position in the guiding-centre phase spacepwiﬂﬁ) XW/Q, pg =
b x ve/Q andQ = gB/m. The velocity variables are related with the guiding-centre variables

as

mw?
2B

whereG! andGY areu andU components of the vector field generating the guiding-centre
1 1

=Uu-— Gl+ , V”:U—Glf'f"", (4)

transformation at first order iai(¢ ~ p/L), respectively. Equation (3) is the formal exact repre-
sentation. Assuming that thiex B velocity is subsoniwg ~ e1/2y; (v the ion thermal speed)
and expanding the above exact representation perturbatively, we have the pusstu-fieapre-
sentation ofmy up toO(£?)[6],

B 1 10 Mgy My b x OMyq
ma =M+ 30 | 28] 4 0 [ GR0 ] e XL )
whereMy, is a guiding-centre fluid moment defined by
My = /uku'F/dUdudf. (6)

The last term on the right hand side of Eq. (5) does not appear in the one obtained from the
standard gyrokinetic theory in whiah is used for the magnetic moment[7]. The exact repre-

sentation usually used in the standard gyrokinetic theory is given by[8]

k
ma(r) = [¢Z (@) [Teé*{(r‘;—é) v}] DTS T -1, )

whereZ denotes the gyro-centre coordinates drg the pull-back transformation associated

with the transformation from the guiding-centre phase space to the gyro-centregplaase
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Although it seems to be different from Eq. (3), direct correspondence betweentihese

found by considering the alternative exact representation for the standard gyicsfieFor

k =1 = 0 we have the push-forward representation of particle density,
B 1 O,P N
n_N+2D [qQB} 0- [BQDM’] (8)

wheren = mgg, N = Mgp and P, = BMyo are patrticle density, guiding-center density and
guiding-centre pependicular pressure, respectively. This representatiorsatieeas the stan-

dard one formally.

Variational derivation
The push-forward representation of particle density can be derived from the piadicle
Lagrangian (1). To this end, we consider a functional derivative of the action dmatti =
ttlz Ldt with a Lagrangian for the Vlasov-Poisson system[10],

L= Z/dsz’/(z/)F(Z’,t’)L Zp(Z',151),Z,(Z',151), /d3x4—qu F, (9)
wherey denotes a sum over speci&s,(Z’,t’;t) denotes the guiding-centre coordinates of the
particle att with the initial conditionZ p(Z’,t';t") = Z’, 1 is permeability of vacuum and the
electromagnetic field tenséris defined byF,, = 9, A, — dy A, with the covariant four vector
potential A, = (—¢/c,A) and the four gradient operatey, = ((1/c)d;,0). o1 /0¢(r) =
yields a reduced Poisson equation in which charge density is expressed imte¢heguiding-
centre things. We can obtain the push-forward representation of particleydepsibomparing
the charge density in the reduced Poisson equation with the particle charge densit our
guiding-centre model the general push-forward representation of particle dengivgn by

1 SH(Z)
=5 LA OF@ G (10)

whereH is the guiding-centre Hamiltonian addH (Z) /¢ (r) is the functional derivative dfl
with respect tap (r). First we consider

_ Moz M2 M b.
H=a¢+5U%+uB 2v§+2qub 0 X Vg (11)

which is valid in well localised transport barrier regions with subsoniw[f. It is similar to
the standard gyrokinetic Hamiltonian in the long wavelength limit. SincenbtH itself but
O0H /¢ that is necessary for the push-forward representation of particle dehtgyificient
to keep in mind underlined terms which inclugleSubstituting the above Hamiltonian into Eq.

(10) and integrating by parts yield Eq. (8). The first underlined term leads to théefins in
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Eq. (8), the second leads to the term includgngnd finally the third leads to the term wikh .
Thus the variational method is more transparent and useful than the perturbatineierpe

the exact representation if the guiding-centre Hamiltonian is known. When the esstiopdart

of Lp containsg as in the conventional formulations with large flow[4], we have to consider its

contribution in addition to the guiding-centre Hamiltonian.

Transonic flow case
In this section we derive the push-forward representation in the transomcéise by the
variational method. When tHe x B velocity is comparable to the thermal velocity, we have to

use the following Hamilatonian[3],

M2 g Mo M MEN
H=0q¢+5U"+uB 2VE+2q<u+ 28>b 0 x Vg, (12)

which is still limited to the localised transport barrier case. From(EQ@) we obtain
nondo R (p NMEY] g | (1 D) N
- U2 20 /BQ

. 13
2 qQB (13)
The additional terms appear as corrections to the polarisation density. The fiisttbeecor-

rection toP, . The second one is the correction by the vorticity which gives a term proportional
to enstrophy density. They are nonlinearftdbecause they come from the cubic ternvefin

the Hamiltonian.
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