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Introduction

Reduced kinetic models such as gyrokinetic models are constructed by phase space transfor-

mation from particle phase space to guiding-centre phase space. The quasi-neutrality condition

or the Poisson equation for electrostatic potential as well as the Vlasov equation should be mod-

ified in the reduced models[1]. Since guiding-centre density which is obtained from integration

of guiding-centre distribution function is generally different from particle density due to finite

Larmor radius effects, it is needed to represent the particle density in terms of guiding-centre

things. It is called push-forward representation of particle density[2]. Recently a reduced phase

space Lagrangian with largeE×B flow which is observed in transport barrier regions such as

a tokamak edge in an H-mode regime and an internal transport barrier in a reversed shear toka-

mak was derived by modifying the standard guiding-centre transformation[3]. The phase space

Lagrangian for dynamics of a single particle with massmand electric chargeq is given by

Lp = qA∗ · Ẋ+
m
q

µξ̇ −H, (1)

whereZ = (X,U,µ,ξ ) are the guiding-centre coordinates,A∗ = A+(m/q)Ub̂, H the guiding-

centre Hamiltonian. The model can be regarded as a natural extension of the standard model to

the large flow regime because the symplectic part of the Lagrangian is the same asthe standard

guiding-centre one formally, while the HamiltonianH is not the standard one. In conventional

models with large flow,A∗ includes a flow term which changes the standard symplectic structure

when the flow is time-varying[4]. The phase space Lagrangian similar to the present one is also

found in [5]. We derive the push-forward representation of particle density associated with the

modified guiding-centre transformation. The representation can be derived by two ways. One

is to expand the exact representation perturbatively. The other one is a variational method by

which the representation is derived from the single particle Lagrangian (1). In this paper we

assume that a magnetic field is independent of time and consider only the electrostatic case.
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Perturbative expansion of the exact representation

A general particle fluid moment is defined by

mkl(r)≡
∫ (

mw2

2B

)k

vl
‖ f δ 3(x− r)d3xd3v, (2)

where f is the particle distribution function,w= |v⊥− vE| the perpendicular particle velocity

in a frame moving with theE×B velocityvE, v‖ the parallel particle velocity. The particle fluid

moment can be written in terms of the guiding-centre distribution functionF and the push-

forward transformation associated with the guiding-centre transformationT−1∗
GC as

mkl(r) =
∫

d6ZJ (Z)

[
T−1∗

GC

{(
mw2

2B

)k

vl
‖

}]
(Z)F(Z)δ 3(T−1

GCx− r), (3)

whereJ = B∗
‖/m is the Jacobian withB∗

‖ ≡ b̂·B∗ andB∗ ≡ ∇×A∗, andT−1
GCx = X+ρ +ρE+

· · · denotes the particle position in the guiding-centre phase space withρ = b̂×w/Ω, ρE =

b̂× vE/Ω andΩ = qB/m. The velocity variables are related with the guiding-centre variables

as
mw2

2B
= µ −Gµ

1 + · · · , v‖ =U −GU
1 + · · · , (4)

whereGµ
1 andGU

1 areµ andU components of the vector field generating the guiding-centre

transformation at first order inε (ε ∼ ρ/L), respectively. Equation (3) is the formal exact repre-

sentation. Assuming that theE×B velocity is subsonicvE ∼ ε1/2vti (vti the ion thermal speed)

and expanding the above exact representation perturbatively, we have the push-forward repre-

sentation ofmkl up toO(ε2)[6],

mkl = Mkl +
1
2

∇ ·
[

∇⊥Mk+1l

qΩ

]
+(k+1)∇ ·

[
Mkl

BΩ
∇⊥ϕ

]
−kvE · b̂×∇Mkl

Ω
, (5)

whereMkl is a guiding-centre fluid moment defined by

Mkl ≡
∫

µkU l FJ dUdµdξ . (6)

The last term on the right hand side of Eq. (5) does not appear in the one obtained from the

standard gyrokinetic theory in whichv⊥ is used for the magnetic moment[7]. The exact repre-

sentation usually used in the standard gyrokinetic theory is given by[8]

mkl(r) =
∫

d6Z̄J (Z̄)

[
T−1∗

GC

{(
mv2

⊥
2B

)k

vl
‖

}]
(Z̄)[T∗

GyF̄ ](Z̄)δ 3(T−1
GCX̄− r), (7)

whereZ̄ denotes the gyro-centre coordinates andT∗
Gy the pull-back transformation associated

with the transformation from the guiding-centre phase space to the gyro-centre phasespace.
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Although it seems to be different from Eq. (3), direct correspondence between thesetwo is

found by considering the alternative exact representation for the standard gyrokinetics[9]. For

k= l = 0 we have the push-forward representation of particle density,

n= N+
1
2

∇ ·
[

∇⊥P⊥
qΩB

]
+∇ ·

[
N

BΩ
∇⊥ϕ

]
, (8)

where n ≡ m00, N ≡ M00 and P⊥ ≡ BM10 are particle density, guiding-center density and

guiding-centre pependicular pressure, respectively. This representation is thesame as the stan-

dard one formally.

Variational derivation

The push-forward representation of particle density can be derived from the single particle

Lagrangian (1). To this end, we consider a functional derivative of the action functional I =
∫ t2
t1

Ldt with a Lagrangian for the Vlasov-Poisson system[10],

L = ∑
∫

d6Z′J (Z′)F(Z′, t ′)Lp[Zp(Z′, t ′; t), Żp(Z′, t ′; t), t]−
∫

d3x
1

4µ0
F : F, (9)

where∑ denotes a sum over species,Zp(Z′, t ′; t) denotes the guiding-centre coordinates of the

particle att with the initial conditionZp(Z′, t ′; t ′) = Z′, µ0 is permeability of vacuum and the

electromagnetic field tensorF is defined byFµν ≡ ∂µAν −∂νAµ with the covariant four vector

potentialAµ = (−ϕ/c,A) and the four gradient operator∂µ = ((1/c)∂t ,∇). δ I/δϕ(r) = 0

yields a reduced Poisson equation in which charge density is expressed in termsof the guiding-

centre things. We can obtain the push-forward representation of particle density by comparing

the charge density in the reduced Poisson equation with the particle charge density qn. In our

guiding-centre model the general push-forward representation of particle density is given by

n(r) =
1
q

∫
d6ZJ (Z)F(Z)

δH(Z)
δϕ(r)

, (10)

whereH is the guiding-centre Hamiltonian andδH(Z)/δϕ(r) is the functional derivative ofH

with respect toϕ(r). First we consider

H = qϕ +
m
2

U2+µB−m
2

v2
E +

m
2q

µb̂·∇×vE (11)

which is valid in well localised transport barrier regions with subsonic flow[3]. It is similar to

the standard gyrokinetic Hamiltonian in the long wavelength limit. Since it isnot H itself but

δH/δϕ that is necessary for the push-forward representation of particle density, it is sufficient

to keep in mind underlined terms which includeϕ. Substituting the above Hamiltonian into Eq.

(10) and integrating by parts yield Eq. (8). The first underlined term leads to the first term in
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Eq. (8), the second leads to the term includingϕ and finally the third leads to the term withP⊥.

Thus the variational method is more transparent and useful than the perturbative expansion of

the exact representation if the guiding-centre Hamiltonian is known. When the symplectic part

of Lp containsϕ as in the conventional formulations with large flow[4], we have to consider its

contribution in addition to the guiding-centre Hamiltonian.

Transonic flow case

In this section we derive the push-forward representation in the transonic flow case by the

variational method. When theE×B velocity is comparable to the thermal velocity, we have to

use the following Hamilatonian[3],

H = qϕ +
m
2

U2+µB− m
2

v2
E +

m
2q

(
µ +

mv2
E

2B

)
b̂·∇×vE, (12)

which is still limited to the localised transport barrier case. From Eq.(10) we obtain

n= N+
1
2

∇ ·
[

1
qΩB

∇⊥

(
P⊥+

Nmv2E
2

)]
+∇ ·

[(
1− b̂·∇×vE

2Ω

)
N

BΩ
∇⊥ϕ

]
. (13)

The additional terms appear as corrections to the polarisation density. The first oneis the cor-

rection toP⊥. The second one is the correction by the vorticity which gives a term proportional

to enstrophy density. They are nonlinear toϕ because they come from the cubic term ofvE in

the Hamiltonian.
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