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In tokamak pedestals with subsonic flows the radial scale of plasma profiles can be compa-

rable to the ion poloidal Larmor radius, thereby making the radial electrostatic field so strong

(∼ 100 kV/m [1]) that theE×B drift has to be retained in the ion kinetic equation in the

same order as the parallel streaming. By adopting the approach of Ref. [2], the modifications

of neoclassical plateau regime transport [3] – such as the ion heat flux, and the poloidal ion

and impurity flows – are evaluated in the presence of a strong radial electric field, allowing for

U = vE×BB/(viBp) =O(1), wherevE×B is theE×B velocity,vi = (2Ti/M)1/2 is the ion ther-

mal speed, andB andBp(≪ B) are the magnitudes of the total and poloidal magnetic fields.

The altered poloidal ion flow is most pronounced in the regionof the strongest radial electric

field where it modifies the friction of the electrons with the ions and can lead to an increase in

the bootstrap current, by enhancing the coefficient of the ion temperature gradient term.

Ion transport and parallel ion flow

The magnetic field is represented asB = I∇ζ +∇ζ ×∇Ψ, whereζ is the toroidal angle,

2πΨ is the poloidal flux, andI(Ψ) is defined byBt = I∇ζ whereBt is the toroidal magnetic

field and|∇ζ| = 1/R. We assume a quadratic electric potential wellΦ(Ψ) = Φ(Ψ∗) + (Ψ−
Ψ∗)Φ′(Ψ∗)+1/2(Ψ−Ψ∗)2Φ′′(Ψ∗), whereΨ∗ = Ψ− Mc

ZeRv · ζ̂ ≈ Ψ− Iv‖/Ω is the canonical

angular momentum withM is the mass andZe is the charge of the particle,R is the major

radius,Ω = ZeB/Mc is the cyclotron frequency andb = B/B.

We introduceu= cIΦ′/B, together withu∗ = cIΦ′
∗/B, whereΦ′

∗ =Φ′(Ψ∗). TheE×B drift

competes with the parallel streaming when they have comparable projections in the poloidal

plane - ths situation we considered here. The quantity u is sometimes referred to as theE×B

drift in the poloidal magnetic field. We assumeB is slowly varying withΨ, so thatB(Ψ∗, θ)≈
B(Ψ, θ). The orbit squeezing factorS = 1+ cI2Φ′′

∗/(BΩ) is considered to be constant except

for its B dependence. Using the preceding notation the poloidal motion of the particles is given

by θ̇= (v‖b+vE×B) ·∇θ= (v‖+u)b ·∇θ≈ (Sv‖+u∗)/(qR), whereθ is the poloidal angle and

q is the safety factor. We useE =E−ZeΦ(Ψ∗)/M = Sv2‖/2+µB+v‖u∗ as an energy variable,

whereE = v2/2+ZeΦ/M is the total energy andµ= v2⊥/2B. Note thatE is conserved by the

Vlasov operator.

We write the gyro-averaged distribution function asf̄ = f∗(Ψ∗,E)+h(Ψ∗,E ,µ,θ, t) where

f∗ ≈ fMi

{
1−

Iv‖
Ωi

[
∂ lnpi
∂Ψ

+
Ze

Ti

∂Φ
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+

(
mv2

2Ti
− 5

2

)
∂ lnTi
∂Ψ

]
+ . . .

}
, (1)

We consider subsonic flows, so that in the pedestal∂Ψ lnni ≈ −(Ze/Ti)∂ΨΦ. The governing

equation for a time independent perturbed ion distribution, in accordance with Ref. [2], is

θ̇
∂h1i
∂θ

−C l
ii

{
h1i−

Iv‖fMi

Ωi

(
Mv2

2Ti
− 5

2

)
∂ lnTi
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}
= 0, (2)
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whereC l
ii is the linearized ion-ion collision operator, which is momentum conserving, and the

θ derivative is taken keepingE , Ψ∗ andµ fixed. The kinetic equation Eq. (2) can be written as

(
Sv‖+u∗

)
b ·∇

[
Hi+

Iv‖fMi

Ωi

(
Mv2

2Ti
− 5

2

)
∂ lnTi
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]
−C l

ii {Hi}= 0, (3)

where we have introducedHi = h1i− (Iv‖fMi/Ωi)
[
Mv2/(2Ti)−5/2

]
∂ΨTi.

In the plateau regime, the form of the collision operator cannot affect the transport when the

kinetic equation is written in the form of (3). Therefore we can use a simple Krook operator

to model the collisions. However, the replacementC l
ii {Hi} → −νHi destroys the momentum

conserving property of the operator. This defect is remedied by adding a homogeneous solu-

tion toHi, making use ofC l
ii{v‖fM} = 0. AccordinglyHi →Hi+MBkv‖fMi/Ti where the

unknownk is to be determined by requiring that the solution gives no radial particle flux.

After the replacements the kinetic equation becomes

(
Sv‖+u∗

)
b ·∇Hi+νHi=−

(
Sv‖+u∗

)
b ·∇

{
Iv‖fMi

Ωi

(
Mv2
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+
MBkv‖fMi
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}
.

(4)

Employingb · ∇|E ,µ,Ψ∗E = 0 we find the relationsSv‖ + u∗)b · ∇
(
v‖/Ωi

)
= 1/(2Ωi)(2v

2
‖ +

v⊥)b ·∇ lnR and(Sv‖+u∗)b ·∇(v‖B) = B/2[v2⊥− (4S−2)v2‖−4v‖u∗]b ·∇ lnR.

The plateau regime (ǫ1/2 ≪ νiqR/vi ≪ 1) solution for large aspect ratio (ǫ≪ 1, whereǫ =

r/R0 with the minor radiusr) is

H ≈Qi

[
πδ

(
Sx‖+

u∗
vi

)
sinθ− cosθ

Sx‖+
u∗
vi

]
, (5)

wherex= v/vi = (x2⊥+x2‖)
1/2 and

Qi = ǫvifMi

{
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The full gyro-averaged perturbed distribution̄f1i = 〈fi−fMi〉ϕ is given by

f̄1i = hi−
Iv‖
Ω

∂fMi

∂Ψ
=Hi+

MBkv‖fMi

Ti
−

Iv‖fMi

Ωi

(
∂ lnpi
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+
Ze

Ti

∂Φ

∂Ψ

)
. (7)

In order to determine the unknownk, we now make the radial ion particle transport van-

ish 0 = 〈ΓΓΓi · ∇Ψ〉 =
〈∫

d3vf̄1ivd ·∇Ψ
〉
≈ −

〈
Iǫ/(2ΩqR)

∫
d3v(2v2‖+v2⊥)Hi sinθ

〉
, wherevd

is the magnetic drift velocity. Note that from all the terms in f̄1i only the∝ sinθ resonant part

of Hi has a finite contribution to the cross-field transport fluxes.The velocity integral is to

be performed holdingΨ constant, thusHi(Ψ∗) needs to be transformed back to flux surfaces

u∗(Ψ∗)→ u(Ψ)+(1−S)v‖. Accordingly,δ(Sx‖+u∗/vi)→ δ(x‖+U) andx2⊥−(4S−2)x2‖−
4x‖u∗/vi → x2⊥− 2x2‖− 4x‖U , where we introducedU = u/vi. This shows that the resulting
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transport is insensitive to the orbit squeezing. Now the integrals can be evaluated yielding

〈ΓΓΓi ·∇Ψ〉 ≈−
√
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(
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M
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1+2

(
U2+U4
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}
,

whereni is the ion density. The ambipolarity condition0 = 〈ΓΓΓi ·∇Ψ〉 requires that

k =−J(U2)

2

∂ lnTi
∂Ψ

ITic

Ze〈B2〉 , with J(U2) =
1−2U4+4U6

1+2(U2+U4)
. (9)

The preceding calculation ofJ is based on the observation that if we artificially setk =

0 in Eq. (8) the resulting ion particle flux would be much higherthan the electron particle

flux. However, for higher values ofU theexp(−U2) factor appearing in the expression for the

ion particle flux (8) reduces it to the level of neoclassical electron transport. Therefore, our

ambipolarity assumption must be modified to include the electrons. As this does not happen

until aroundU = 3.5, it need not concern us here.

Having calculated the fullHi distribution, we can evaluate the radial ion heat flux

〈qi ·∇Ψ〉=
〈∫

d3v
Mv2

2
f̄1ivd ·∇Ψ

〉
≈−3

√
π

2
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L(U2), (10)

with

L(U2) = e−U2 1+4
{
U2+2U4+

[
(4U6+U8)/3

]}

1+2(U2+U4)
. (11)

The preceding reduces to the standard plateau result [5] in theU → 0 limit.

To calculate the bootstrap current the ion parallel flow needs to be evaluated. Neglecting the

small local contribution fromHi we obtain

niV‖i =
∫

d3vv‖f̄1i ≈− Ipi
MΩi

[
∂ lnpi
∂Ψ

+
Ze

Ti

∂Φ

∂Ψ
+

J(U2)

2

B2

〈B2〉
∂ lnTi
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]
. (12)

To relate the poloidal flow of a collisional trace impurity tothe poloidal flow of a background

ion in the plateau regime we note that the flux surface averageof B times their parallel flows

must be related by〈BV‖i〉 = 〈BV‖Z〉 [4]. Using radial pressure balance for the ions and impu-

rities along with the preceding result forV‖i gives the impurity poloidal flow to be

VZ,θ =
cITiBθ

eZi〈B2〉

[
TzZi

TiZZ

∂ lnpZ
∂Ψ

− ∂ lnpi
∂Ψ

− J(U2)

2

∂ lnTi
∂Ψ

]
. (13)

Bootstrap Current

Electron orbits are practically unaffected by the strong radial electric field due to their large

thermal speed. However, electron-ion collisions depend onthe ion mean flow, the electron dis-

tribution experiences this friction and is thereby indirectly influenced by the presence of the

electric field.
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Simply calculating the resonant part of the distribution function from the electron drift-kinetic

equation (v‖b ·∇h1e+ efMev‖EI/Te = C
(1)
e {f̄1e}, with EI = b ·∇(E+∇Φ) andf̄1e = h1e−

(Iv‖/Ωe)∂ΨfMe [5]) and evaluating the parallel current as〈j‖B〉 = e〈B
∫
d3v v‖(Zf̄1i− f̄1e)〉

would not give the correct bootstrap currentJBS sincehe is not accurate enough. Instead, it is

convenient to use an adjoint method [6] to find〈jBSB〉. The method relies on the solution of

the Spitzer problemC(1)
e {fS}= eEIv‖fMe/Te, which can be calculated in terms of generalized

Laguerre polynomials, using a variational method. For the bootstrap current we obtain [7]

〈jBSB〉=−
√

π

2

ǫ2cIpeve
νeqR0

√
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Z(2+
√
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[
1
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2
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) 1
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]
. (14)

Discussion

Figure 1: TheL(|U |) factor of the

ion heat flux, and theJ(|U |) factor

of the∂Ψ lnTi term in the ion flows

and the bootstrap current.

As the electric field increases, the resonance causing the

plateau transport, which would be atv‖ ≈ 0 for U = 0, is

now shifted towards the tail of the distribution. For strong

electric fieldU ≫ 1 this leads to an exponential reduction of

the ion heat flux (See Fig. 1). However, for moderate values

of U the ion heat diffusivity is enhancedL(|U | ≈ 0.91) ≈
1.46.

The temperature gradient driven part of parallel ion flow

is multiplied by factorJ(|U |) that decreases untilJ(|U | ≈
0.76)≈ 0.39 then it starts to increase approaching an asymp-

tote of2U2−3. The same factor appears also in the expres-

sions for the poloidal impurity rotation and the bootstrap

current multiplying the ion temperature gradient term.
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