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Understanding turbulence and turbulent transport requires studying the evolution of 

the transport dynamics over very long time scales, typically thousands or tens of thousands of 

eddy decorrelation times, which is almost impossible with present computational techniques. 

This work successfully introduces a new and innovative approach to perform simulations of 

turbulent transport which might help overcome present difficulties. Turbulence simulations 

are extremely challenging from a computational view point due to the huge disparity (of the 

order of 106 - 109) of the timescales involved in the microturbulence that governs the dynam-

ics and the plasma confinement times relevant in fusion research. Simplified approaches are 

often undertaken to overcome these difficulties. For example, the microturbulence is evolved 

through only a few tens of eddy decorrelation times and the plasma profiles are assumed con-

stant, thus leading to a description of the dynamics using effective transport coefficients. 

However, even these simplified approaches are computationally very intensive [1].  

With the advent of modern supercomputers, parallelizing these simulations over mul-

tiple processors allows some computational speedup. Prior to this work, parallelizing the 

space domain has been the only successful approach to utilize parallel processors. Such a 

technique has found limited success, as the state of the art fluid codes scale only up to a few 

thousand processors, while modern super computers offer more than a hundred thousand 

processors.  

The parareal algorithm, first proposed by Lions et al. [2] in 2001, introduces a whole 

new avenue for parallelization, namely, parallelizing the time domain, to solve PDEs. This 

technique is extremely innovative and is very non intuitive for initial value problems of the 

kind discussed in this work. The algorithm requires two solvers, say F and G. F is the fine 

solver that is computationally expensive but gives a correct solution. G is the coarse solver 

that is computationally very fast with respect to F, but it gives a coarse and inaccurate solution 

to the same problem. G is always used in serial. The total simulation time T is split into mul-
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tiple time chunks ΔT (so T = NΔT, N being the total number of processors) and F is used in 

parallel by each processor to perform a simulation of length ΔT. A detailed description of the 

algorithm is available in [2], [3]. Details of the application to this particular work are given in 

[4]. 

A dissipative trapped electron mode (DTEM) model with slab geometry is used in this 

application of the parareal algorithm. A uniform magnetic field along z-direction is assumed. 

The simulations are done using a pseudo spectral code with a resolution of 385 X 385 (com-

plex) modes in Fourier space (k space). The model used is described in Eq. 1.  

                           (1) 

where  is the fluctuating potential,  is the effective diamagnetic drift velocity and 

Ti is the ion temperature. B represents the magnetic field strength. , with  being 

the effective collision frequency of ion electron collisions. The last two terms on the left hand-

side of Eq. 1 represent the ExB and polarization non-linearities respectively. When Fourier trans-

formed, the ExB and polarization nonlinear terms take the forms 

 and , respectively. 

 

                 
Fig 1. (left) Vorticity field for a typical simulation with only E X B non linearity ; (right) Power spectrum 
(lin-log scale) for only E X B non linearity. 
 

This model has already been extensively studied in [5], [6], [7] and is used here as a 

test bed for studying the performance of the parareal technique for turbulence simulations. 

Multiple cases of this model have been used here where either one or both non linearities are 

present. Fig. 1 (left) shows the vorticity field of the turbulent system with only the E X B non 

linearity which consists of eddies of multiple scales that non linearly interact with each other. 
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Fig. 1 (right) is a plot of the power spectrum of the same case showing that most of the energy 

is concentrated at low k modes. 

For the purpose of the application of the parareal application, multiple options for the 

coarse solver G were explored. Using a reduced grid size in Fourier space (201 X 201) and 

bigger time steps dtG > dtF ( dtG and dtF being the timesteps in G and F respectively) gave the 

best gains. In addition, the VODPK solver package [8] used in F was replaced by 2nd and 4th 

order Runge Kutta solvers. Fig. 2 is an example of the successful application of the parareal 

algorithm to turbulence. It is a plot of the total energy of the system (with the E X B non line-

arity) varying with time, t where the solutions converge with increasing parareal iterations,  k. 

A gain of 8.8 was observed with N=88, which is remarkable for a system as complex as this. 

Similar convergence have been observed with cases where only the polarization non linearity 

or both non linearities were present. 
 

 
Fig 2. Total energy as a function of time for a simulation with N = 88, ΔT = 80 for different parareal itera-
tions, k. The coarse solver G is a 4th order Runge-Kutta with dtG =40dtF and grid size in kspace being 
201X201. Convergence is observed in k=5.  
 

In order to attain a better understanding of the convergence of the solutions for a tur-
bulent system, a model (discussed in [4]) was built to describe the computational gain, HPA:        

  (2)                                                                                         

where with  and  being the computational time for using in serial, 
solvers F and G respectively. k(N) represents the number of cycles for convergence and has 
been modeled analytically by fitting simulation data. Both weak and strong scaling studies 
were done. Fig. 3 (top) represents the result for a strong scaling study where T was constant 
but ΔT varied with N. Figs. 3 (bottom left) and 3 (bottom right) are the results for a weak 
scaling study where ΔT was kept constant but T varied with N. W in Fig. 3 (bottom left) is the 
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work per processor and an analytic expression for it can be derived from the model. Both 
strong and weak scaling results show good agreement with the model.   

 
 

         
Fig 3. Results with coarse solver G being a 4th order Runge-Kutta with dtG =40dtF and grid size in kspace 
being 201X201 : (top) HPA as a function of N for strong scaling study.; (bottom left) W as a function of N 
for weak scaling; (bottom right) HPA as a function of N for weak scaling study. 
 

In conclusion, the parareal technique successfully works for a turbulent system and is 
accompanied by a sizable gain. This allows parallelization of the time domain, which may be 
combined with existing space parallelization to achieve optimum computational gain. 
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