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Understanding turbulence and turbulent transport requires studying the evolution of
the transport dynamics over very long time scales, typically thousands or tens of thousands of
eddy decorrelation times, which is almost impossible with present computational techniques.
This work successfully introduces a new and innovative approach to perform simulations of
turbulent transport which might help overcome present difficulties. Turbulence simulations
are extremely challenging from a computational view point due to the huge disparity (of the
order of 10° - 10%) of the timescales involved in the microturbulence that governs the dynam-
ics and the plasma confinement times relevant in fusion research. Simplified approaches are
often undertaken to overcome these difficulties. For example, the microturbulence is evolved
through only a few tens of eddy decorrelation times and the plasma profiles are assumed con-
stant, thus leading to a description of the dynamics using effective transport coefficients.
However, even these simplified approaches are computationally very intensive [1].

With the advent of modern supercomputers, parallelizing these simulations over mul-
tiple processors allows some computational speedup. Prior to this work, parallelizing the
space domain has been the only successful approach to utilize parallel processors. Such a
technique has found limited success, as the state of the art fluid codes scale only up to a few
thousand processors, while modern super computers offer more than a hundred thousand
processors.

The parareal algorithm, first proposed by Lions et al. [2] in 2001, introduces a whole
new avenue for parallelization, namely, parallelizing the time domain, to solve PDEs. This
technique is extremely innovative and is very non intuitive for initial value problems of the
kind discussed in this work. The algorithm requires two solvers, say F and G. F is the fine
solver that is computationally expensive but gives a correct solution. G is the coarse solver
that is computationally very fast with respect to F, but it gives a coarse and inaccurate solution

to the same problem. G is always used in serial. The total simulation time T is split into mul-
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tiple time chunks AT (so T = NAT, N being the total number of processors) and F is used in
parallel by each processor to perform a simulation of length AT. A detailed description of the
algorithm is available in [2], [3]. Details of the application to this particular work are given in
[4].

A dissipative trapped electron mode (DTEM) model with slab geometry is used in this
application of the parareal algorithm. A uniform magnetic field along z-direction is assumed.
The simulations are done using a pseudo spectral code with a resolution of 385 X 385 (com-
plex) modes in Fourier space (k space). The model used is described in Eq. 1.
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where 0 is the fluctuating potential, VD= (PsCo)Ly " is the effective diamagnetic drift velocity and
T; is the ion temperature. B represents the magnetic field strength. D=Vp/ 4Veff, with Veff being
the effective collision frequency of ion electron collisions. The last two terms on the left hand-

side of Eq. 1 represent the ExB and polarization non-linearities respectively. When Fourier trans-

formed, the ExB  and  polarization  nonlinear  terms take the  forms

4iL,D / A& 3
/ k x k 1/ p:Cs 2 A
81/2(1+p2k2 Zk ykx K e 2)0 i and 2 Lk xk'e Z)q)kq)k—k', respectively.

Fig 1. (left) Vorticity ﬁeld for a typlcal s1mulat10n with only E X B non linearity ; (right) Power spectrum
(lin-log scale) for only E X B non linearity.

This model has already been extensively studied in [5], [6], [7] and is used here as a
test bed for studying the performance of the parareal technique for turbulence simulations.
Multiple cases of this model have been used here where either one or both non linearities are
present. Fig. 1 (left) shows the vorticity field of the turbulent system with only the E X B non

linearity which consists of eddies of multiple scales that non linearly interact with each other.
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Fig. 1 (right) is a plot of the power spectrum of the same case showing that most of the energy
is concentrated at low k modes.

For the purpose of the application of the parareal application, multiple options for the
coarse solver G were explored. Using a reduced grid size in Fourier space (201 X 201) and
bigger time steps dt; > dt; ( dt; and dt: being the timesteps in G and F respectively) gave the
best gains. In addition, the VODPK solver package [8] used in F was replaced by 2™ and 4"
order Runge Kutta solvers. Fig. 2 is an example of the successful application of the parareal
algorithm to turbulence. It is a plot of the total energy of the system (with the E X B non line-
arity) varying with time, t where the solutions converge with increasing parareal iterations, k.
A gain of 8.8 was observed with N=88, which is remarkable for a system as complex as this.
Similar convergence have been observed with cases where only the polarization non linearity

or both non linearities were present.
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Fig 2. Total energy as a function of time for a simulation with N = 88, AT = 80 for different parareal itera-
tions, k. The coarse solver G is a 4" order Runge-Kutta with dt;=40dtr and grid size in kspace being
201X201. Convergence is observed in k=5.

In order to attain a better understanding of the convergence of the solutions for a tur-

bulent system, a model (discussed in [4]) was built to describe the computational gain, Hp,:
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where ' with T (T) and T¢'(D being the computational time for using in serial,

solvers F and G respectively. k(N) represents the number of cycles for convergence and has
been modeled analytically by fitting simulation data. Both weak and strong scaling studies
were done. Fig. 3 (top) represents the result for a strong scaling study where T was constant
but AT varied with N. Figs. 3 (bottom left) and 3 (bottom right) are the results for a weak
scaling study where AT was kept constant but T varied with N. W in Fig. 3 (bottom left) is the
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work per processor and an analytic expression for it can be derived from the model. Both

strong and weak scaling results show good agreement with the model.
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Fig 3. Results with coarse solver G being a 4" order Runge-Kutta with dt;=40dtr and grid size in kspace
being 201X201 : (top) H.. as a function of N for strong scaling study.; (bottom left) W as a function of N
for weak scaling; (bottom right) H,, as a function of N for weak scaling study.

In conclusion, the parareal technique successfully works for a turbulent system and is
accompanied by a sizable gain. This allows parallelization of the time domain, which may be

combined with existing space parallelization to achieve optimum computational gain.
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