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1. Introduction

Recent experiments at JET have shown that driving a large-scale rotation of the plasma im-
proves confinement. In particular, the so-called stiffness level of the ion temperature profile is
found to decrease with plasma rotation [1]. The level of stiffness characterizes the fact that
above a critical value of the ion temperature inverse gradient length (R/Ly, = R|VT;| /T;, where
R indicates the tokamak major radius) the ion heat flux increase strongly with R/Ly;. This be-
havior is attributed to turbulent transport.

In this work we report on 3D turbulent simulations in a flux driven configuration (i.e. with
self consistent profile evolution), revealing the behavior of the pressure gradient as a function
of the imposed total energy flux. Different scenarios with respect to plasma rotation (turbulence

driven rotation, artificially suppressed or imposed rotation) are studied.

2. Model and Simulation Conditions
The two field reduced MHD equations are solved to reproduce the plasma edge turbulence in
the Tokamak geometry [2]. The following equations are for the normalized electrostatic poten-

tial ¢ and pressure p.
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where [f,g] = (0f/dx)(dg/dy) — (9f/dy) (dg/dx) is the Poisson bracket. Vi = 9%/dx> +
92 /dy* and V|o=03/dz—(k;/q) (d/dy) are the gradients perpendicular and parallel to the field
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line.
The curvature operator is G =
sin (kyy) (8/9x) +cos (k) (3 /).

v indicates the viscosity, x| and
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tio between the pressure gradient
length and the major radius Ro. Figure 1: Radial profile of the pressure source S (r).
Time is normalized by the resis-

tive interchange time Tin; = (RoL,/ 2)1/ 2 /cs, where ¢ is the sound speed, and L, is the pres-
sure gradient length. Perpendicular length is normalized by the resistive ballooning length
Ebal = (pn” / ‘L'im) 1/2 Ls/By, where p is the mass density, 1) is the parallel resistivity, and par-
allel length is normalized to the magnetic shear length Ls. The model equation is solved nu-
merically by the finite difference method in the radial direction and by a Fourier expansion in
the poloidal and toroidal direction. In the (m,n) space, all modes are simulated except for the

(n=0,m > 0) modes to keep the neoclassical terms consistent (especially for (1,0) mode) [3].
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Figure 2: Time averaged radial profiles of the velocity shear
vary the amplitude of the source o
in the spo. case. Source variations correspond to fig. 1.
profile such that the integral, i.e.
the total energy flux varies from 1 to 32 (see Fig. 1). The simulations are performed for the fol-
lowing three scenarios concerning the poloidal rotation: artificially suppressed case (ref. case),

spontaneous rotation case (spo. case), and artificially imposed rotation case (imp. case).

3. Simulation Results
Nonlinear simulations are performed until a quasi-steady state is reached and the temporal

and spatial (poloidal and toroidal) averages are taken in that state.
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Figure 2 shows the radial pro-
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sure gradient steep. For the fit-

ting curve, we use the gyro-Bohm  Figure 4: Mean pressure gradient versus total imposed flux
type relation between the total en-  with fitting curves for ref. case and spo. case.

ergy flux and the pressure gradi-

ent, parameterized by the stiffness level, and the critical gradient (eq. (4)) [1].
crit

__ res el ' 4
Ot = 0 + XgBq : O dr
where Qy is the total imposed pressure, Q™ the residual flux, including the neoclassical flux,

= X
5t%al i dr

XeB = T.pi/ (BR) the gyro-Bohm coefficient, g the safety factor, x, the stiffness level, and
dp/dr|qic the threshold of the pressure gradient. The fitting gives ys and dp/dr|c for each
curve. The fitting is done in the statistically stationary state (not the relaxation oscillation or

simple diffusion).
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Figure 5: Mean pressure gradient versus total imposed flux

with fitting curves for ref. case and imp. cases.

In conclusion, the slope of the flux-vs-grad-p-curve is clearly lower in the presence of tur-

bulence generated rotation (spo. case) compared to a ref. case where rotation is artificially sup-

pressed (Fig. 4). However, for different amplitudes of imposed rotation (imp. cases), the slopes

are similar, i.e. the stiffness does not change significantly, only the critical gradient changes.

Therefore, the change in the slope with self-generated rotation has to be attributed to the fact

that the rotation amplitude itself is increasing with the total energy flux.
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Figure 6: Stiffness level versus imposed

shear amplitude.
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Figure 7: Critical gradient of the pressure

versus imposed shear amplitude.
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