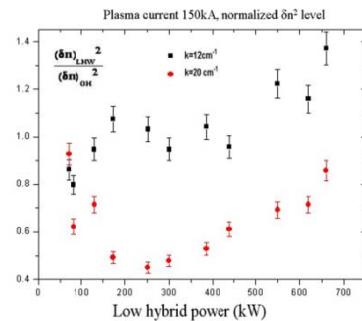

Core plasma density fluctuation measurement in low hybrid drive experiment in HT-7 tokamak

Y.D.Li, W.Y.Zhang, S.Y.Lin, X.Gao, X.D.Zhang, J.Li and HT-7 Team


Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

Understanding the mechanism of plasma transport in tokamaks is one of the great challenges of fusion research. Indeed, since most explanations of this phenomenon are based on some type of plasma turbulence, particularly difficult problem to explain the transport of electron energy, since in tokamak reactor a large fraction of the energy of charged fusion products-necessary to sustain the nuclear fusion reactions-would be released directly to the electrons. Both theory and experiments suggest that a short-scale turbulence was considered as the cause of the anomalous electron transport in tokamak[1,2]. Magnetic shear is thought to be important because it can stabilize some short-scale turbulence such as trapped electron modes, a candidate to explain the observed anomalous electron transport in tokamak.[3]

The magnetic shear $s=(r/q)dq/dr$ is the rate of change of the average pitch of the magnetic field, denote here by the tokamak safety factor q , with respect to minor radius. Most tokamaks operate with inductive current drive, which normally produces a peaked current density profile at the magnetic axis due to the strong dependence of the plasma conductivity on the electron temperature. Noninductive current drive can generate a nonmonotonic safety factor q or a hollow current density profile. the lower hybrid current drive is a kind of noninductive current drive ,It can provide a power tool for achieving magnetic shear .Increasing LHCD power, the target q profile can be modified, especially toward a more reversed profile [4-6].Turbulent transport in toroidal plasmas is usually driven by microscopic drift wave instabilities of which the linear properties can be affected by magnetic shear[7]. On the HT-7 tokamak (a circular cross-section superconducting tokamak with $R=1.22m$, $a=0.27m$), a three channel CO₂ laser coherent scattering diagnostics is dedicated to short-scale turbulence and magnetic shear studies in the low hybrid current drive experiment[8]. As shown in Fig.1. The core density fluctuation in the poloidal direction was observed with a range of wavenumber measurement of $k_\theta=12\text{cm}^{-1}$ to 30cm^{-1} ($k_\theta\rho_s=1$ to 4),and the poloidal direction wave number

Fig.1 CO₂ laser collective scattering system. Measure range

$$k_0 = 12 \sim 30 \text{ cm}^{-1}, \Delta k = 2.5 \text{ cm}^{-1}.$$

Fig.2 the ohmic normalized density fluctuation level as a function of LHCD power. $B_t = 1.8 \text{ T}$, $n_e = 1.5 \times 10^{19} \text{ m}^{-3}$ and $I_p = 150 \text{ kA}$.

resolution of scattering system is $\Delta k_\theta \approx 2.5 \text{ cm}^{-1}$, where ρ_s is the ion Larmor radius at T_e .

To study the effects of magnetic shear on short-scale turbulence in tokamak, we have conducted an experimental study of turbulent fluctuation in plasma with LHCD power scanning on HT-7 tokamak. After the Boronization wall condition, The plasma parameter were toroidal magnetic field $B_t = 1.8 \text{ T}$, central line average density $n_e = 1.5 \times 10^{19} \text{ m}^{-3}$ with deuterium as the working gas. The level of density fluctuation within LHCD power scanning was divided by within a regular ohmic shot and selected during the flat top phase of both plasma current and density. When plasma current at $I_p = 150 \text{ kA}$, with a low hybrid wave power scanning from 50kw to 650kw, the ohmic normalized density fluctuation level [9] as a function of LHCD power was shown in fig.2. The ohmic normalized density fluctuation level of $k_0 = 12 \text{ cm}^{-1}$ was higher than that of $k_0 = 20 \text{ cm}^{-1}$ on the same LHCD power scanning. $k_\theta \rho_s = 1.38 \sim 1.57$ for $k_0 = 12 \text{ cm}^{-1}$ and $k_\theta \rho_s = 2.2 \sim 3.22$ for $k_0 = 20 \text{ cm}^{-1}$. When plasma current at $I_p = 120 \text{ kA}$, with the same power sanning, the ohmic normalized density fluctuation level of $k_0 = 12 \text{ cm}^{-1}$ was lower than that of $k_0 = 20 \text{ cm}^{-1}$.

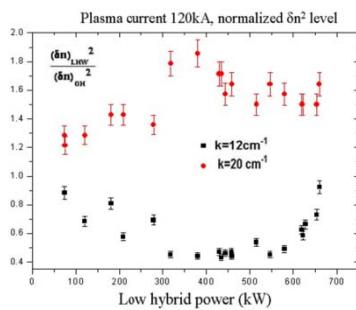
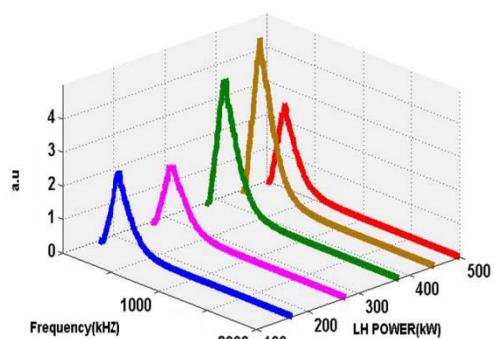


Fig.3 the ohmic normalized density fluctuation level as a function of LHCD power. $B_t = 1.8 \text{ T}$, $n_e = 1.5 \times 10^{19} \text{ m}^{-3}$ and $I_p = 120 \text{ kA}$.Fig.4 $I_p = 130 \text{ kA}$, $n_e = 1.5 \times 10^{19} \text{ m}^{-3}$, frequency spectrum $k_\perp = 12 \text{ cm}^{-1}$

Fig.3 was shown the ohmic normalized density fluctuation level as a function of LHCD power .The shape of frequency spectrum for $k_0=12\text{cm}^{-1}$ and $k_0=20\text{cm}^{-1}$ were not changed during the LHCD power scanning. The effect of the LHCD driven current profile in plasmas current 150kA and 120kA was dissimilar. So that magnetic shear was.

After lithium coating wall condition, three series deuterium plasmas discharges with LHCD power scanning were performed at toroidal magnetic field $B_t=1.9\text{T}$. The poloidal beta was $\beta_p \approx 0.3 \sim 0.5$. The ohmic normalized fluctuation level had been probed on $k_0=12\text{cm}^{-1}$ and $k_0=24\text{cm}^{-1}$ simultaneously. The first series parameter were plasma current $I_p=130\text{kA}$, central line average density $n_e=1.5 \times 10^{19}\text{m}^{-3}$.Fig.4 show the shape and amplitude of the ohmic normalized fluctuation frequency spectrum change with LHCD power scanning on $k_0=12\text{cm}^{-1}$. And Fig.5. show that on $k_0=24\text{cm}^{-1}$.

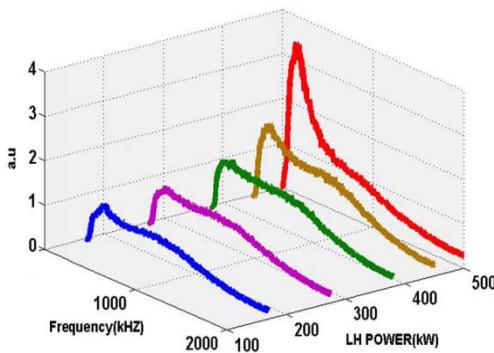


Fig.5 $I_p=130\text{kA}$ $n_e=1.5 \times 10^{19}\text{m}^{-3}$ frequency spectrum $k_0=24\text{cm}^{-1}$

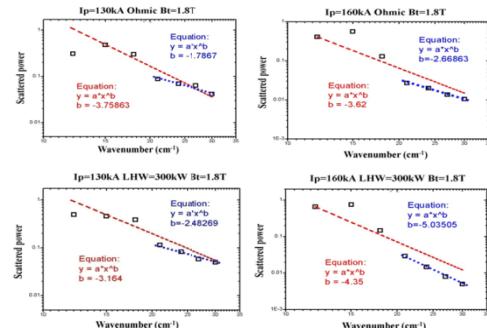


Fig.6 the k_0 wavenumber spectrum compare with ohmic and LHCD plasma discharge in totoidal magnetic field . $B_t=1.8\text{T}$.

A LHCD power threshold $P_{LH} \sim 500\text{kw}$ has been found. While LHCD power beyond the threshold, the fluctuation level of different wavenumber range act differently, the profile of ohmic normalized frequency spectrum remain unchanged on $k_0=12\text{cm}^{-1}$ while a 200kHz frequency peak increasing on $k_0=24\text{cm}^{-1}$.The ohmic normalized fluctuation level of $k_0=12\text{cm}^{-1}$ and $k_0=24\text{cm}^{-1}$ were increasing with LHCD power before the power threshold. But when LHCD power reaches the threshold. the ohmic normalized fluctuation level of $k_0=12\text{cm}^{-1}$ suddenly drop to a low level and that of $k_0=24\text{cm}^{-1}$ has a massive increase. Some time a improved confinement has been observed and a electron interal transport barrier (ITB) may be formed on the HT-7. ($k_0\rho_S=1.11 \sim 1.57$ was in TEM modes wavenumber range for the $k_0=12\text{cm}^{-1}$ and $k_0\rho_S=2.23 \sim 3.14$ for was in ETG modes wavenumber range for the $k_0=24\text{cm}^{-1}$). In the second series parameter , the plasma current $I_p=160\text{kA}$ and the central line average

density $n_e=2.0\times10^{19}\text{ m}^{-3}$. A increasing LHCD power threshold has been found during LHCD power scanning. In the third series parameter, the plasma current $I_p=160\text{kA}$ and the central line average density $n_e=1.5\times10^{19}\text{ m}^{-3}$. The LHCD power threshold has not been found during power scanning from 100kw to 550kw. The different come from the magnetic shear generated by the low hybrid current drive remains localized off-axis was moved outwards.

After the Boronization wall condition, The density fluctuation wavenumber spectrum compare experiment was done in low hybrid current drive plasma and ohmic plasma with different plasma parameter. Fig.6. shown the k_0 wavenumber spectrum on the toroidal magnetic field $B_t=1.8\text{T}$, the central line average density $n_e=2.0\times10^{19}\text{ m}^{-3}$, the low hybrid current drive power $P_{LH}=300\text{kW}$ and plasma current $I_p=130\text{kA}$, 160kA. Fig.7. shown the k_0 wavenumber spectrum on the toroidal magnetic field $B_t=2.0\text{T}$, the central line average density $n_e=2.0\times10^{19}\text{ m}^{-3}$, the low hybrid current drive power $P_{LH}=300\text{kW}$ and plasma current $I_p=130\text{kA}$, 180kA.

The work was supported by the National Natural Science Foundation of China (Grant No. 10875147 ,10975159), National Science Research Program of China (Grant No. 2009GB107005)

Reference

- [1]E.Mazzucato,R.E.Bell,S.Ethier et al Nucl.Fusion **49** (2009) 05501
- [2] E.Mazzucato Plasma Phys.Control.Fusion **48** (2006) 1749
- [3]F.M.Levinton,M.C.Zarnstorff,S.H.Batha et al Phys.Rev.Lett.**75** (1995) 4417
- [4]C.Castaldo,R.Cesario,A.Cardinali et al Phys.Plasmas **9** (2002) 3205
- [5]Li Duo-chuan, Li You-yi Chin.Phys.Lett.**15** (1998) 582
- [6]Kuang Guang,Xu Wei-hua,Zhang Xiang-qin et al Chin.Phys.Lett.**15** (1998) 435
- [7] E.Mazzucato,S.H.Batha,M.Beer et al Phys.Rev.Lett.**77** (1996) 3145
- [8]Li Yadong, Li Jiangang, Zhang Xiaodong et al Plasma Sci. and Tech **11** (2009) 529
- [9]P.Devynck, F.Clairet, X.L.Zou, et al Phys.Control.Fusion **39** (1997) 1355

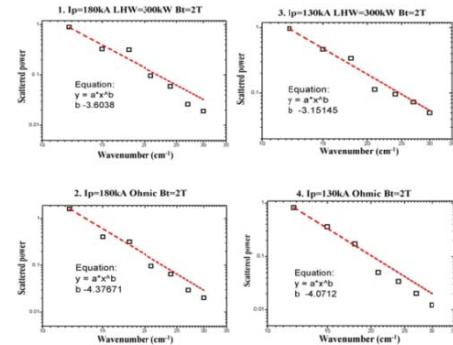


Fig.7 the k_0 wavenumber spectrum compare with ohmic and LHCD plasma discharge in totidal magnetic field . $B_t=2.0\text{T}$.