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High-temperature Alkali and Alkaline Earth Plasmas
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The structure and thermodynamic properties of alkali akdlize earth plasmas are of basic interest and of
importance for high-temperature technical applicatidiws.instance, Li is an alkali metal, is planned to be used in
inertial confinement fusion, solar power plants etc. Tha@néstudy is devoted to the study of the two-component
plasma (TCP) static (SSF) and dynamic (DSF) structure fadto alkali (LiT, Na", K™, Rb", Cs") and alkaline
earth (Bé") plasmas at temperatur&s> 30 kK andT > 100 kK respectively, where most of outer electrons are
ionized, but the rest core electrons are still tightly baufikde structure factor (SF) is the fundamental quantity
that describes the X-ray scattering plasma cross-se®ecently, X-ray scattering experiments has proven to be a
powerful technique in measuring densities, temperatefesge states and spectrally resolving the non-collective
(particle) scattering characteristics of beryllium [1]vimrm dense matter regimes. We follow here the relatively
simple analytical route based on Bogolyubov expansionscangdider it as an alternative to methods based on
ab initio guantum DFT molecular dynamic simulations, hypernetteairc (HNC) etc. Following our method we
need for the determination of SSF and DSF a screened pseaedtipbas an essential input value. In order to
correctly describe alkali plasmas at moderate tempestume needs to take into account the ion structure. In
both methods the screened Hellmann-Gurskii-Krasko pietgffitGK) ®4,(k) (a,b=1,€), obtained on the basis of
Bogolyubov’s method [2], has been used taking into accoahonly the quantum-mechanical effects (diffraction
and symmetry) but also the repulsion due to the Pauli exatusiinciple [3] and references therein. The repulsive
part of the HGK potential reflects important features of thee $tructure. The TCP electron-electron , electron-
ion, ion-ion and charge-charge static structure factoescatculated within the HGK approach for alkali one-
temperature plasma @t = 3000, ne = 0.3- 10°1 = 1.9 10°?cm 23 and charge-charge SSF for BeTCP at
T = 20eV, ne = 2.5- 107%cm 3 using the TCP HNC approximation developed for the case adratesof the local
thermodynamic equilibrium (non-LTE) by P. Seuferling et Bhys. Rev. A. 40 (1989), and further discussed and
extended for SSF by Gregori et al. [1] . The TCP DSFs for alial$mas are calculated within the HGK approach
atT = 3000, ne = 1.74-1070,1.11- 10%%cm 2 using the method of moments developed by V. M. Adamyan et
al. [4]. Strictly speaking, the model mentioned here base®ogolyubov expansions is valid only for weakly
and moderately coupled plasmias < 1, Tii[ed = Z2€7[€7]/ (4€0ka Trii[ed) With rii [ed = (3/41mi[ne])Y/3 being the
average ion-ion [electron-electron] distaneas the electric elementary charge ane the ionic chargene|i] -
electron, ion concentrations. We present also the restikeveral calculations df;; > 1 but these results have
merely the character of extrapolations. The b HGK potential has the following view:

HGK ZaZp r abgZ.Z,) a r
P () = Arteor [1—exp<— RCabﬂ T Tane, R exp<_RCab> 7 @)
wherezZ; = ze Zo = —e, Rcei = fceifs anda for alkali elements are taken from [3] and references therEhe
values ofrc;jj, aare not given in literature, thereforgj = 2rc,; is taken hypothetically taking in this way both ions
cores (closed shells) into account. Unfortunately theeenaravailable HGK parameters for the?Bdon. That is
why we looked for alternative— i potentials with the determined for Be parameters. It is the C. Fiolhais et al.
pseudopotential, Phys. Rev. B 51 (1995). We made a fit of thieéusal” parameters of HGK to the Fiolhais et

al. pseudopotential, which aee= 3.72,r = 0.22. Thee— e interaction is described with the help of the Deutsch
potential [3] and references therein.

Static Structure Factors

The partial SSF of the system are defined as the static (¢iqua)-correlation functions of the Fourier compo-
nents of the microscopic partial charge densities, J. PsefarPhys. Rev. A. (1981). A linear combination of the
partial structure factors which is of high importance, is thharge-charge SSF defined as
_ 1 2y nz 1y eelK) —2y/ZSi(K) + 25 (K)
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wherep? = p' (k) — p&(k) with p" (k) = TN, exp(ik-F'), N, r = e i- number of ionsi) and electronse. In the
thermodynamic equillibrium (TE) the partial SSi(k) are defined as the Fourier transform of the pair distribution
functionshys(r) = grs(r) — 1: SE(K) ~ &s — ‘/k';r?qbrs(k), whered,s are the expression (11)-(14) in [3].
Introduction of the effective temperature allows to extdralfluctuation-dissipation theorem (FDT) to nonequi-
librium (two-temperature) systems as well as to intergolfstween classical and quantum regimes and is the input
value for the partial SSBs(k). The effective temperatufg is given by,Ts = % whereT; = (Teerqu)l/2
with Ty = Tr/(1.3251— 0.1779,/Fs), wherers = ra/rg, Te = A?(31ne)?/2/(2ksme) and T/ = (T2 4+ wT3)Y/?,
To = Qpif/ks, yo = 0.152 is the Bohm-Staver relation for the Debye temperatut mf,i = wgi/(lJr kpe/K?),
wWpi = /Z€ne/(gom;) with my being the ion mas&kpe = /€%ne/ (g0kgT¢) is the Debye wave number for the elec-
tron fluid (Tp ~ 0.16eV, Tr ~ 14.5eV for BE*). Due tom >> me, T/, = T/ As described in [1] by Gregori et
al., the FDT may still be a valid approximation even underagprilibrium conditions if the temperature relaxation
is slow compared to the electron density fluctuation timées@acommon condition in experimental plasmas for
this to occur is whem >> me so that the coupling between the two-components takes plesefficiently low
frequencies. Using a two-component HNC approximation seheP. Seuferling et al., Phys. Rev. A. 40 (1989),
have shown that the static response under the conditiome afdn-LTE (two-temperature) takes the form:

on-LTE |\ _ VNirNs Te la(k) |2 4
S (k) - 5(5 - ﬁ¢rs(k) - 5er5es(TT/ - l) Z SI (k) (3)

whereq(k) = /zSi(k)/Si (k). Note that wherT] = T/ = To = T; the equation (3) turns into the e§LF (k) for
one-temperature plasmgk) represents the screening cloud of free (and valence) eteccthat surround the ion.
Since the equation (3) represents the HNC-approximatierwilv use this approximation for the treatment of non-
isothermal (two-temperature), stronger (moderatelypteaiplasmas and for comparison with the corresponding
results of Gregori et al. All the parameters considered hezédeyond the degeneration bor¢eA S, < 1).

In Figures 1 (a) - (b) we compare our results on the chargegeh®SF (2) using (3) & = T/ = Te =T, for
alkali plasmas within the screened HGK model with the resoiittained in the present work for alkali (hydrogen-
like point charges (HLPC)) plasmas considered within threested Deutsch model for various values of density
and fixed temperature. All curves obtained within the scedebDeutsch model converge to each other due to the
negligible influence of an alkali ion mass on the wavelengiscale entering the equations [1]. As one can easily
see with the growth of coupling the peaks become more praremliand the difference among the curves becomes
significant. We see that moderate coupling and the onsetoof-slinge order manifest themselvesSnas a first
localized peak, shown in an amplified scale, also reportédi]jrat different values ok’ for every alkali species,
and with increase of number of shell electrons (frbif to Cs™) the position of the peaks shifts in the direction
of small values ok’. We note that our approach is strictly speaking valid onhwieakly and moderately coupled
plasmas’; < 1. The results which we presented herelfpr> 1 have to be considered as extrapolations to a region
where the Bogolyubov expansions should include more telmisig. 1 (c) the SSFs (2) for Be" plasma with
Ne~2.5-10%cm 3,2z~ 2, Te=20eVandT, =T, T, = 0.5- T, T; = 0.2- T are shown.

The dynamic structure factor: the moment approach

A new “moment approach” based on exact relations and surs wge suggested in [4]a in order to calculate
dynamic characteristics of OCP and of the charge-charge d&todel semiquantal TCP. This approach proved
to produce good agreement with the MD data of J. P. Hansen @&tals. Rev. A. (1981). The corresponding DSF
are the Fourier transforms of the density-density timeadation functions. Alternatively, the charge-charge DSF
Sk, w) can be defined via the FDT [4]b as

hime=1(k, w) @
d(K)[1— exp(—Bhw)]”

Sk, w) = —

whered(k) = €2 /g9k? ande1(k, w) is the inverse longitudinal dielectric function of the ptas
On a base of the Nevanlinna formula of the classical theomparhents [4]b and references therein, we calculate
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Figure 1: The charge-charge SS&; (2), (3) for alkali plasmas afe =T = T4 = T = 3000 (a) [j = 0.6, (0) i = 2.4
and (c) forB&t plasma withng ~ 2.5-10%3%cm 3, z~ 2, andTe = 20eV, T, = 24068V in a frame of the screened HGK
model. In the (a), (b) the present results are compared with those ethtainhe present work for HLPC plasmas in a frame
of the screened Deutsch model on a base of Gregori et al.[1]. I(c}itbe set of filled symbols represents the HLPC model
obtained by Gregori et al.[1], while the set of hollow symbols - the sedeHGK model. Squared;/Te = 1 (I = 2.31,
lNee = 0.61). Circles:T;/Te = 0.5 (I'j = 4.63, l'ee = 0.61). Triangles:T;/Te = 0.2 ([ = 11.57, ['ee = 0.61).the solid line:
Ti/Te=1 (T = 2.31,¢e= 0.61). Dashed lineT;/Te = 0.5 (I'j = 4.63,ee = 0.61). Dotted line:T; /Te = 0.2 (I;; = 11.57,
lee= 0.61). As the length scale we use the inverse electron Debye radius.

the relative charge-charge DSF takes the following form:

Sk, @) _ ph wh? (K)o * (@)@’

Sk 0) I exp( )] * (P wd) t R w?) "N mBeRars ko)~ ° ©

with Syz(k,0) =~ y(k,0) = f¢ /orer, n? = C2/Co = wp?[1— & 1(k,0)] 7, wp? = Ca/Cp = wp®[1+ Q(K)],
where e~1(k,0) can be determlned from eq. (4) At= 0 and Kramers-Kronig relation éRee~1(k,0) = 1 —
2S,4(K)kpe? /K2, whereRee 1 (k,0) = £ 1(k,0) = £~ 1(k) and S(K) is defined afl{ = T/ = Te = T; by (2), (3)
or SKE(k). The function defining the second moment is giverQ@ik) = K (k) 4 L(k) 4 H [4]b. It contains the ki-
netic contribution for a classical systefiik) = 3k?/k3, wherekp? = kpe? = ne€?/£oks T. The Nevanlinna method
does not fix the functiom(k) up to some requirements as elgk) > 0. We are using this freedom and chose
expression foH (k), L(k). That is why we use for comparison two definitions: using tleellémb and HGK in-
teractions. The contribution due to electron-ion Coulorfds Hydrogen [5]) and HGK correlations are in our
approach represented respectively by :

hei(r=0) _ gei(r=0-1_ 1

4
yH =§erﬁee[3zrge+4r5+4ree 3(1+2rg Y2, HHOK_ = 3 =—3 ©®

The termL(k) takes into account the— e Coulomb and HGK correlations respectively:

1 00
LEHOK (b = o [ pPISeelp) — U T (PRI, ™
5 ¢ (R-p)° |p+k K2
c o P HGK (ps— /P 2pkst K2)ds - Zee(D)
CP=5-2et e Mook o PR= 1 Bz Geel /PP — 2pks+I2) 5 — 5P (8)

wherelee(p) is to be determined from the Deutsch potendigd p) = ®(p)Zle(p), Whered(p) = 47e? /411e0p? -
Fourier transform of the Coulomb potential.

In Figure 2 the DSF with the different definitions ldf!, L€ in the (a), (b) andH"CK, LHCK in the (c), (d), (6)
and (7), (8) respectively, are shown for comparison wittHh&C model in [4]b. As one can see in the Figures the
curves for alkali plasmas are different from those givertliertHLPC model [4]b as well as they are in comparison
with each other. The differences are due to the repulsivs pathe HGK potential, compared to the HLPC model,
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Figure 2: Comparisons of the relative charge-charge DSFs (5) of alkali plasvith the results obtained by S. Adamjan et al.
[4]b for the HLPC model af =3000(K, k= 1.074-reg (a), (C)Ne = 2.5-107°cm 3, Mee= 0.5 and (b), (dne = 1.61- 10%cm 3,

Mee= 2, where in the (@), (BHH, L€ and (c), (d)HHCK, LHCK are defined as (6) and (7), (8). As the length scale we use the
electron plasma frequenay, = Ne€?/ goMe.

which reflects roughly the internal ion structure. In thescafalkali plasmas at high&r; the curves split. This can
be explained by that fact that at higHgr alkali ion structure influences the dynamic structure fastgnificantly.

In the Figures the position of the central peaks coincidegbsitions of the plasmon peaks are slightly shifted .
In alkali plasmas the plasmon peaks are more pronouncediabpé the Fig. 2 (c), (d) where the ion structure is
better taken into account througH!®K, LHCK We observe that the plasmon peaks in the Fig. 2 (c), (d) are mo
pronounced and shifted in the direction of smaller absalatee ofw/wyp, the heights of the plasmon peaks are
higher especially at highdr; then in the Fig. 2 (a), (b). All this could be explained by sotoepling between
bound electrons and the plasmon mode. Observe that at Higheith an increase of number of shell electrons
from Li* to Cs" the curves shift in the direction of low absolute valueugfay, and their heights diminish. The
difference is due to the short range forces which we tookaetmunt by the HGK model in comparison with the
HLPC model. One should also take into account that we emgldiféerent plasma parameters because at the high
densities and temperatures studied in [4]b inner electnelissof the alkali plasmas are destroyed.
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