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The structure and thermodynamic properties of alkali and alkaline earth plasmas are of basic interest and of
importance for high-temperature technical applications.For instance, Li is an alkali metal, is planned to be used in
inertial confinement fusion, solar power plants etc. The present study is devoted to the study of the two-component
plasma (TCP) static (SSF) and dynamic (DSF) structure factors for alkali (Li+, Na+, K+, Rb+, Cs+) and alkaline
earth (Be2+) plasmas at temperaturesT ≥ 30 kK andT ≥ 100 kK respectively, where most of outer electrons are
ionized, but the rest core electrons are still tightly bound. The structure factor (SF) is the fundamental quantity
that describes the X-ray scattering plasma cross-section.Recently, X-ray scattering experiments has proven to be a
powerful technique in measuring densities, temperatures,charge states and spectrally resolving the non-collective
(particle) scattering characteristics of beryllium [1] inwarm dense matter regimes. We follow here the relatively
simple analytical route based on Bogolyubov expansions andconsider it as an alternative to methods based on
ab initio quantum DFT molecular dynamic simulations, hypernetted-chain (HNC) etc. Following our method we
need for the determination of SSF and DSF a screened pseudopotential as an essential input value. In order to
correctly describe alkali plasmas at moderate temperatures one needs to take into account the ion structure. In
both methods the screened Hellmann-Gurskii-Krasko potential (HGK) Φab(k) (a,b= i,e), obtained on the basis of
Bogolyubov’s method [2], has been used taking into account not only the quantum-mechanical effects (diffraction
and symmetry) but also the repulsion due to the Pauli exclusion principle [3] and references therein. The repulsive
part of the HGK potential reflects important features of the ion structure. The TCP electron-electron , electron-
ion, ion-ion and charge-charge static structure factors are calculated within the HGK approach for alkali one-
temperature plasma atT = 30000K, ne = 0.3 · 1021÷ 1.9 · 1022cm−3 and charge-charge SSF for Be2+ TCP at
T = 20eV, ne = 2.5 ·1023cm−3 using the TCP HNC approximation developed for the case of absence of the local
thermodynamic equilibrium (non-LTE) by P. Seuferling et al., Phys. Rev. A. 40 (1989), and further discussed and
extended for SSF by Gregori et al. [1] . The TCP DSFs for alkaliplasmas are calculated within the HGK approach
at T = 30000K, ne = 1.74·1020,1.11·1022cm−3 using the method of moments developed by V. M. Adamyan et
al. [4]. Strictly speaking, the model mentioned here based on Bogolyubov expansions is valid only for weakly
and moderately coupled plasmasΓii . 1, Γii [ee] = z2e2[e2]/(4ε0kBTrii [ee]) with r ii [ee] = (3/4πni [ne])

1/3 being the
average ion-ion [electron-electron] distance,e is the electric elementary charge andz - the ionic charge,ne[i ] -
electron, ion concentrations. We present also the results of several calculations ofΓii > 1 but these results have
merely the character of extrapolations. Thea−b HGK potential has the following view:
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whereZi = ze, Ze = −e, RCei = rCeirB anda for alkali elements are taken from [3] and references therein. The
values ofrCii , a are not given in literature, thereforerCii = 2rCei is taken hypothetically taking in this way both ions
cores (closed shells) into account. Unfortunately there are no available HGK parameters for the Be2+ ion. That is
why we looked for alternativee− i potentials with the determined for Be2+ parameters. It is the C. Fiolhais et al.
pseudopotential, Phys. Rev. B 51 (1995). We made a fit of the“universal” parameters of HGK to the Fiolhais et
al. pseudopotential, which area= 3.72, r = 0.22. Thee−e interaction is described with the help of the Deutsch
potential [3] and references therein.

Static Structure Factors

The partial SSF of the system are defined as the static (equal-time) correlation functions of the Fourier compo-
nents of the microscopic partial charge densities, J. P. Hansen, Phys. Rev. A. (1981). A linear combination of the
partial structure factors which is of high importance, is the charge-charge SSF defined as
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1
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, (2)
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whereρz = ρ i(~k)−ρe(~k) with ρ r(~k) = ∑N
i=1exp(ı~k ·~r r

i ), Nr , r = e, i- number of ions (i) and electrons (e). In the
thermodynamic equillibrium (TE) the partial SSFSrs(k) are defined as the Fourier transform of the pair distribution
functionshrs(r) = grs(r)−1: STE

rs (k)≃ δrs−
√

nr ns
kBT Φrs(k), whereΦrs are the expression (11)-(14) in [3].

Introduction of the effective temperature allows to extendthe fluctuation-dissipation theorem (FDT) to nonequi-
librium (two-temperature) systems as well as to interpolate between classical and quantum regimes and is the input
value for the partial SSFSrs(k). The effective temperatureT ′

rs is given by,T ′
rs =

mr T ′
s+msT ′

r
mr+ms

, whereT ′
e = (T2

e +T2
q )

1/2

with Tq = TF/(1.3251− 0.1779
√

rs), wherers = ra/rB, TF = h̄2(3π2ne)
2/3/(2kBme) andT ′

i = (T2
i + γ0T2

D)
1/2,

TD = Ωpih̄/kB, γ0 = 0.152 is the Bohm-Staver relation for the Debye temperature with Ω2
pi = ω2

pi/(1+ kDe/k2),

ωpi =
√

ze2ne/(ε0mi) with mi being the ion mass,kDe =
√

e2ne/(ε0kBT ′
e) is the Debye wave number for the elec-

tron fluid (TD ≈ 0.16eV, TF ≈ 14.5eV for Be2+). Due tomi >> me, T ′
ei = T ′

ee. As described in [1] by Gregori et
al., the FDT may still be a valid approximation even under nonequilibrium conditions if the temperature relaxation
is slow compared to the electron density fluctuation time scale. A common condition in experimental plasmas for
this to occur is whenmi >> me so that the coupling between the two-components takes placeat sufficiently low
frequencies. Using a two-component HNC approximation scheme, P. Seuferling et al., Phys. Rev. A. 40 (1989),
have shown that the static response under the conditions of the non-LTE (two-temperature) takes the form:
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whereq(k) =
√

zSei(k)/Sii (k). Note that whenT ′
e = T ′

i = Te = Ti the equation (3) turns into the eq.STE
rs (k) for

one-temperature plasma.q(k) represents the screening cloud of free (and valence) electrons that surround the ion.
Since the equation (3) represents the HNC-approximation, we will use this approximation for the treatment of non-
isothermal (two-temperature), stronger (moderately) coupled plasmas and for comparison with the corresponding
results of Gregori et al. All the parameters considered hereare beyond the degeneration border(neλ 3

ee< 1).
In Figures 1 (a) - (b) we compare our results on the charge-charge SSF (2) using (3) atT ′

e = T ′
i = Te = Ti for

alkali plasmas within the screened HGK model with the results obtained in the present work for alkali (hydrogen-
like point charges (HLPC)) plasmas considered within the screened Deutsch model for various values of density
and fixed temperature. All curves obtained within the screened Deutsch model converge to each other due to the
negligible influence of an alkali ion mass on the wavelengthλab scale entering the equations [1]. As one can easily
see with the growth of coupling the peaks become more pronounced and the difference among the curves becomes
significant. We see that moderate coupling and the onset of short-range order manifest themselves inSzz as a first
localized peak, shown in an amplified scale, also reported in[1], at different values ofk′ for every alkali species,
and with increase of number of shell electrons (fromLi+ to Cs+) the position of the peaks shifts in the direction
of small values ofk′. We note that our approach is strictly speaking valid only for weakly and moderately coupled
plasmasΓii . 1. The results which we presented here forΓii > 1 have to be considered as extrapolations to a region
where the Bogolyubov expansions should include more terms.In Fig. 1 (c) the SSFs (2) for aBe2+ plasma with
ne ≈ 2.5·1023cm−3, z≈ 2, Te = 20eV andTi = Te, Ti = 0.5·Te, Ti = 0.2·Te are shown.

The dynamic structure factor: the moment approach

A new “moment approach” based on exact relations and sum rules was suggested in [4]a in order to calculate
dynamic characteristics of OCP and of the charge-charge DSFof model semiquantal TCP. This approach proved
to produce good agreement with the MD data of J. P. Hansen et al, Phys. Rev. A. (1981). The corresponding DSF
are the Fourier transforms of the density-density time correlation functions. Alternatively, the charge-charge DSF
Szz(k,ω) can be defined via the FDT [4]b as

Szz(k,ω) =− h̄Imε−1(k,ω)

πΦ(k)[1−exp(−β h̄ω)]
, (4)

whereΦ(k) = e2/ε0k2 andε−1(k,ω) is the inverse longitudinal dielectric function of the plasma.
On a base of the Nevanlinna formula of the classical theory ofmoments [4]b and references therein, we calculate

37th EPS Conference on Plasma Physics P1.318



0 2 4 6 8 10
0,0

0,2

0,4

0,6

0,8

1,0

6 8 10 12 14 16 18 20 22 24 26
0,990

0,992

0,994

0,996

0,998

1,000

1,002

S
z
z
(k

')

k'=k/k
De

The Peaks

S
zz

(k
')

k'=k/k
De

Na+ 

Screened Deutsch
Li+ 

K+ 

Rb+ 
Cs+ 

(a)

0 2 4 6 8 10
0,0

0,2

0,4

0,6

0,8

1,0

0 2 4 6 8 10 12 14 16 18 20 22 24 26

1,00

1,02

1,04

1,06

1,08

1,10

S
zz

(k
')

k'=k/k
De

The Peaks

S
zz

(k
')

k'=k/k
De

Na+ 

Screened Deutsch
Li+ 

K+ 

Rb+ 
Cs+ 

(b)

0 2 4 6 8 10 12
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

0 2 4 6 8 10 12 14 16 18
0,95

0,96

0,97

0,98

0,99

1,00

1,01

1,02

S
zz

(k
')

k'=k/k
De

S
zz

(k
')

k'=k/k
De

The Peaks

,

Gregori et al.

HGK, -

-,,

(c)

Figure 1: The charge-charge SSFSzz (2), (3) for alkali plasmas atTe = Ti = T ′
e = T ′

i = 30000K (a) Γii = 0.6, (b) Γii = 2.4
and (c) forBe2+ plasma withne ≈ 2.5 · 1023cm−3, z≈ 2, andTe = 20eV, T ′

e = 24.06eV in a frame of the screened HGK
model. In the (a), (b) the present results are compared with those obtained in the present work for HLPC plasmas in a frame
of the screened Deutsch model on a base of Gregori et al.[1]. In the(c) the set of filled symbols represents the HLPC model
obtained by Gregori et al.[1], while the set of hollow symbols - the screened HGK model. Squares:Ti/Te = 1 (Γii = 2.31,
Γee= 0.61). Circles:Ti/Te = 0.5 (Γii = 4.63, Γee= 0.61). Triangles:Ti/Te = 0.2 (Γii = 11.57, Γee= 0.61).the solid line:
Ti/Te = 1 (Γii = 2.31, Γee= 0.61). Dashed line:Ti/Te = 0.5 (Γii = 4.63, Γee= 0.61). Dotted line:Ti/Te = 0.2 (Γii = 11.57,
Γee= 0.61). As the length scale we use the inverse electron Debye radius.

the relative charge-charge DSF takes the following form:

Szz(k,ω)

Szz(k,0)
=

β h̄
[1−exp(−β h̄ω)]

× ωh2(k)ω1
4

ω2(ω2−ω2
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with Szz(k,0) ≃ S0
zz(k,0) =

ne
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√
m

2πkBT , ω1
2 = C2/C0 = ωp

2[1− ε−1(k,0)]−1, ω2
2 = C4/C2 = ωp

2[1+ Q(k)],

whereε−1(k,0) can be determined from eq. (4) ath̄ = 0 and Kramers-Kronig relation asReε−1(k,0) = 1−
2Szz(k)kDe

2/k2, whereReε−1(k,0) = ε−1(k,0) = ε−1(k) andSzz(k) is defined atT ′
e = T ′

i = Te = Ti by (2), (3)
or STE

rs (k). The function defining the second moment is given byQ(k) = K(k)+L(k)+H [4]b. It contains the ki-
netic contribution for a classical systemK(k) = 3k2/k2

D, wherekD
2 = kDe

2 = nee2/ε0kBT. The Nevanlinna method
does not fix the functionh(k) up to some requirements as e.g.h(k) > 0. We are using this freedom and chose
expression forH(k), L(k). That is why we use for comparison two definitions: using the Coulomb and HGK in-
teractions. The contribution due to electron-ion Coulomb (for Hydrogen [5]) and HGK correlations are in our
approach represented respectively by :

HH =
4
3

zrs
√

Γee[3zΓ2
ee+4rs+4Γee

√
3(1+z)rs]

−1/2 , HHGK =
hei(r = 0)
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The termL(k) takes into account thee−eCoulomb and HGK correlations respectively:

LC,HGK(k) =
1

2π2ne

∫ ∞

0
p2[See(p)−1] f (p,k)dp, (7)
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whereζee(p) is to be determined from the Deutsch potentialϕee(p) = Φ(p)ζ ′
ee(p), whereΦ(p) = 4πe2/4πε0p2 -

Fourier transform of the Coulomb potential.
In Figure 2 the DSF with the different definitions ofHH , LC in the (a), (b) andHHGK, LHGK in the (c), (d), (6)

and (7), (8) respectively, are shown for comparison with theHLPC model in [4]b. As one can see in the Figures the
curves for alkali plasmas are different from those given forthe HLPC model [4]b as well as they are in comparison
with each other. The differences are due to the repulsive parts of the HGK potential, compared to the HLPC model,
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Figure 2: Comparisons of the relative charge-charge DSFs (5) of alkali plasmas with the results obtained by S. Adamjan et al.
[4]b for the HLPC model atT = 30000K, k= 1.074·ree, (a), (c)ne= 2.5·1025cm−3, Γee= 0.5 and (b), (d)ne= 1.61·1024cm−3,
Γee= 2, where in the (a), (b)HH , LC and (c), (d)HHGK, LHGK are defined as (6) and (7), (8). As the length scale we use the
electron plasma frequencyωp = nee2/ε0me.

which reflects roughly the internal ion structure. In the case of alkali plasmas at higherΓii the curves split. This can
be explained by that fact that at higherΓii alkali ion structure influences the dynamic structure factor significantly.
In the Figures the position of the central peaks coincides but positions of the plasmon peaks are slightly shifted .
In alkali plasmas the plasmon peaks are more pronounced especially in the Fig. 2 (c), (d) where the ion structure is
better taken into account throughHHGK, LHGK. We observe that the plasmon peaks in the Fig. 2 (c), (d) are more
pronounced and shifted in the direction of smaller absolutevalue ofω/ωp, the heights of the plasmon peaks are
higher especially at higherΓii then in the Fig. 2 (a), (b). All this could be explained by somecoupling between
bound electrons and the plasmon mode. Observe that at higherΓii with an increase of number of shell electrons
from Li+ to Cs+ the curves shift in the direction of low absolute value ofω/ωp and their heights diminish. The
difference is due to the short range forces which we took intoaccount by the HGK model in comparison with the
HLPC model. One should also take into account that we employed different plasma parameters because at the high
densities and temperatures studied in [4]b inner electron shells of the alkali plasmas are destroyed.
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