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It is known that an electron-ion plasma with a density gradient perpendicular to the ambient

magnetic field vector supports drift waves driven by the density gradient. The vector-product-

type nonlinearity leads to a three-wave interaction which allows for both a direct and an inverse

cascade, i.e., the transport of energy towards both shorter and longer wavelengths. In the case of

pair plasmas (electron-positron, or pair ion plasmas [1, 2]), instead of the drift mode one obtains

convective cells [3]. In the present work it is shown that nonlinear three-wave interaction [4],

described by vector-product type nonlinearities, in pair plasmas implies much more restrictive

conditions for a double energy transfer, as compared to electron-ion plasmas.

We assume a plasma with two components of equal mass and opposite charge (electron-

positron or pair-ion), and we use the continuity and momentum equations in the form
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The indices 0 and 1 here denote equilibrium and perturbed quantities, respectively. We study

low frequency perturbations ∼ exp(−iωt + i~k⊥~r+ ikzz), |∂/∂ t| ¿ |Ω|= |q|B0/m, propagating

nearly perpendicularly with respect to the magnetic field vector ~B0 = B0~ez, i.e., |k⊥| À |kz|, and

we allow for the presence of the equilibrium perpendicular density gradient ∇⊥n0. It turns out

that the density gradient effects play no role in the present problem because the corresponding

terms for the two species cancel out. From Eq. (2) we obtain approximately

~v⊥1 =
1

B0
~ez ×∇⊥φ1 −

1
B0Ω

(
∂
∂ t

+
1

B0
~ez ×∇⊥φ1 ·∇⊥

)
∇⊥φ1, (3)

(
∂
∂ t

+
1

B0
~ez ×∇⊥φ1 ·∇⊥

)
vz =− q

m
∂φ1

∂ z
. (4)

Using these two in Eq. (1), after some algebra one obtains
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Linearizing Eq. (5) one then obtains the dispersion equation for the electrostatic convective cells

propagating almost perpendicularly to the magnetic field vector:

ω2 = Ω2 k2
z

k2
⊥
. (6)

Note that using the Poisson equation instead of the quasi-neutrality will only modify the con-

stant on the right-hand side of Eqs. (5, 6), Ω2 → Ω2/[1+Ω2/(2ω2
p)], ω2

p = q2n0/(ε0m). This

modification is not essential for our work and will be neglected implying that Ω2 ¿ 2ω2
p.

In order to study the three-wave interaction, we use the nonlinear Eq. (5) assuming the per-

turbed potential (after omitting the previously used index 1) in the form

φ(t) =
j=3

∑
j=1

[
Φ j(t)exp

(
−iω jt + i~k j~r

)
+Φ∗

j(t)exp
(

iω jt − i~k j~r
)]

. (7)

Here, ∗ denotes the complex-conjugate quantity, and we shall use also ∂/∂ t| j →−iω j +δ/δ t,

|iω j| À |δ/δ t|, where δ/δ t is the time derivative on a slow time-scale, as a consequence of

the nonlinear three-wave interaction. In this case one obtains the following expression for time

variation of the jth-amplitude:
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On the right hand side in Eq. (8), φ should be taken as the summation (7). In view of the

approximative calculation of the time-varying mode amplitude, on the right-hand side the re-

maining time and space derivatives ∂/∂ t,∇⊥ imply ±iωl,±~kl (l = 1,2,3), where ± appears

due to complex-conjugate expressions, and out of all terms introduced by the summation (7),

one should keep only the resonant ones, corresponding to the −iω jt + i~k j ·~r on the left-hand

side. Without any loss of generality we further assume the following resonant conditions:

ω1 = ω2 +ω3, ~k1 =~k2 +~k3. (9)

The remaining task of calculating the nonlinear terms in Eq. (8) is presented below. For the

mode ω1,~k1, from the first term on the right-hand side in Eq. (8) we have
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1
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(
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)
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Similarly, the second nonlinear term yields:
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Consequently, Eq. (8) for the mode ω1,~k1 becomes

δΦ1(t)
δ t

−ϒ13 =−~ez · (~k3 ×~k2)
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The meaning of the term ϒ13 is obvious from Eq. (8), it is the third nonlinear term there.

In the same manner from Eq. (8) one obtains for the modes 2 and 3, respectively:
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Equations (10)-(12) describe time evolution of the three modes due to their nonlinear interac-

tion. For an arbitrary jth mode on the left-hand sides in Eqs. (10)-(12), the first and second

nonlinear terms on the right-hand sides must include terms k and l, where k 6= l (including the

combination with the complex-conjugate counterparts too).

On the other hand, the third nonlinear term ϒ j3 includes products of all three amplitudes

Φ j,Φk,Φl , and consequently, it can not contain resonant exponential terms that would follow

from the interaction between different modes. In other words, for the jth mode on the left-hand

sides in Eqs. (10)-(12), the third nonlinear term ϒ j3 can only contain the self-interacting terms of

the type c j ·Φ j, where in the same time the interaction coefficient can only include terms of the

form ΦkΦ∗
k , ΦlΦ∗

l , where k 6= j, and l 6= j. Hence, although it describes the variation of the mode

amplitude due to 3-wave interaction, it does not directly contribute to a possible energy transfer

towards larger and shorter wave-lengths. It is a cubic nonlinearity yielding only a frequency

shifts due to the modulational interaction. As such it in principle introduces a mismatch in the

perfect resonant condition (9) for the frequencies, yet these effects will not be discussed here.

The double energy transfer can follow only from the first and second nonlinear terms in

Eq. (8), therefore only the contribution of those terms will be checked below. For that purpose,

using the resonant conditions (9) we rewrite Eqs. (10)-(12) in a more symmetric form
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−ϒ13 =
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[
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2. (15)

The double energy transfer implies an energy transfer towards both shorter (the direct one) and

longer scales (the inverse transfer). Taking as an example

k2
2 < k2

3 < k2
1, (16)
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for positive frequencies and after using (9) to eliminate ω3 (after disregarding the obvious pos-

itive and common terms) the signs of the coefficients of interaction are determined by:

β1 = k2
3(2ω1 −ω2)− k2

2(ω1 +ω2), (17)

β2 = k2
3(ω1 −2ω2)+ k2

1(ω1 +ω2), (18)

β3 = k2
2(ω1 −2ω2)+ k2

1(ω2 −2ω1). (19)

In order to have the double energy transfer with the intermediate mode yielding the energy,

β3 < 0, β1,2 > 0, from Eqs. (17)-(19) we obtain the following additional conditions for the

frequencies and wave-numbers:

ω1 > 2ω2, k2
1 > k2

2
ω1 −2ω2

2ω1 −ω2
, k2

3 > k2
2

ω1 +ω2

2ω1 −ω2
. (20)

Hence, the same double energy transfer in the pair-plasma imposes three more conditions. Yet,

it is still possible and as an example we take the following set of numbers: ω1 = 3, ω2 = 1,

ω3 = 2 and k2
1 = 3, k2

2 = 1, k2
3 = 2. These indeed satisfy all the conditions (9), (16), (20) and

allow for the double energy transfer because: β1 = 6, β2 = 14, β3 =−14. From the derivations,

and in particular from Eq. (8), it is clear that the k j here imply the perpendicular components of

the wave numbers. On the other hand, because both Ω and the ratio kz/k⊥ remain free (except

for the assumption that the latter is much less than unity), the dispersion relation (6) will easily

be satisfied too. We stress again that pair properties imply that the results presented here are

valid for both homogeneous and inhomogeneous environments.
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