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Abstract

The Rankine-Hugoniot jump conditions describe discontinuous solutions to the MHD

conservation laws. Some of these connect a sub-Alfvénic to asuper-Alfvénic region. These

solutions to the Rankine-Hugoniot conditions are called intermediate shocks. We review

and derive limiting shock parameter values for the existence of these intermediate shocks.

The isotropical sound speed is the characteristic speed forstationary hydrodynamics and

the Prandtl-Meyer law states that every HD shock connects a subsonic to a supersonic state.

In stationary magnetohydrodynamics, three highly anisotropical characteristic speeds exist. In

increasing order: the slow magnetosonic speed, the Alfvén speed and the fast magnetosonic

speed. A generalization to the Prandtl-Meyer law is thus notstraightforward. It is well-known

[4] that a shock cannot connect two states with the same relative speed magnitude compared

to the characteristic speeds. Shocks connecting a subslow to a superslow state are called slow

shocks, and shocks connecting a subfast to a superfast stateare called fast shocks. All other

shocks connect a sub-Alfvénic to a super-Alfvénic state andare calledintermediate shocks.

The existence of these intermediate shocks is still under debate (see [1] and references therein

for the main arguments). Inspired by [3], we investigate under which parameter ranges the

Rankine-Hugoniot conditions, which describe discontinuous solutions to the MHD equations,

allow for intermediate shocks.

Rankine-Hugoniot conditions and their solution

We recalled in [1] that in any frame in which the shock is stationary (including the de

Hoffmann-Teller frame [2]), the plasma is completely determined by three dimensionless pa-

rameters: the plasma-betaβ ≡ 2p
B2

n+B2
t
, the inclination to the shock normalθ ≡ Bt

Bn
and the Alfvén

Mach numberM ≡
√

ρv2
n

B2
n+B2

t
. Intermediate shocks are characterized by the fact that anM > 1

state connects to an unknown state which satisfiesMu < 1. Here we introduced mass densityρ,

velocity v, thermal pressurep and magnetic fieldB. The indexn refers to the direction of the

shock normal, and the indext refers to the direction in the shock plane tangential to the shock
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normal. Let us now define the shock invariant

ξ ≡
(
(M2−1)θ ,2M2+β (1+θ2)+θ2,(

γ
γ −1

β +M2)(1+θ2)M2
)
. (1)

The ratio of specific heatsγ is a constant equation parameter. In [1], we showed that the RH

conditions simplify as

[[ξ ]] = 0, (2)

and the primitive variables can be recovered from the dimensionless parameters. Here[[·]] ≡
·1−·2, where index 1 refers to the upstream state and index 2 refersto the downstream state.

Let now a known stateuk =(β ,θ ,M) be given. We search the unknown statesuu =(βu,θu,Mu),

which can be connected touk by a stationary MHD shock.

The solution is given by

Mu =

√
(M2−1)θ +θu

θu
, (3)

βu =

[
(γ −1)((θ −θu)

2+(1+θ2)β )−4M2
]
(M2−1)+2M2(θ +θu)θu

(M2−1)(γ +1)
(
1+θu

2) , (4)

whereθu can be found as the root of a cubic equationC(θu) = Σ3
i=0τiθ i

u andτi are polynomial

functions of(β ,θ ,M). It is well known that a cubic has three different real solutions if and only

if

Ω ≡ 27τ2
0 +4τ3

1 +4τ2
2τ0− τ2

2τ2
1 −18τ2τ1τ0 < 0. (5)

Physical interpretation and visualisation of Ω

It is well-known [4] that when only one real root exists, it cannot lead to an intermediate

shock solution. Therefore an intermediate shock can only exist whenΩ < 0. Moreover, in [1]

we argue that the surfaceω ≡ {(β ,θ ,M)|Ω = 0} in our 3-dimensional parameter state space

represents exactly the states which can be connected to a state wherevn equals one of the

characteristic speeds. Although this theory is generally applicable (forγ > 1), for the figures we

assume thatγ = 5
3. The left panel of Fig. 1 shows these characteristic speeds in theβ = 1

10 cut

of the (β ,θ ,M) parameter space. Alsoi-state regions are defined graphically. The right panel

shows the surfaceω, which separates the regions where the RH allow for three real solutions,

from the regions where only one real solution exists.

Admissibility of solutions

There are three more physical restrictions for admissibility of MHD shocks, namely:

• ρu >0. The conservation of momentum makes sure that this condition is trivially satisfied,

when the normal velocities in both states have the same sign;
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Figure 1:Left: The(θ ,M) state plane forβ = 1
10 andγ = 5

3. Shown are the curves fast:vn = v f ,

Alfvén: vn = an and slow:vn = vs. These curves separate the(θ ,M) plane in the classical

1−2−3−4 state regions.Right: Shown is the curveω. WhereΩ > 0, only one real solution

to the RH conditions exists. WhereΩ < 0, the RH conditions allow three real solutions.

• pu > 0. This condition is non-trivial. The graphical representation of this requirement is

shown in figure 2. In [1] we showed that ifk of the solutions lead to negativepu, it are

exactly all thei-state solutions, withi ≤ k;

• Entropy should increase. This condition can be satisfied by choosing the correct signs for

vn. When the upstream state is ani-state and the downstream aj-state, this condition is

equivalent toj > i (see e.g. [1] or [4]). In this case, the shock is called ani → j shock.

Regimes for intermediate shocks

We are now ready to formulate our results. Both frames of Fig.2 show theβ = 1
10 cut of pa-

rameter space, whereω and the characteristic speeds are overplotted. Also, the critical surfaces

for positive unknown pressurepu are plotted. In the coloured regions, the RH conditions allow

for intermediate shocks. The regions I, II and II allow for three different shock solutions, the

regions IV and V allow for two shock solutions, the regions VIand VII allow for a single shock

solution and region VIII only allows for negative pressure solutions. Not all of these solutions

are of course intermediate shocks. In regions IV and V, the 1-state solution leads to negative

pu and in regions VI and VII the 1-state and 2-state solution lead to negativepu. Therefore the

right panel of figure 2 shows the regions where intermediate shock solutions are possible. In

region I both a 1→ 3 and 1→ 4 solution exist, while in regions II and VI both a 2→ 3 and
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Figure 2: Left: Regions in which the RH conditions allow for intermediate shocks are coloured.

Right: the blue regions allow for two different intermediate shocks. The yellow region allows

for a single intermediate shock.

2→ 4 intermediate shock solution exist. The difference between those two regions is that region

II also leads to a fast shock solution. Also region III allowsfor two intermediate solutions: a

1→ 3 and a 2→ 3 solution. Region V finally only allows for intermediate 2→ 3 shocks.

Applied on 1→ 3 shocks

As a simple example we derive a limiting value for the downstreamθ for 1 → 3 shocks.

Therefore we need to fill outM = 1 in pu = 0, and solve forθ . For fixedβ , the solution is given

by θ =

√
(γ−1)β 2+(γ−3)β−2

√
β (γβ+γ−1)

(γ−1)(β+1)2
, for β ∈]0, 4

γ−1]. Note that the maximum value1√
γ−1

is

reached forβ = γ−1. Therefore no 1→ 3 shocks are possible forθ > (γ −1)−1/2 = 0.77460.
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