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Access to low collisionality* is important to more fully understand transport, stahikiyd
non-inductive start-up and sustainment in the sphericastftokamak (ST). For example, NSTX
[1] and MAST [2] observe a strong (nearly inverse) scalingaimalized confinement with*.
An example of this scaling is show in Figure 1 for NSTX expents in which the plasma 3,

andp, were approximately fixed as the electron collisionalifywas varied by a factor of 3.
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Figure 1: Product of toroidal field (8) the upgrade of NSTX to higher toroidal field (TB} =
and energy confinement time-§ versus
Ve for NSTX and projections for NSTYO-95T — 1T, plasma currentp = IMA — 2MA, neutral
Upgrade and ST-FNSF. beam injection (NBI) heating powefg = SMW —

10MW, and pulse length =sl— 5sto access 3-% lower v* with fully equilibrated profiles.

existing ST devices, thereby potentially enabling a re-
duced size and cost ST-based Fusion Nuclear Science
Facility (ST-FNSF) [3]. Such considerations motivate

In order to support highé8t andlp, an upgraded center-stack and installation of a 2nd TFTR
NBI is planned as shown in Figure 2. The outer TF coils, vacwessel, passive stabilizing
structures, and outboard divertor components would retaggely unchanged, but a new larger
diameter center-stack (CS) would replace the existing C&hawn in Figure 2a. This larger
outer diameter (OD) CS increases the minimum aspect rafidlpfimited plasmas from aspect
ratio A = 1.3 to 1.5. Diverted plasmas would typically haveped ratio A> 1.6 comparable
to the optimal aspect ratio identified for ST-FNSF and ARI&EBreactor studies. The addition
of a 2nd NBI as shown in Figure 2b not only serves to increasatkxiliary heating power to
access reduced’, but also has increased tangency radius of injedidgp to increase current

drive efficiency for non-inductive ramp-up and sustainrmentiescribed below.
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Figure 2:(a) Outline and cross-sections of new CS, (b) injection getoyof present and new 2nd NBI.
To enable engineering design of the upgrade, systemagebivendary equilibrium calcu-
lations have been performed to determine the upgrade @blixgdd requirements. The design
range spans aspect ratio A = 1.6 to 1.9, internal inductane®.4 to 1.1, elongatiorn = 2.1
to 2.9, triangularityd = 0.2 to 0.7, squarenegs= -0.15 to 0.12, magnetic balandgsep= -
1.5 to Ocm, normalized pressuBg = 1, 5, and 8, and OH solenoid current = 0 ahdupply

limit to determine the divertor poloidal field (PF) needed dancellation of OH leakage flux.

NSTX shot 135498, t=0.382s
)

i

The new OH solenoid provides 2.1Wb of double-swing OH flux

(vs. the present 0.75Wb) to support 5s flat-top duratidp atZMA
projected from NSTX scalings and modeling.

Recent assessments of the divertor heat flux scaling in NSTX

project peak divertor heat fluxes 0V /m? in the Upgrade for con-
ventional divertor configurations with flux expansion 20. [Mégry
high flux expansions of 40-60 have recently been demondtmate
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NSTX utilizing a "snowflake" [5] divertor as shown in Figura.3
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Figure 3: (a) Snowflake di- ) ) .
vertor in NSTX and (b) sim-Further, the snowflake divertor projects favorably to natigg the

ulation for NSTX Upgrade.

highest divertor heat fluxes projected for NSTX Upgrade fota
5s. In order to support this and other future high-flux-exgi@mdivertors such as the “Super-X”
[7] (possible with additional in-vessel PF coils not partioé present Upgrade), additional di-
vertor PF coils have been incorporated into the Upgrade Gigldn particular, a third divertor
PF coil (PF1C) will be added to the CS as shown in Figure 3b ppsu the snowflake and to
improve flux expansion and strike-point control generallyo divertor PF coils will also be

added to the upper CS to provide an up/down symmetric coil set
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A critical element of ST research in support of steady-stgteration is to increase the 70%
non-inductive fraction sustained in NSTX [8] to fully-namductively sustained plasmas. Future
ST-FNSF facilities are projected to rely heavily on NBI @nt drive (NBICD) to drive as much
as 50% of the plasma current with the remainder provided loglassical bootstrap current.
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Figure 4: (a) Comparison of paral-
lel current density profiles for existingFigure 4b, using only the existing NBI with the CS
(dashed) and 2nd (solid) NBI sources, and

q profile controllability vs. density for (b)UPgrade, full power NBI (7.5MW) + 4AMW of HHFW
existing and (c) additional NBI sources. pgating is needed to support 100% non-inductive op-

eration, and the only means gfcontrol is gmi, variation through the plasma density (i.e.

from centrally peaked to peaked off-axis. As shown in

CD efficiency). Further, such scenarios require ITER ELMynidde confinement multiplier
Hog=1.2-1.4. Multipliers as high adgg=1.3-1.4 have been obtained transiently in NSTX, but
sustainingHgg=1.15-1.2 is only now beginning to be achieved with Li comating [9] in ELM-
free conditions in NSTX with a goal of extending this enhahcenfinement to small-ELM
regimes [10]. With the addition of the 2nd NBI of the Upgra&ggure 4c shows that higher
NBI power (10MW vs. 7.5MW) can reduce the requirdgg to 1.2 for 100% non-inductive
scenarios and also enables controlggf, with Agmin = 0.6 by varying the NBI source mix
at fixed density. Further, scenarios Wity Nngreenwalg= 0.7-1 exist withgmin varying from 1 to
above 2 with important implications for stability and traonst research. All of the above scenar-

ios operate above the n=1 no-wall stability limit and requistational and/or active feedback
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stabilization of the resistive wall mode as is common foraahed scenarios on NSTX [11].
Future ST-FNSF facilities are also projected to op-
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sential element of ST research. As shown in Figure 5a
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for low 1,=0.4MA target plasmas, the NBI power losses
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§ of = = - = ©) o, this translates into a factor of 3 increase in CD efficiency
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Figure 5: Predicted (TRANSP) (a)[13]in a high bootstrap-current-fraction H-mode plasma.

power loss fraction and (b) current . o
drive efficiency vs. NBI tangency ra- In summary, as described above, the combination of a

dius, and simulated (TSC) (c) non: : At
inductive currents and (d) heatingnew CS and 2nd (and more tangentially injecting) NBI

power for NBI non-inductive ramp-up. to double the magnetic field, current, and NBI power will

provide substantial new capabilities to advance ST andntekaresearch in transport, stabil-

ity, plasma-material interactions, and non-inductivespia start-up, sustainment, and current
profile control. This work is supported in part by U.S. DOE @ant DE-AC02-09CH11466.
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