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Introduction

Plasmas that in addition to the basic, usually Maxwellian electron population, contain also an

energetic electron population are very important in technological and fusion applications. En-

ergetic electron populations are often created in fusion devices during electron cyclotron and

lower hybrid resonance heating and at the rf current drive. On the other hand sheath formation

in front of electron emitting electrodes is also a very important topic for understanding emissive

probe behavior. Emissive probes are a very important plasma diagnostic tool. In this work we

study the potential formation in front of an electron emitting electrode immersed in a plasma

that contains an isotropic mono-energetic electron beam.

Model

An infinitely large planar electrode (collector) has its surface perpendicular to the x axis and is

located at x = 0 [1]. This electrode absorbs all the particles that hit it. On the other hand it may

also emit electrons. This electron emission can be thermal or secondary. The details of the emis-

sion mechanism are not essential for the model and in this work it will not be specified. When

the collector is floating or biased negatively with respect to the plasma potential, it reflects neg-

ative electrons and attracts positive ions. The potential profile in the sheath is determined by a

one-dimensional Poisson equation:

d2Φ
dx

=−e0

ε0
(ni(x)−n1(x)−n2(x)−n3(x)) . (1)

The meaning of the symbols is the following: Φ is the potential, e0 is the elementary charge, ε0

is the permittivity of the free space, ni is the density of the singly charged positive ions, n1 is the

density of the bulk electron population, n2 is the density of the beam or primary electrons and

n3 is the density of the emitted electrons. The potential very far away from the collector is set

to zero Φ(x → ∞) = 0. The collector potential is ΦC and it is negative. As one approaches to the

collector from the plasma, the potential slowly decreases and a pre-sheath is formed. This is a

region, where the plasma is still quasi-neutral but a weak electric field exists, which accelerates
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positive ions towards the collector and negative electrons in the opposite direction. The length

scale of the pre-sheath is L and it is determined by some characteristic binary process in the

plasma. At the distance x = d from the collector the plasma quasi-neutrality breaks down and a

sheath with an excess of positive space charge is formed. The plane at x = d is called the sheath

edge. The potential there is ΦS and this is the last point, where the quasi neutrality is still valid.

Note that ΦS is also negative with ΦC < ΦS.

The ion density in the sheath is found from the energy and flux conservation arguments

and it is given by: ni(x) = nS

√
e0ΦS+Ac

e0Φ(x) . Here Ac is the energy that the ions loose in the pre-

sheath because of collisions and nS is the ion density at the sheath edge. The density of the

main electron population is given by the Boltzmann law: n1(x) = n1 exp
(

e0Φ(x)
kT

)
. Here T is

the electron temperature, k is the Boltzmann constant and n1 is the density of the bulk electron

population at a large distance from the collector, where the potential is zero. The beam electrons

are assumed to be mono-energetic. At a large distance (x > L) from the collector their density

is n2 they have all the same speed v2. The directions of their velocities however, are uniformly

distributed in space. The velocity distribution is given by:

f2(v) =
n2

4πv2
2

δ (v− v2). (2)

The density of the beam electrons at the distance x from the collector is found by integration

of the distribution (2) over velocity space: n2(x) =
∫

v f2(v)d3v = 1
2n2

(
1−

√
−2e0Φ(x)

mev2
2

)
. The

density of the emitted electrons in the sheath is also found from the flux and energy conservation

arguments: n3(x) = j3/
√

v2
C − 2e0(ΦC−Φ(x))

me
. The flux of the emitted electrons from the collector

j3 is assumed to be a given parameter and vC is the initial velocity of the emitted electrons at

the collector. When the particle densities are inserted into (1) and the quasi-neutrality condition

at the sheath edge is taken into account, the Poisson equation (1) is written as:

d2Ψ
dz2 = exp(Ψ(z))+ β

2

(
1−

√
−2Ψ(z)

ϑ 2

)
+ J3

(
Ω2 −2(ΨC −Ψ(z))

)− 1
2 −

−
√

ΨS
Ψ(z)

(
exp(ΨS)+

β
2

(
1−

√
−2ΨS

ϑ 2

)
+ J3

(
Ω2 −2(ΨC −ΨS)

)− 1
2

)
.

(3)

The following variables have been introduced:

Ψ = e0Φ(x)
kT , ΨC = e0ΦC

kT , ΨS =
e0ΦS
kT , ϕ = Ac

kT , µ = me
mi
, J3 =

j3
n1

√
kT
me

,

Jt =
jet

e0n1

√
kT
me

, β = n2
n1
, vC = Ω

√
kT
me
, v2 = ϑ

√
kT
me
, z = x

λD
, λD =

√
ε0kT
n1e2

0
.

(4)

With these variables the total current density to the collector is written in the following form:

Jt =
1√
2π exp(ΨC)+

1
4βϑ

(
1+ 2ΨC

ϑ 2

)
H
(

1+ 2ΨC
ϑ 2

)
− J3−

−
√

−2µ(ΨS +ϕ)
(

exp(ΨS)+
β
2

(
1−

√
−2ΨS

ϑ 2

)
+ J3

(
Ω2 −2(ΨC −ΨS)

)− 1
2

)
,

(5)
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When the Poisson equation (3) is multiplied by dΨ/dz and integrated once over Ψ, one half of

the square of the electric field g(Ψ) in the sheath is obtained as a function of the potential Ψ:

1
2

(dΨ
dz

)2
Ψ − 1

2

(dΨ
dz

)2
Ψ=ΨS

= 1
2

(dΨ
dz

)2
Ψ = exp(Ψ)− exp(ΨS)+

+J3

(√
Ω2 −2(ΨC −Ψ)−

√
Ω2 −2(ΨC −ΨS)

)
+

+ β
6ϑ

(
2
√

2
(

ΨS
√−ΨS +(−Ψ)

3
2

)
−3ϑ (ΨS −Ψ)

)
+
(
ΨS +

√
ΨΨS

)
(β +2exp(ΨS))+

+

(
β
√

2
ϑ ΨS +2J3

(
Ω2 −2(ΨC −ΨS)

)− 1
2

)(√
−Ψ−√−ΨS

)
≡ g(Ψ).

Note that in the asymptotic two-scale limit of our model (L À d À λD) the electric field at the

sheath edge is zero. If the electron emission is space-charge limited or critical, the following

condition is fulfilled:

g(Ψ = ΨC) = 0. (6)

If a stable sheath is to be formed the positive ions must enter the sheath with a certain minimum

velocity, called the ion sound velocity, vS ≥ cS. This is known as the Bohm [2] criterion. Using

the variables (4) and with equality sign, the Bohm criterion gets a form of a transcendental

equation for the sheath edge potential ΨS:

ΨS =

(
−1

2

) exp(ΨS)+
β
2

(
1−

√
−2ΨS

ϑ 2

)
+ J3

(
Ω2 −2(ΨC −ΨS)

)− 1
2

exp(ΨS)+
β

2ϑ
√−2ΨS

− J3 (Ω2 −2(ΨC −ΨS))
− 3

2
−ϕ ≡ f (ΨS). (7)

Results

We now use the model to calculate the current voltage characteristics of an emissive probe in

a typical low pressure hot cathode discharge plasma machine. The following parameters are

selected: µ = 1/(40·1836) ≈ 1.36·10−5 (argon ions), Ω = 0.001 and ϕ = 0, while β , ϑ and J3

are varied and are indicated in Figure 1. If J3 is increased one expects that the floating potential

Ψ f will increase (become less negative) if the under parameters are not changed. The floating

potential Ψ f can be found by solving the system of equations (5) with Jt = 0 and (7) for Ψ f

and ΨS. In the bottom right plot of Figure 1 the floating potential is shown as a function of J3

for µ =1.36·10−5, Ω = 0.001 and ϕ = 0. For one curve β = 0 is selected and for other 2 curves

we put β = 0.01 and 2 values of ϑ , which are ϑ = 6 and ϑ = 9. The presence of electron beam

decreases Ψ f considerably.

If J3 increases, the absolute value of electric field at the collector decreases and eventually

drops to zero at some J3. The emission becomes space charge limited or critical. For smaller

J3 the emission is called temperature limited - implying that the predominant mechanism of

electron emission is Richardson emission. The collector potential at which (for a given J3) the

transition changes from space charge limited into temperature limited emission is labeled ΨC0.

37th EPS Conference on Plasma Physics P2.133



-50 -40 -30 -20 -10 0

-0,2

-0,1

0,0

0,1

0,2

0,3

-50 -40 -30 -20 -10 0

-0,2

-0,1

0,0

0,1

0,2

0,3

-50 -40 -30 -20 -10 0

-0,10

-0,05

0,00

0,05

0,10

0,15

0,20

0,25

0,00 0,02 0,04 0,06 0,08 0,10
-10

-8

-6

-4

-2

0

J t

C

  = 0.02
  = 0.01

J t

C

 = 9
 = 7

J t

C

                             J3 = 0

                    J3 = 0.02

               J3 = 0.04

           J3 = 0.06

       J3 = 0.08

   J3 = 0.10

J3 = 0.12 C
0, 

f

J
3

f, 

f, 

f, 

C0

Figure 1: Current voltage characteristics, transition poten-

tials ΨC0 and floating potentials Ψ f for various β , ϑ and

J3.

For given values of µ , β , ϑ , ϕ ,

Ω and J3 it can be found eas-

ily by solving the system of equa-

tions (6) and (7) for ΨS and ΨC0.

Dependence of ΨC0 on J3 for

µ =1.36·10−5, Ω = 0.001, ϕ = 0,

β = 0 and for β = 0.01 with 2 values

of ϑ , ϑ = 6 and ϑ = 9 is also shown

in the bottom right plot of Figure

1. The beam density and energy β

and ϑ have almost no effect to the

dependence of ΨC0 on J3 and the

3 curves can not be distinguished

on the plot. As J3 increases ΨC0 de-

creases and Ψ f increases and even-

tually they become equal. This explains the ”saturation” of the floating potential of an emissive

probe with increased emission. When ΨC0 exceeds the Ψ f the probes floating potential can not

come closer to the plasma potential (in our model zero) any more. So when one calculates the

current voltage characteristics for given values of µ , β , ϑ , ϕ , Ω and J3 first the transition po-

tential ΨC0 has to be found. Then for every ΨC ≤ ΨC0 the ΨS has to be found from (7) and

then Jt is found from (5). For ΨC > ΨC0 the system (6) and (7) must be solved for ΨS and the

critical emission J3cr, which are then both inserted into (5) to find Jt . In the bottom left graph the

current voltage characteristics are shown for µ =1.36·10−5, Ω = 0.001, ϕ = 0, β = 0.01, ϑ = 8

and several J3. In the top graphs the effect of β and ϑ to the characteristics is illustrated. For

the top left graph the parameters are: µ =1.36·10−5, Ω = 0.001, ϕ = 0, ϑ = 8, J3 = 0.2, while for

the top right graph the parameters are: µ =1.36·10−5, Ω = 0.001, ϕ = 0, β = 0.01 and J3 = 0.2.
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