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Introduction

Plasmas that in addition to the basic, usually Maxwellian electron population, contain also an
energetic electron population are very important in technological and fusion applications. En-
ergetic electron populations are often created in fusion devices during electron cyclotron and
lower hybrid resonance heating and at the rf current drive. On the other hand sheath formation
in front of electron emitting electrodes is also a very important topic for understanding emissive
probe behavior. Emissive probes are a very important plasma diagnostic tool. In this work we
study the potential formation in front of an electron emitting electrode immersed in a plasma
that contains an isotropic mono-energetic electron beam.

Model

An infinitely large planar electrode (collector) has its surface perpendicular to the x axis and is
located at x = 0 [1]. This electrode absorbs all the particles that hit it. On the other hand it may
also emit electrons. This electron emission can be thermal or secondary. The details of the emis-
sion mechanism are not essential for the model and in this work it will not be specified. When
the collector is floating or biased negatively with respect to the plasma potential, it reflects neg-
ative electrons and attracts positive ions. The potential profile in the sheath is determined by a

one-dimensional Poisson equation:

”i—f=—;—f<n,~<x>—n1<x>—nz<x>—n3<x>>. M
The meaning of the symbols is the following: & is the potential, e is the elementary charge, &
is the permittivity of the free space, n; is the density of the singly charged positive ions, n; is the
density of the bulk electron population, n; is the density of the beam or primary electrons and
n3 is the density of the emitted electrons. The potential very far away from the collector is set
to zero ®(x — o) = 0. The collector potential is ¢ and it is negative. As one approaches to the

collector from the plasma, the potential slowly decreases and a pre-sheath is formed. This is a

region, where the plasma is still quasi-neutral but a weak electric field exists, which accelerates



37" EPS Conference on Plasma Physics P2.133

positive ions towards the collector and negative electrons in the opposite direction. The length
scale of the pre-sheath is L and it is determined by some characteristic binary process in the
plasma. At the distance x = d from the collector the plasma quasi-neutrality breaks down and a
sheath with an excess of positive space charge is formed. The plane at x = d is called the sheath
edge. The potential there is ®g and this is the last point, where the quasi neutrality is still valid.
Note that Py is also negative with ¢ < Pg.

The ion density in the sheath is found from the energy and flux conservation arguments

egPs+Ac
eo®(x)

sheath because of collisions and ng is the ion density at the sheath edge. The density of the

and it is given by: n;(x) = ng

. Here A, is the energy that the ions loose in the pre-

main electron population is given by the Boltzmann law: n(x) = njexp (e0d>( )> . Here T is
the electron temperature, k is the Boltzmann constant and n; is the density of the bulk electron
population at a large distance from the collector, where the potential is zero. The beam electrons
are assumed to be mono-energetic. At a large distance (x > L) from the collector their density
is ny they have all the same speed v,. The directions of their velocities however, are uniformly

distributed in space. The velocity distribution is given by:

n
V) = o(v—vy). 2
f(v) pE (v—m2) (2)
The density of the beam electrons at the distance x from the collector is found by integration
of the distribution (2) over velocity space: na(x) = [, HW)dPy = %nz (1 — zen‘f(z )> . The

density of the emitted electrons in the sheath is also found from the flux and energy conservation
2e9(Pc—P(x))
me

arguments: n3(x) = j3/ \/ V2 — . The flux of the emitted electrons from the collector
Jj3 1s assumed to be a given parameter and v¢ is the initial velocity of the emitted electrons at
the collector. When the particle densities are inserted into (1) and the quasi-neutrality condition

at the sheath edge is taken into account, the Poisson equation (1) is written as:

ot —exp((2) +5 (1-/~ 50 ) s (22 - 2 - w(e) -
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The following variables have been introduced:
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With these variables the total current density to the collector is written in the following form:
29 29
Sy = exp(¥c) + 4[319(1+ C>H<1+ C)—J3—

—v—2u(¥s+ o) (exp(‘PSH%(l—\/E) +J5 (@2 2(\1!0_\113))%), ©)
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When the Poisson equation (3) is multiplied by d¥/dz and integrated once over ¥, one half of
the square of the electric field g(W) in the sheath is obtained as a function of the potential W:

3 () — 4 () g, = 3 (4E) g = exp(¥) — exp(¥s) +

Ty (\/QZ T2(We W) \/O? 2(Pe ‘PS)) +

+& (2v2 (Wsv/ =T+ (—9)7) 30 (Y5 — W) + (s + VIFs) (B +2exp(¥s)) +
+ (%E\Pﬁz]g (@2 —2(\1'C—\PS))5> (V=P —-Fs) =g(¥).

Note that in the asymptotic two-scale limit of our model (L > d > Ap) the electric field at the
sheath edge is zero. If the electron emission is space-charge limited or critical, the following
condition is fulfilled:

g(¥=Yc)=0. (6)

If a stable sheath is to be formed the positive ions must enter the sheath with a certain minimum
velocity, called the ion sound velocity, vs > cs. This is known as the Bohm [2] criterion. Using
the variables (4) and with equality sign, the Bohm criterion gets a form of a transcendental

equation for the sheath edge potential Ws:

W — ( 1) exp(Ws) + 2 (l—\/j%) nya (Qz_z(‘PC—‘PS))_%
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Results

We now use the model to calculate the current voltage characteristics of an emissive probe in
a typical low pressure hot cathode discharge plasma machine. The following parameters are
selected: u = 1/(40-1836) ~ 1.36-107° (argon ions), Q = 0.001 and ¢ = 0, while 8, ¥ and J3
are varied and are indicated in Figure 1. If J3 is increased one expects that the floating potential
W, will increase (become less negative) if the under parameters are not changed. The floating
potential ¥ can be found by solving the system of equations (5) with J; = 0 and (7) for ¥,
and Ws. In the bottom right plot of Figure 1 the floating potential is shown as a function of J3
for 1 =1.36-107>, Q = 0.001 and ¢ = 0. For one curve 3 = 0 is selected and for other 2 curves
we put B = 0.01 and 2 values of ¥, which are ¥ = 6 and ¥ = 9. The presence of electron beam
decreases ¥ considerably.

If J3 increases, the absolute value of electric field at the collector decreases and eventually
drops to zero at some J3. The emission becomes space charge limited or critical. For smaller
J3 the emission is called temperature limited - implying that the predominant mechanism of
electron emission is Richardson emission. The collector potential at which (for a given J3) the

transition changes from space charge limited into temperature limited emission is labeled Wy.
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For given values of u, 3, 9, o,
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of ¥, ¥ =6 and ¥ =9 is also shown

in the bottom right plot of Figure
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and ¥ have almost no effect to the

Figure 1: Current voltage characteristics, transition poten-  dependence of W¢g on J3 and the
tials W and floating potentials ¥/ ¢ for various B, ¥ and 3 curves can not be distinguished
J3. on the plot. As J3 increases W de-

creases and ¥ increases and even-
tually they become equal. This explains the ’saturation” of the floating potential of an emissive
probe with increased emission. When W exceeds the ¥, the probes floating potential can not
come closer to the plasma potential (in our model zero) any more. So when one calculates the
current voltage characteristics for given values of u, 8, ¥, @, Q and J3 first the transition po-
tential W¢o has to be found. Then for every W¢ < W¢o the W has to be found from (7) and
then J; is found from (5). For W¢ > W the system (6) and (7) must be solved for Wg and the
critical emission J3.,, which are then both inserted into (5) to find J;. In the bottom left graph the
current voltage characteristics are shown for u =1.36-10"3, Q = 0.001, 0=0,8=001,9=8
and several J3. In the top graphs the effect of B and ¥ to the characteristics is illustrated. For
the top left graph the parameters are: u =1.36-107>, Q@ = 0.001, ¢ =0, ® =8, J3 = 0.2, while for
the top right graph the parameters are: u =1.36-107>, Q = 0.001, ¢ =0, 8 =0.01 and J3 = 0.2.
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