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A complex plasma is a plasma containing charged dust particles. The proper characterization
of the electric potential distribution around these charged particles is considered to be one of
the fundamental problems in the field of complex plasmas. The point is that the shape of the po-
tential distribution and the interaction potential between charged grains is not fixed but depends
considerably on surrounding complex plasma conditions. Diverse mechanisms of attractive and
repulsive interactions have been discussed in the literature depending on the complex plasma
conditions in different regimes [1, 2].

However, it is to be noted that in all these studies the effect of collective plasma loss (due
to absorption on many dust particles) on the interaction potential between dust grains has been
ignored. The importance of collective plasma loss has been discussed recently in the litera-
ture which leads to the possibility of collective attraction in complex plasmas [3, 4, 5]. It was
suggested that two dust particles in a complex plasma could exhibit electrostatic attraction as
a result of their self-consistent perturbation of the balance between plasma production due to
ionization and collective plasma loss due to absorption on all other dust particles in the plasma.
However all these studies are based on an implicit assumption that such an ionization-absorption
balanced complex plasma is stable with respect to ion perturbations. Indeed, these investiga-
tions were performed by analyzing the test grain potential which was considered as a static
perturbation (in most studies as a linear static perturbation) of a homogeneous static solution
of equations governing the dynamics of a complex plasma at ion time scales. This unperturbed
state cannot be realized if it is not stable.

This implicit assumption has been recently shown to be invalid in the case where the ioniza-
tion source is proportional to the electron density [6]. Moreover, the instability length was found
to be exactly equal to the length of the collective attraction [6]. However, this instability can dis-
appear in the case of a constant ionization source [6], but in this case the functional form of the
potential can be different [5]. The objective of the present paper is to explore the possibility of
inter particle attraction in the stability regime of the ionization-absorption balance.

In our model we consider an individual point-like test charge Q(= eZ;) in a weakly ionized

complex plasma consisting of neutral particles, positive ions, electrons, and negatively charged
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dust grains. Here, Z; > 0 is the number of elementary charges on individual dust grain. The dust
grains are considered as a continuous, immovable, homogeneous “dust medium” with constant
number density n,, whereas the ions and electrons have number densities n; and n,, respectively,
which may vary with space. The dust charge Q is governed by absorption of ions and electrons
and hence may vary with space.

For ions we use the static continuity and momentum equations:
V- (niv) = —a(Zg)ni + S(ne), ey

(v-V)v=—(e/mj)Vo — (T;/m;) (Vn;/n;) — vv. (2)

Here, 7; is the (constant) ion temperature, m; is the ion mass, v is the ion fluid velocity, and
¢ is the electric potential. As regards the right-hand side of Eq. (1), the ions are produced by
ionization at a rate per unit volume S(n,) which we take to depend generally on n,, and they
are absorbed by the dust at a rate per unit volume o (Z;)n; where we take the coefficient &¢(Z,)
to depend generally on Z;. In Eq. (2) the friction coefficient v = v, + Vig + S(ne)/n; is the
sum of the effective ion-neutral collision frequency Vj,, effective ion-dust collision frequency
Vid, and the ionization term S(n,)/n;. The dependence of the friction coefficient v on plasma
parameters, as well as the dependence of the absorption coefficient ¢ on the ion fluid velocity v,
1s not important to our investigation because we will consider here only first-order perturbations
of a state with v = 0.

For electrons we use the Boltzmann distribution:
eV — (T, /ne)Vn, = 0. 3)
For the dust charge we use the equation of the balance of the ion and electron fluxes:

8xT, , Z,e?
o(Zg)ni = | —= - 4
(Zg)n; - adnendexp( T, ) )

where a, is the dust radius and m, is the electron mass. Here we have used the Orbit Motion

Limited (OML) expression for the electron flux [1]. For ions OML does not work well in many
cases so that we assume an arbitrary dependence of ion flux on ¢t (Zy).

The above set of equations is closed with the Poisson equation
—V%p = dme(n; —n, —ngZy) +4wQ6(r). (5)

The potential distribution around a charged particle is obtained using linear response method,

QO [exp(ik-r)dk
- 2n? k2D(k)

¢ (6)



37" EPS Conference on Plasma Physics P2.320

where D(k) is the static dielectric function and can be written in simplified form as,

1 KWK, o
k2D(k) (K2 + k%) (k2 4+k2)’
where
2 =(1/2) (Xi X2—4Y>k12)i )
and
X:1—|—'L’(1—P)—|—(1+T)P+nCZ,Y:—TnC[(Z+P+ﬁ)(Y_1)+PZ],W: néz
B+z B+z B+z

Here, P = nqZ;/n; is the Havnes parameter, { = v/m,; is the friction parameter, = & (Zy) / @y

is the absorption parameter, z = Zye? /(a4T,) is the normalized dust charge, T = T; /7, is the ion-

to-electron temperature ratio, § = dﬁ(ZZd") a(ng) characterizes the dependence of the ion absorp-
tion rate on the dust charge and the parameter y = dS(ne) ne characterizes the dependence of
dn, S(ne)

the ionization source on the electron density (e.g., Y = 1 for an ionization source proportional to
the electron density, whereas y = 0 for a constant ionization source). Here, @p; = \/Wz/mi
is the ion plasma frequency and kp; = \/W is the inverse ion debye length.

The functional form of the potential depends exclusively on k% which has been discussed as
follows:

Case 1: kzi are real and positive. In this case the potential is,

0 =L exp(—rlk )+ < exp(—rik ) ©
where ) 5
k: — WK,

Qs =0 (ﬁ) : (10)

In this case to explore the possibility of the exponential attraction, we consider the following
parameter regime which is typical for laboratory and industrial complex plasmas [1]: n{ < 1,
T<1,P~1,z~1,B ~1,and 0 < y < 1. Then the condition for the case 1 to apply (i.e., for

k% to be real and positive) is
(z+P+B)(y—1)+Pz<0. (11)

This condition is always satisfied for a constant ionization source ('Y = 0) and is never satisfied
for an ionization source proportional to the electron density (we assume negative dust charge
and > 0). If the case 1 applies [i.e., if condition (11) is satisfied], the condition for the poten-

tial (9) to have an attractive part (i.e., the condition for Q_ /Q to be negative) is

Z
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To investigate the stability we consider the following numerical example in the dispersion rela-
tion [Eq. (12) of Ref. [6]]: P=0.5,{ =1,1=0.02,z=0.5,7=1, B =1, y=0. This example
demonstrates the possibility of the exponential attraction in the stability regime. Note that the
exponential attraction is impossible at 7 < 1.

Case 2: k% are real and k? is negative. In this case we obtain oscillatory potential,
Q 0
9 = =" exp(—rlky|)+=—cos(rlk-|), (13)

where Q. are defined by Eq. (10). In this case the inequality (z+ P+ B)(y—1)+Pz >0 is
satisfied which makes the unperturbed state unstable and hence this situation is not possible in
the regime of stability [6].

Case 3: kzi have non-zero imaginary parts. In this case the potential is

o= %exp [—rRe(k)] x {Qcos[Im(ky)r]+ 2Im(Q+ ) sin[Im(ky)r]}, (14)

where k. should be taken with positive real and imaginary parts and Q is defined by Eq. (10)
where k%r and k* should be taken with positive and negative imaginary parts, respectively. This
situation is applicable only under rather unusual conditions. Indeed, the condition for the case
3 to apply is ¥ > X?/4 which implies n{ > 1whent<1,P~1,z~1,B~1,0<y<1.
We provide a numerical example where the case 3 applies and the unperturbed state is stable:
P=05,§=2,1n=1,z=05,1=1, 8 =1, y=0. We ascertained the stability by substituting
the above parameters to the dispersion relation.

The possibility of attraction between negatively charged dust particles has been investigated
using hydrodynamic model with arbitrary dependence of the ionization source on the electron
density. It is found that the potential can have an attractive part in the stable region against ion
perturbations only in very limited and specific circumstances (constant ionization source with

comparable ion and electron temperatures).
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