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Abstract. A model is presented for describing the interaction of satellites with space

plasmas. The model relies on a combination of two computational approaches; a

Particle In Cell (PIC) code to describe electrons and ions fully kinetically, and a particle

in cell capable of calculating detailed particle distribution functions with minimal

statistical noise. Both models use unstructured tetrahedral meshes to discretise

simulation domains and spacecraft geometry with realistic shapes. The PIC code

solves for the self-consistent electric fields given calculated volume charges and charge

deposition on the various satellite components. The test-particle code is used to

calculate particle distribution functions from fields obtained from PIC simulations,

with minimal statistical errors. For simplicity, magnetic fields are assumed to be

negligible.

1. Introduction: Why spacecraft-plasma modelling?

In situ measurements of space place plasmas provide a powerful means of characterising

and understanding the complex dynamics of these systems. Such measurements are

increasingly available, with the many science satellites that have been launched in recent

years, and the one scheduled for deployment in the coming years. When interpreting in

situ measurements, however, it is important to account for the fact that the spacecraft,

and often the measuring instruments themselves, are part of the plasma environment.

As a result, measurement do not represent the state of the plasma that would exist in

the absence of the satellite, and a proper interpretation may require a careful analysis

to correct for, or at least assess the perturbation effects. Several models were developed

over the years to describe the interaction of satellites with plasmas. A first class of

models is focused on spacecraft charging, and their use was primarily for assessing

the likelihood of arcing and failure of certain components. Another class of models is

aimed at simulating electromagnetic fields near spacecrafts and their instruments for

the purpose of characterising their interaction with surrounding plasma and assessing

perturbation effects. If needed, these models can be used to correct for perturbation

effects and hence, enhance the interpretation of the measurements. The model presented

here is in that latter category. It is used to calculate the electrostatic sheath surrounding

a satellite and its instruments. These fields in turn can be used to calculate the effect

of the sheath on measurements such as particle distributions and plasma flows. For
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simplicity, we limit our attention to plasma conditions that are characteristic of low orbit

satellites, for which photoionisation and secondary electron effects are negligible. Also,

for simplicity, the model is electrostatic. It doesn’t account for magnetic perturbations

and the background magnetic field is ignored.

2. Numerical model

The simulation tool presented here is based on a particle in cell (PIC) code to

compute the electric fields self-consistently for given satellite geometry and set of plasma

parameters. This model uses an unstructured tetrahedral mesh capable of representing

satellites and simulation domains with arbitrary boundaries and boundary conditions.

The mesh is also adaptive, as its resolution can be varied in space so as to better resolve

smaller features on the satellite, or regions where plasma parameters vary more abruptly.

Adaptivity, however, is static in time. The PIC approach used here follows standard

similar approaches, whereby simulation particles represent macro-particles, or groups of

particles. This is done so that, for a given density and temperature, physical quantities

such as the plasma frequency, the Debye length and the thermal velocity are preserved.

This is accomplished by tracking particles with physical charges and masses, and by

attributing each species a statistical weight corresponding to the effective number of

actual (physical) particles represented by every simulation particle.

2.1. Initial particle distributions

An arbitrary number of electron and ion species can be included in the model. Each

species is characterised by a density, a temperature and a drift velocity. Ion species are

also characterised by a charge and mass. The code is run with realistic electron and ion

charge and masses. In the initial state of a simulation, all particle species are distributed

uniformly through the simulation domain. This is accomplished by distributing a given

number of particles for each species in each tetrahedral mesh element. The number of

particles in a given element k is given by

ñs,k = Nsint{
vk
V
}+ δ, (1)

where int(x) is the largest integer not exceeding x, vk is the volume of the element

and V is the total simulation domain, and δ is either 0 or 1 with the probability of

1 beingNsvk/V − int(Nsvk/V ). The algorithm used to distribute a point randomly

in a tetrahedron is given in Appendix A. After initialisation, each particle species is

distributed approximately uniformly throughout the volume and, provided that the

input parameters be set appropriately, the plasma will be neutral. The statistical weight

attributed to particle species s is given by ws = nsV/Ns, where ns is the physical number

of particles per unit volume for species s. Velocity distributions correspond to drifting

Maxwellians corresponding to the densities, temperatures and drift velocities specified

for each species. Particle pushing is done with a standard leap frog algorithm.
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2.2. Partition into satellite components and mutual capacitances

The model can account for a satellite with different electrical components that can be left

floating or that can be electrically biased with respect to one another. Each component

is represented in terms of surface elements or, in practice, in terms of sets of contiguous

triangles on the satellite surface. In solving for Poisson’s equation, it is necessary to

know the mutual capacitance matrix C for these various elements. This matrix is such

that, in the absence of volume charge density, the charge qi on component i is related

to the potential Vj of other components j through

qi =
N∑

j=1

CijVj, (2)

where N is the number of electrical components on the spacecraft. The matrix elements

Cij are calculated as follows:

(i) For each surface component j , we solve the Laplace equation ∇2φ = 0 with

boundary condition φ = 1V on component j and φ = 0 on every other boundary

element (including the outer simulation domain boundary).

(ii) The corresponding charge on each surface element is then obtained from

qj = Cij =
1

ǫ0

∫
da~E · n̂, (3)

where ǫ0 is the permittivity of free space and n̂ is the unit vector perpendicular to

the surface, pointing outward. Owing to the linear superposition of electrostatic

fields, the charge qi on element i corresponding to an arbitrary distribution of

voltages Vj must then be given by

qi =
N∑

i=1

CijVj (4)

where Cij are the elements of the mutual capacitance matrix. Note that in Eq. 3

the surface of the element under consideration is assumed to be equipotential and

integration is only carried on the outside of the satellite. In reality, components are

separated by dielectric materials and electric fields between them exist inside the

spacecraft. A more correct expression for the charge qi would therefore require an

integration over the entire close surface enclosing the element. In practice, however,

the fields inside the satellite cannot be calculated without detailed knowledge of the

satellite design and fabrication. Ideally, our model should be based on measured

values of Cij, but such measured values are almost never available. In this model, we

therefore use Eq. 3 as an approximation for the elements of the mutual capacitance

matrix.

Note that equation 4 can be inverted to yield

Vi =
N∑

i=1

C−1
ij qj (5)
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with C−1
ij being the elements of the inverse of the mutual capacitance matrix.

As particles are pushed in time, a record is kept of the net charge deposited on every

satellite component. At the beginning of a simulation, the charge of every element is

set to zero. At each timestep, the charge qi deposited on element i is incremented by

the sum of the charges of all the particles that are incident on that element times their

statistical weight.

2.3. Volume and surface charge densities

With the simulation domain being discretised in terms of tetrahedral cells, charge density

is defined at the cell vertices. Given a distribution ofN particles of charges qi at positions

~ri, the charge density at vertex ~rk is calculated as follows:

ρk =
1

Vk

N∑

i=1

qiNi(~r), (6)

where Nk is the linear interpolation function equal to unity at vertex k. For each element

t (tetrahedron) having ~rk as a vertex, Nk is linear in t and it vanishes at the three vertices

opposite k, and Nk vanishes everywere else. In Eq. 6, Vk is a quarter of the sum of the

volumes of the elements having k as one of their vertices. This is effectively the volume

of the Voronoi cell associated with k.

2.4. Boundary conditions and Poisson’s equation

Poisson’s equation is solved at each timestep for the given charges qi collected by

the various satellite elements, and for the computed volume charge density ρ(~r). For

simplicity the electrostatic potential is assumed to be zero on the outer boundary. In

the absence of a background magnetic and electric field and this assumption should be

valid provided that the outer boundary be sufficiently far from the spacecraft. The next

step is to specify the potential on all satellite components in order for Poisson’s equation

to be well defined in terms of a Dirichlet boundary value problem. This is inferred from

charges qi collected by the various components and from the volume charge density.

When used as input in a test-particle code, the electric fields obtained from the PIC

model can be used to calculate particle distribution functions with minimal statistical

noise (Marchand, Commun. Comput. Phys. doi: 10.4208/cicp.201009.280110a, pp.

471-483, 2010).
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