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Abstract. A model is presented for describing the interaction of satellites with space
plasmas. The model relies on a combination of two computational approaches; a
Particle In Cell (PIC) code to describe electrons and ions fully kinetically, and a particle
in cell capable of calculating detailed particle distribution functions with minimal
statistical noise. Both models use unstructured tetrahedral meshes to discretise
simulation domains and spacecraft geometry with realistic shapes. The PIC code
solves for the self-consistent electric fields given calculated volume charges and charge
deposition on the various satellite components. The test-particle code is used to
calculate particle distribution functions from fields obtained from PIC simulations,
with minimal statistical errors. For simplicity, magnetic fields are assumed to be
negligible.

1. Introduction: Why spacecraft-plasma modelling?

In situ measurements of space place plasmas provide a powerful means of characterising
and understanding the complex dynamics of these systems. Such measurements are
increasingly available, with the many science satellites that have been launched in recent
years, and the one scheduled for deployment in the coming years. When interpreting in
situ, measurements, however, it is important to account for the fact that the spacecraft,
and often the measuring instruments themselves, are part of the plasma environment.
As a result, measurement do not represent the state of the plasma that would exist in
the absence of the satellite, and a proper interpretation may require a careful analysis
to correct for, or at least assess the perturbation effects. Several models were developed
over the years to describe the interaction of satellites with plasmas. A first class of
models is focused on spacecraft charging, and their use was primarily for assessing
the likelihood of arcing and failure of certain components. Another class of models is
aimed at simulating electromagnetic fields near spacecrafts and their instruments for
the purpose of characterising their interaction with surrounding plasma and assessing
perturbation effects. If needed, these models can be used to correct for perturbation
effects and hence, enhance the interpretation of the measurements. The model presented
here is in that latter category. It is used to calculate the electrostatic sheath surrounding
a satellite and its instruments. These fields in turn can be used to calculate the effect
of the sheath on measurements such as particle distributions and plasma flows. For
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simplicity, we limit our attention to plasma conditions that are characteristic of low orbit
satellites, for which photoionisation and secondary electron effects are negligible. Also,
for simplicity, the model is electrostatic. It doesn’t account for magnetic perturbations
and the background magnetic field is ignored.

2. Numerical model

The simulation tool presented here is based on a particle in cell (PIC) code to
compute the electric fields self-consistently for given satellite geometry and set of plasma
parameters. This model uses an unstructured tetrahedral mesh capable of representing
satellites and simulation domains with arbitrary boundaries and boundary conditions.
The mesh is also adaptive, as its resolution can be varied in space so as to better resolve
smaller features on the satellite, or regions where plasma parameters vary more abruptly.
Adaptivity, however, is static in time. The PIC approach used here follows standard
similar approaches, whereby simulation particles represent macro-particles, or groups of
particles. This is done so that, for a given density and temperature, physical quantities
such as the plasma frequency, the Debye length and the thermal velocity are preserved.
This is accomplished by tracking particles with physical charges and masses, and by
attributing each species a statistical weight corresponding to the effective number of
actual (physical) particles represented by every simulation particle.

2.1. Initial particle distributions

An arbitrary number of electron and ion species can be included in the model. Each
species is characterised by a density, a temperature and a drift velocity. Ion species are
also characterised by a charge and mass. The code is run with realistic electron and ion
charge and masses. In the initial state of a simulation, all particle species are distributed
uniformly through the simulation domain. This is accomplished by distributing a given
number of particles for each species in each tetrahedral mesh element. The number of
particles in a given element k is given by

Fros = Nsmt{v—vk} +6, (1)

where int(z) is the largest integer not exceeding z, vy is the volume of the element
and V is the total simulation domain, and J is either 0 or 1 with the probability of
1 beingNgv,/V — int(Ngv/V). The algorithm used to distribute a point randomly
in a tetrahedron is given in Appendix A. After initialisation, each particle species is
distributed approximately uniformly throughout the volume and, provided that the
input parameters be set appropriately, the plasma will be neutral. The statistical weight
attributed to particle species s is given by w; = n,V/Ny, where n, is the physical number
of particles per unit volume for species s. Velocity distributions correspond to drifting
Maxwellians corresponding to the densities, temperatures and drift velocities specified
for each species. Particle pushing is done with a standard leap frog algorithm.
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2.2. Partition into satellite components and mutual capacitances

The model can account for a satellite with different electrical components that can be left
floating or that can be electrically biased with respect to one another. Each component
is represented in terms of surface elements or, in practice, in terms of sets of contiguous
triangles on the satellite surface. In solving for Poisson’s equation, it is necessary to
know the mutual capacitance matrix C' for these various elements. This matrix is such
that, in the absence of volume charge density, the charge ¢; on component i is related
to the potential V; of other components j through

N
4 = Z CiiVj, (2)
j=1
where N is the number of electrical components on the spacecraft. The matrix elements
C;; are calculated as follows:

(i) For each surface component j , we solve the Laplace equation V*¢ = 0 with
boundary condition ¢ = 1V on component j and ¢ = 0 on every other boundary
element (including the outer simulation domain boundary).

(ii) The corresponding charge on each surface element is then obtained from
qj:CZu:l daFE -, (3)
€0
where € is the permittivity of free space and 7n is the unit vector perpendicular to
the surface, pointing outward. Owing to the linear superposition of electrostatic
fields, the charge ¢; on element ¢ corresponding to an arbitrary distribution of
voltages V; must then be given by

N
4=y CyVj (4)
=1

where C;; are the elements of the mutual capacitance matrix. Note that in Eq. 3
the surface of the element under consideration is assumed to be equipotential and
integration is only carried on the outside of the satellite. In reality, components are
separated by dielectric materials and electric fields between them exist inside the
spacecraft. A more correct expression for the charge ¢; would therefore require an
integration over the entire close surface enclosing the element. In practice, however,
the fields inside the satellite cannot be calculated without detailed knowledge of the
satellite design and fabrication. Ideally, our model should be based on measured
values of Cj;, but such measured values are almost never available. In this model, we
therefore use Eq. 3 as an approximation for the elements of the mutual capacitance
matrix.

Note that equation 4 can be inverted to yield

N
Vi= Z 051%‘ (5)
i1
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with C;; ! being the elements of the inverse of the mutual capacitance matrix.

As particles are pushed in time, a record is kept of the net charge deposited on every
satellite component. At the beginning of a simulation, the charge of every element is
set to zero. At each timestep, the charge ¢; deposited on element i is incremented by
the sum of the charges of all the particles that are incident on that element times their
statistical weight.

2.3. Volume and surface charge densities

With the simulation domain being discretised in terms of tetrahedral cells, charge density
is defined at the cell vertices. Given a distribution of NV particles of charges ¢; at positions
75, the charge density at vertex 77 is calculated as follows:

pr= 3 S a7, O

ki=1
where Ny, is the linear interpolation function equal to unity at vertex k. For each element
t (tetrahedron) having 7 as a vertex, Ny is linear in ¢ and it vanishes at the three vertices
opposite k, and N, vanishes everywere else. In Eq. 6, V} is a quarter of the sum of the
volumes of the elements having k as one of their vertices. This is effectively the volume
of the Voronoi cell associated with k.

2.4. Boundary conditions and Poisson’s equation

Poisson’s equation is solved at each timestep for the given charges ¢; collected by
the various satellite elements, and for the computed volume charge density p(7). For
simplicity the electrostatic potential is assumed to be zero on the outer boundary. In
the absence of a background magnetic and electric field and this assumption should be
valid provided that the outer boundary be sufficiently far from the spacecraft. The next
step is to specify the potential on all satellite components in order for Poisson’s equation
to be well defined in terms of a Dirichlet boundary value problem. This is inferred from
charges ¢; collected by the various components and from the volume charge density.
When used as input in a test-particle code, the electric fields obtained from the PIC
model can be used to calculate particle distribution functions with minimal statistical
noise (Marchand, Commun. Comput. Phys. doi: 10.4208/cicp.201009.280110a, pp.
471-483, 2010).



