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Abstract. Various aspects of wave propagation being important for helicon-produced plasmas 

with strong radial density gradient [1] are treated by analytical as well as numerical methods. 

(I) In agreement with experimental results, the theoretical and numerical analysis of guided 

helicon wave propagation (Ez = 0) shows for a wide parameter range the quadratic scaling 
2
zkω ≈ , which in contrast to the linear dispersion relation, zkω ≈ , for the usual case of heli-

con mode propagation in a weakly uniform plasma column (radius R) with 1zk R� . (II) The 

eigen mode spectrum is obtained for localized electrostatic modes revealing non-reciprocal 

behavior with respect to azimuthal propagation (i.e., mode number m > 0). (III) The effects of 

strong plasma density gradient on mode conversion for oblique wave propagation in helicon 

plasma experiments are demonstrated. 

I. Helicon mode propagation 

The analysis of helicon modes is based on the solutions of the differential equation for the 

azimuthal component of the electric field intensity of the helicon wave 

( , , , ) ( ) exp( )zE r z t E r i t im ik zθ θθ ω θ= − + +  reading [2]: 
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where 2 ( ) ( )pe ceg rω ωω≡ , 0 /ce eeB m cω = − , 2 2( ) 4 ( ) /pe er e n r mω π= , z zN k c ω= . Eq.(1) is 

valid if 2 2 2
zm k r�  and can be obtained from the full system of Maxwell equations for high 

plasma conductivity along the external magnetic field ( 0 0 ˆB=B z ) so that 0zE = . We consider 

the frequency range ce LH ce ciω ω ω ω ω≡� �  for which the ion motion can be neglected. 

The effect of density gradient becomes determinant if  
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and the solution of eq.(1) for parabolic density profile 2 2
0 (1 )n n r R= −  [3] then becomes  

( ) ( ) /mE r CJ ar rθ = ,   
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The dispersion relation for helicon modes can be obtained with the boundary condition 

( ) 0E r Rθ = =  assuming the plasma column to be surrounded by a metal wall yielding 
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where , =m n aRξ  are the roots of the equation ,( ) 0m m nJ ξ = . Note that the modes with 0m <  

cannot propagate.  

The analytical findings are compared with numerical calculations for a Gaussian den-

sity profile (width l = 0.02 m) based on the helicon wave equation (only assumption 0zE = ). 

Fig.1 shows profiles of the azimuthal electric field component for a wide range of frequencies 

and densities. It turns out that the profiles are nearly identical at low frequencies while their 

width decreases with increasing density in the high frequency range. In Fig.2, we compare the 

analytical dispersion relation (4) with the computations. The quadratic scaling, 2
zkω ∝ , pre-

dicted for sufficiently strong gradient (see condition (2)) can also be seen in the computational 

curves provided that the densities and frequencies are not too high. Only if the (2) is violated, 

significant deviations from the quadratic scaling occur. It is worth noting that the frequency 

scales also with 2
zk  for helicon waves with 1

z pk k R−
⊥ ≈� or 1z pk R �  (whistler dispersion) 

whereas, in case of strong density gradient here considered, the opposite condition, 1z pk R � , 

holds. The above finding is in agreement with experimental investigations of helicon wave 

dispersion [4]. 

 

 

 

 

 

 

 

 

 
                    Fig.1. RF field profiles                                                      Fig.2. Helicon dispersion 
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II. Electrostatic mode propagation 

Now we analyse the gradient density effect on the propagation of electrostatic (ES) modes; its 

potential can be presented in the form ( ) ( ) / ( )r u r r rε⊥Φ = , where the function ( )u r  is a 

solution of the equation 
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Assuming dense plasma ( 2 2(0)pe ceω ω>> ) with a Gaussian density profile eq.(5) has a discrete 

number of localized modes with the eigen values  
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For 2 1m =  eq.(5) has for the lowest localized mode the solution 
3/2 2( ) exp( / 2)u x x x= − ,                                                      (7) 

and the corresponding eigen value is given by 
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The fundamental mode (8) can propagate only for positive azimuthal number m = 1. 

In Fig.3 and 4 we compare the electric field profile and the dispersion relation of local-

ized electrostatic modes for Gaussian density profile obtained analytically (dashed lines) and 

numerically (solid lines) from (5). Good agreement between the both descriptions are particu-

larly achieved for the fundamental mode (n = 1) concerning the central part of the profile as 

well as the scaling, 2
zkω ∼ ; significant discrepancies arise for higher radial modes. 

    

 

 

 

 

 
 
   

                             Fig.3. ES field profiles                                                     Fig.4. ES mode dispersion 
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III. Mode conversion 

In conclusion, we discuss the influence the strong density gradient on mode conversion as-

suming however that the density changes slowly over wavelength [5]. In this case, we can 

present the solutions of the system of Maxwell’s equations to the first order in the geometri-

cal-optic approximation. The local dispersion relation for two modes in helicon plasma reads 

 ( )2 2
1,2

1 ( ) 4 ( )
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where the coefficients  
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take into account the density gradient effect. At the position 0x  defined by the relation 

2
0 0( ) 4 ( )x xα β= −  both modes have the same wavenumbers, and mode conversion takes 

place. Taking into account the condition previously assumed, 2 zN ε⊥� , we get from this rela-

tion that the density gradient in the region of mode conversion is defined by the relation 
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Note that this condition corresponds to dispersion relation (8) of the electrostatic mode. This 

holds for a wide range of plasma densities, where 2
zNε⊥ �  and is in contrast to the common 

theory that neglects density gradient effects and predicts mode conversion at high plasma 

densities given by 2
zNε⊥ ≈ . 
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