
Impact of the toroidal rotation on the n dependence of the growth rate of

the edge localized MHD modes

N. Aiba, M. Hirota

Japan Atomic Energy Agency, 801-1, Muko-yama, Naka, Ibaraki 311-0192, Japan

Introduction

In tokamak plasmas, the H-mode plasma that has an edge transport barrier, called a pedestal,

is favorable to reach burning plasma conditions. In such H-mode plasmas, an edge localized

mode (ELM) usually occurs, and constrains the maximum pressure gradient in the pedestal[1].

Particularly, to diminish the heat load on the divertor and the fast wall of the reactor, the so-

called type-I or giant ELMs need to be suppressed or their amplitudes need to be reduced.

The recent experimental results in JT-60U show that the plasma toroidal rotation near the

pedestal has an impact on the ELM phenomena[2, 3]. However, this dependence of the ELM

property on the toroidal rotation is complicated to understand only by the experimental ap-

proach. Fortunately, as discussed in Ref.[4] and many papers, the ideal MHD stability analysis

can capture the properties of type-I ELMs and to comprehend the dependence between the ELM

phenomena and the plasma rotation, it is necessary to understand the physics with theoretical

and numerical analyses. From this viewpoint, we reported that the sheared toroidal rotation can

destabilize the edge localized MHD mode[5], and this destabilization comes from the difference

between the plasma rotation frequency and the unstable mode frequency[6]. However, as dis-

cussed in Ref.[7], the sheared toroidal rotation can stabilize the MHD mode by increasing the

rotation shear and the toroidal mode number n of the mode To develop ELM control methods

with the plasma rotation, it would be helpful to understand the dependence between the rotation

and the MHD stability and the mechanism that changes the role of the rotation.

In this paper, we investigate numerically the toroidal rotation effect on the ideal MHD stabil-

ity of edge localized MHD modes with the MINERVA code[7]. This code solves the Frieman-

Rotenberg (F-R) equation [8] as not only the eigenvalue problem but also the initial value prob-

lem. To understand clearly the physics about the role of the toroidal rotation on the MHD

stability, we pay attention to the n dependence of the stability of the edge ballooning mode.

Dependence of the growth rate on n including the sheared toroidal rotation effect

We investigate the effect of the sheared rotation profile on the stability of a finite-n edge

ballooning mode; the range of the toroidal mode number n of the MHD mode analyzed numer-

ically is from 1 to 150, and the fixed boundary condition is assumed. The plasma current Ip and
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Figure 1: Profiles of (a) p0, d p0/dψ , (b) 〈 j ·B〉/〈B2〉, q and (c) Ω of the equilibrium.
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Figure 2: Dependence of (a) the growth rate γ and (b) the frequency ω of the edge ballooning

modes on n.

the poloidal beta value βp are given as (Ip[MA], βp) = (3.0,1.0), and the profiles of d p0/dψ ,

〈 j ·B〉/〈B2〉 and the toroidal rotation are determined as

d p0(ψ)

dψ
= βp

((
1.0−ψ5.0

)1.5
+4.0 · exp

(
− (ψ −0.96)2

2.25×10−4

))
, (1)

〈 j ·B〉
〈B2〉 ∝

(
1.0−ψ1.5

)1.2
. (2)

Ω(ψ)[krad/s] = (50.0−0.5)
(
1.0−ψ48)4

+0.5. (3)

The profiles of p0, d p0/dψ , 〈 j ·B〉/〈B2〉, q and Ω are shown in Fig.1.

Figure 2 shows the n dependence of (a) the growth rate γ and (b) the frequency ω of the edge

ballooning modes; the rotation frequency normalized with the toroidal Alfvén frequency at the

axis is ΩA/ωA0 = 2.92×10−2. This stability analysis is performed as the initial value problem,

and the growth rate is estimated as the gradient of ln(|ξr|2) after convergence, where ξr is the

radial component of the displacement ξ . As shown in this figure, by adding the sheared toroidal

rotation, the growth rates of the n ≤ 43 modes increases but those of the n > 43 modes becomes

smaller than those in the static equilibrium. Furthermore, near n = 75, the n dependence of γ

with the toroidal rotation has local minimum, and that of the frequency ω has a gap; ω/ωA0 is

about 0.012 when n ≤ 75 but is about 0.018 when n > 75.

Note that near n = 75, the time evolution of ln(|ξr|2) does not converge well about 500τA0
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Figure 3: Time evolution of (a) ln(|ξr|2) and (b) γ of the n = 75 mode.

60 70 80 90

0.
2

0.
25

n

γ/
ω A

0

60 70 80 90

0.
01

0.
02

n

ω
/ω

A
0

Figure 4: Dependence of (a) γ and (b) ω of the most unstable and secondary unstable mode on

n near n = 75.

later, though that of other modes, whose γ/ωA0 is about 0.2, converge about 100τA0 later; such

an phenomenon is never observed in the static equilibrium. For example, Fig.3 shows the time

evolution of (a) ln(|ξr|2) and (b) γ of the n = 75 mode. As shown in this figure, ln(|ξr|2) no

longer grows linearly, and as the result, γ oscillates with the frequency ∼ 0.06ωA0.

To investigate the reason of such a non-exponential growth, we analyze the MHD stability by

solving the eigenvalue problem. Figure 4 shows the n dependence of (a) γ and (b) ω of the most

unstable and the secondary unstable modes around n = 75. As shown in this figure, there are two

eigenmodes whose γ are similar to each other, but the frequencies of these modes are different

from each other. Particularly, at n = 75, γ/ωA0 is almost identical to each other as ' 0.184, but

one of ω1/ωA0 ' 1.15×10−2 is different from the other ω2/ωA0 ' 1.65×10−2. In this case, the

time evolution of γ will oscillate around γ ' 0.184 with the frequency n(ω2 −ω1)/2π ' 0.06 as

the beat frequency between two eigenmodes; this result is consistent with that shown in Fig.3.

Note that these two eigenmodes are no longer orthogonal to each other, unlike in the static case.

Figure 5 shows the mode structure of (a) the eigenfunction whose ω = ω1 and (b) that whose

ω = ω2; these are named as mode (1) and mode(2), respectively. As shown in this figure, the

peak of the envelope of Re(ξr) of mode (1) is near nq = 185 (ρvol. ' 0.974), and this is closer

to the plasma surface than that of mode (2) nq = 176 (ρvol. ' 0.968). This difference of the
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Figure 5: Mode structure of (a) the eigenfunction whose ω = ω1 = 1.15 × 10−2ωA0, (b) that

whose ω = ω2 = 1.65×10−2ωA0 , and the plasma rotation frequency.

peak position of the envelope can change the mode frequency[6], because the plasma rotation

frequency decreases toward the plasma surface; in fact, the rotation frequency at ρvol. ' 0.974

(' 1.25×10−2ωA0) is smaller than that at ρvol. ' 0.968 (' 1.68×10−2ωA0).

Summary

In this paper, we investigate the dependence of the stability of the edge localized MHD mode

on the toroidal mode number n with the MINERVA code. Unlike in the static case, the sheared

toroidal rotation can induce the non-exponential growth of the MHD instability, and the growth

rate oscillates in time. This oscillation is excited by the beat between two unstable eigenmodes

whose growth rates are almost identical to but frequencies are different from each other. Due to

the declination of the plasma rotation frequency at the peak of the envelope of the eigenmode

structure, the frequencies of the eigenmodes become different from each other. The reason that

makes such a difference of the peak position of the envelope is still under discussion, but this

will come from the difference between the position where the ballooning mode can have the

largest growth rate and that where the rotation can change the MHD stability effectively. This

will be investigated and will be reported in near future.
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