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I. Introduction  

Simple analytic solutions to the Grad-Shafranov (GS) equation are desirable and useful for 

studying the equilibrium, stability and transport properties of toroidally axisymmetric fusion 

devices, and for benchmarking magnetohydrodynamics (MHD) equilibrium codes. The 

simplest analytic solutions are obtained with pressure and current profiles which are linear in 

the flux function , the so-called Solov’ev profiles. These solutions have been extensively 

studied (e.g. [1]), and have given very useful insights, for instance in the study of plasma 

shaping effects in spherical tokamaks (STs).  

Unfortunately, the Solov’ev profiles correspond to the unrealistic situation where the 

toroidal current has a jump at the plasma edge. The goal of this paper is to show that concise, 

relatively simple analytic solutions to the GS equation can also be obtained for the physical 

case where the pressure and current profiles are quadratic in the flux function  so that they, 

and their surface gradients vanish at the plasma edge. This work extends previous related 

studies [2] by following the same successful procedure previously demonstrated with 

Solov’ev profiles [3]. Specifically we present a simple method to construct single null 

tokamak and ST equilibria allowing for arbitrary aspect ratio, elongation, triangularity and . 

II. Grad-Shafranov equation with quadratic pressure and current profiles 

In the usual ( ), ,R Z  cylindrical coordinate system, where  is the ignorable coordinate 

in axisymmetric devices, the GS equation [4] is 
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where ( )2 ,R Z  is the poloidal flux, ( ) ( )2 pF I=  is the net poloidal current flowing 

in the plasma and the toroidal field coils, and ( )p p=  is the plasma pressure. We introduce 

the normalization 
0

= , 
0

R R x= , and 
0

Z R y= , where 
0

 is an arbitrary constant, 

and 
0
R  is the major radius of the fusion device under consideration, and focus on pressure and 

current profiles which are quadratic in . Specifically, we write 
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0
B  is the vacuum magnetic field,  represents the plasma diamagnetism 

( 0> ) or paramagnetism ( 0< ), and 
0
p  is the pressure at the magnetic axis.  Equation (1) 

reduces to  
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Here k  is treated as an unknown constant, which is determined from the boundary conditions, 

while b  is chosen according to the regime of operation (for example, 
    
b = 1 = 0 , 

    
b = 0

p
1 ,     b = 1/ 2 1 ).  In the regimes of interest, 2

0k > .  We solve Eq. 

(2) by separation of variables, writing ( ) ( ) ( ) ( ) ( )1 2, cos siny yx y x k y x k y= + , with 

2 2

yk k  an undetermined separation constant. The first term corresponds to up-down 

symmetric solutions, while the second term corresponds to up-down asymmetric solutions. 

Also, for 0yk = , ( )sin yk y  has to be replaced by y , the simplest up-down asymmetric 

solution. Inserting this expression for ( ),x y  into Eq. (2) leads to the same ordinary 

differential equation for 1( )x  and 2( )x : 
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The general solution to Eq. (3) is:
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M are the Whittaker functions, = i 4k b( )
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k 2 1 b( ) ky
2 .  The free constants c and d  

are determined from the boundary conditions.  
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Theoretically, specifying the entire continuous shape of the plasma boundary would 

require an infinite number of free constants c , d , and yk .  However, the following expansion 
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leads to a very good match between a desired plasma shape and the actual shape obtained by 

solving for the finite number of unknown free constants using a corresponding number of 

boundary constraints. In Eq. (4) the subscript 0 corresponds to 0yk = , the subscript 1 to 

yk k= , and the subscript 2 to 0 yk k< < . The last task is to define the 13 boundary 

constraints required to determine the 13 free constants 
1 11
c c , yk  and k . 

III. Up-down asymmetric solutions and boundary conditions 

As in [3], we assume that we have a parametric representation ( ) ( ),x y  of the desired 

plasma boundary, where   is an angle-like variable. Choosing the free additive constant 

associated with the function  so that 0=  on the surface, the 13 free constants for a 

single null divertor tokamak are determined from the following boundary conditions: 
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  (5)      

Here, 0/a R=  is the inverse aspect ratio,  is the upper elongation,  is the upper 

triangularity, 
1
N , 

2
N , and 

3
N  are the curvatures of the parametric curve ( ) ( ),x y  at the 

outboard midplane, the inboard midplane, and the top respectively.  For example, for the well-

known model surface used in the examples below, ( )( ) 1 cos sinx = + + , 

( ) siny = , with sin = , we find ( )
2 2

1 1 /N = + , ( )
2 2

2 1 /N = , and 

2
3 / cosN = .  The parameters 

X
x  and Xy  give the location of the separatrix,  and can 
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be chosen freely, although, of course, not every location will lead to an acceptable equilibrium.  

Often, in particular for small  , a good choice is 1 1.05 ,  1.05X Xx y= = .  

Equation (5) is a system of 13 equations for the 13 unknowns, which is easily solved 

numerically using typical nonlinear root solvers.  In Fig. 1. we show ITER-like and NSTX-like 

equilibria obtained by this procedure, for a high plasma  corresponding to the vanishing of 

the toroidal current density gradient at the inboard midplane (i.e. for 1/ (2 )b = ). 

a)          b)  

Fig. 1. a) Lower single null ITER-like equilibrium. 0.32, 1.7, 0.33= = = . b) Lower single null 

NSTX-like equilibrium. 
    

= 0.78, = 2, = 0.2,x
X

= 0.6,y
X

= 1.05 .  

IV. Up-down symmetric solutions and boundary constraints 

The procedure also works for up-down symmetric equilibria with both smooth or double null 

surfaces. The up-down symmetry implies  
6 7 8 9 10 11

0c c c c c c= = = = = = . The reduced 

set of 7 boundary constraints for the 7 remaining unknown constants can be found in [3]. 
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