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I. Introduction

Simple analytic solutions to the Grad-Shafranov (GS) equation are desirable and useful for
studying the equilibrium, stability and transport properties of toroidally axisymmetric fusion
devices, and for benchmarking magnetohydrodynamics (MHD) equilibrium codes. The
simplest analytic solutions are obtained with pressure and current profiles which are linear in
the flux function W, the so-called Solov’ev profiles. These solutions have been extensively
studied (e.g. [1]), and have given very useful insights, for instance in the study of plasma
shaping effects in spherical tokamaks (STs).

Unfortunately, the Solov’ev profiles correspond to the unrealistic situation where the
toroidal current has a jump at the plasma edge. The goal of this paper is to show that concise,
relatively simple analytic solutions to the GS equation can also be obtained for the physical
case where the pressure and current profiles are quadratic in the flux function ¥ so that they,
and their surface gradients vanish at the plasma edge. This work extends previous related
studies [2] by following the same successful procedure previously demonstrated with
Solov’ev profiles [3]. Specifically we present a simple method to construct single null

tokamak and ST equilibria allowing for arbitrary aspect ratio, elongation, triangularity and (.

I1. Grad-Shafranov equation with quadratic pressure and current profiles

In the usual (R,¢,Z) cylindrical coordinate system, where ¢ is the ignorable coordinate

in axisymmetric devices, the GS equation [4] is
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where 27 (R, Z) is the poloidal flux, —27F (W) = I () is the net poloidal current flowing
in the plasma and the toroidal field coils, and p = p(¥) is the plasma pressure. We introduce
the normalization ¥ = ¥ ¢), R = Rz, and Z = Ry, where ¥  is an arbitrary constant,

and R, is the major radius of the fusion device under consideration, and focus on pressure and

current profiles which are quadratic in +. Specifically, we write F* = R*B’ (1 — mﬁ), and

p(¥) = p°. B, is the vacuum magnetic field, o represents the plasma diamagnetism

(a > 0) or paramagnetism (« < 0), and p, is the pressure at the magnetic axis. Equation (1)

reduces to
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Here £ is treated as an unknown constant, which is determined from the boundary conditions,

while b is chosen according to the regime of operation (for example, b=1— =0,
b=0— 5}, ~1,b=—1/2— ¢3~1). In the regimes of interest, ¥* > 0. We solve Eq.
(2) by separation of variables, writing v (z,y) = v, (z) cos (k,y )+, (@) sin (k,y ), with
k:y2 < k* an undetermined separation constant. The first term corresponds to up-down

symmetric solutions, while the second term corresponds to up-down asymmetric solutions.

Also, for k, =0, sin (kyy) has to be replaced by y, the simplest up-down asymmetric
solution. Inserting this expression for 1 (z,y) into Eq. (2) leads to the same ordinary

differential equation for +; () and ()

dx |z dx
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The general solution to Eq. (3) is: @(m) =cW

A
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M are the Whittaker functions, \ = z(4k\/g) [k2 (1 — b) — k;} . The free constants cand d

are determined from the boundary conditions.
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Theoretically, specifying the entire continuous shape of the plasma boundary would

require an infinite number of free constants ¢, d, and k,. However, the following expansion

V(z,y) = W, +oM, + (62VVA1 + e M, )COS (ky) + (C4W)\2 + e M, )COS (ky) @)
+ (CGW)\U + .M, )y + (CSWAl +¢oM, )Sin (ky) + (CIOW/\2 + ¢, M, )Sin (ky)
leads to a very good match between a desired plasma shape and the actual shape obtained by

solving for the finite number of unknown free constants using a corresponding number of

boundary constraints. In Eq. (4) the subscript O corresponds to k£, = 0, the subscript 1 to
k, =k, and the subscript 2 to 0 <k, <k. The last task is to define the 13 boundary

constraints required to determine the 13 free constants ¢, —c;,, k, and k.

I11. Up-down asymmetric solutions and boundary conditions

As in [3], we assume that we have a parametric representation z(7),y(7) of the desired

plasma boundary, where 7 is an angle-like variable. Choosing the free additive constant

associated with the function ¢ so that ) = 0 on the surface, the 13 free constants for a

single null divertor tokamak are determined from the following boundary conditions:

Y(1+¢0)=0 1/1(1—56,/15):0
P(1—¢0)=0 Yla(r =37 /4),y(r =37 /4)| =0
¥, (1+60)=0 Wy, —y,) =0
)= ©)
1/{,,(1 £0)=0 %(1—55,%):0
wyy (1+€70>:_N1¢z(1+€70) ¢1;<IX,—:UX):O
1/)” (1_570):_N2¢x (1_570) wy(xX,—yX):(J
¥, (1—ebke) = —Nyp, (1— b, ke)

Here, ¢ =a /R, is the inverse aspect ratio, x is the upper elongation, ¢ is the upper
triangularity, N,, N,, and N, are the curvatures of the parametric curve z(7),y(7) at the

outboard midplane, the inboard midplane, and the top respectively. For example, for the well-

known model surface used in the examples below, z(7)=1+ ecos(T+ asinT),
y(T) = exsinT, with sina = ¢, we find N, = —(1+ )’ /ex’, N, =(1—a)’ /ex?, and

N, = —k /ecos’ a. The parameters x, and —y, give the location of the separatrix, and can
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be chosen freely, although, of course, not every location will lead to an acceptable equilibrium.

Often, in particular for small £, agood choice is z, =1 —1.056¢, y, = 1.05x¢ .

Equation (5) is a system of 13 equations for the 13 unknowns, which is easily solved
numerically using typical nonlinear root solvers. In Fig. 1. we show ITER-like and NSTX-like

equilibria obtained by this procedure, for a high plasma 3 corresponding to the vanishing of

the toroidal current density gradient at the inboard midplane (i.e. for b =1/¢(2 —¢)).
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Fig. 1. a) Lower single null ITER-like equilibrium. ¢ = 0.32,x = 1.7, = 0.33 . b) Lower single null
NSTX-like equilibrium. € = 0.78,x = 2,6 = 0.2,z = 0.6,y = 1.05x¢ .

IV. Up-down symmetric solutions and boundary constraints

The procedure also works for up-down symmetric equilibria with both smooth or double null
surfaces. The up-down symmetry implies ¢, =¢, =¢, =c¢, = ¢, = ¢, = 0. The reduced

set of 7 boundary constraints for the 7 remaining unknown constants can be found in [3].
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