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A promising avenue toward achieving stable tokamak operation above the no wall beta limit
for the resistive wall mode (RWM) involves the use of magnetic feedback to detect and
stabilize the mode. Although feedback stabilization experiments using classical control
algorithms have met with some success, model-based feedback control algorithms can
improve feedback performance when coils external to the vacuum vessel are used. A linear-
quadratic-Gaussian (LQG) controller has been designed based on a three-dimensional
VALEN [J. Bialek, et al., Phys. Plasmas 8, 2170 (2001)] model for the DIII-D vacuum vessel
wall and coil sets. Stability calculations using only external coils indicate that the LQG
controller can stabilize the RWM at an open-loop growth rate for which proportional gain
feedback fails.

1. Introduction

The control or avoidance of long-wavelength MHD instabilities that arise at high pressures in
tokamak plasmas will likely be important for the success of steady-state, high fusion gain
scenarios in ITER [1] and for future tokamak devices that seek to maximize fusion output.
One such instability, the n=1 RWM, has been successfully controlled using feedback with
magnetic coils [2—4].

The optimization of feedback algorithms and hardware for RWM control is ongoing.
Improved performance has been attained using control coils that are internal to the vacuum
vessel [5], and a set of internal coils has been proposed for ITER. However, maintaining in-
vessel coil arrays may prove to be impractical for future burning plasma devices.

Model-based feedback algorithms have the potential to improve feedback with external
coils beyond what is achievable with proportional gain control. Kalman filtering has been
used in experiments to improve RWM feedback in the presence of noise [6-8], and
simulations of RWM feedback in ITER with the planned external error-field correction coils
indicate that performance can be improved using a linear-quadratic-Gaussian (LQG) control
algorithm that incorporates a three-dimensional VALEN [9] model for the control and sensor
coils, vacuum vessel wall, and plasma stability [10]. In this paper, we describe an LQG
RWM controller that is designed for feedback with DIII-D's external coils, using the
prescription of Katsuro-Hopkins et al. [10].
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2. Current-driven resistive wall mode behaviour in DIII-D

In recent years, low-beta, current-driven RWMs have become the standard target for feed-
back experiments in DIII-D due to their ease of reproducibility [11]. DIII-D discharge
133021 provides an example of current-driven RWM activity. In this shot, the plasma current
was ramped at a rate of ~1 MA/s using transformer action, leading to a broad current density
profile. DIII-D’s external non-axisymmetric coils were used to provide error field correction.
Figure 1 shows the time evolutions of gos and the amplitude and toroidal phase of the
perturbed n=1 poloidal magnetic field at the outboard midplane. As gos approaches 4.0, a
toroidally rotating instability is observed in the magnetics. An initial phase of exponential
growth at a rate of ~0.4 ms™ is observed just after = 460 ms. During the next 25 ms, the
growth of the mode slows, and the amplitude saturates near the time # = 500 ms. Instabilities

generated in this manner have been shown to respond to magnetic feedback [11].

An equilibrium for shot 133021 was obtained at 4 g @ 9o 133021
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3.1QG controler design R & Time evnins o @ g 1o
In contrast to classical controller designs in which of the perturbed n=1 poloidal field.
feedback signals are computed directly from

measurements by applying proportional, integral, and derivative (PID) gains, the LQG
formulation allows the control system designer to directly exploit a linear model for the
system dynamics. The controller consists of two portions: a linear observer that is optimized
for Gaussian measurement noise and a control law that satisfies a quadratic performance
criterion. The observer equation provides an estimate, ):ck 4= CD):ck + Ko (yx —C):ck), of the
system state X at time-step k+1 given a vector of measurements y. The matrix @
characterizes the closed-loop system dynamics, and advances the state estimate X based on
its previous value. The estimation error, that is, the difference between y and the estimated
measurements CXj, enters via an “observer gain” Kg. In the LQG formulation, K and @
are chosen so that the estimation error is minimized when the uncertainties in X and y have
Gaussian probability distributions.

The feedback inputs u are given by the control law

iy =KXy (1)
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Here K¢ is a gain matrix that minimizes the expected value of the performance criterion
J= Ei'; ko (X Oc Xy + U Rcuy ) between time-steps ko and k,. Here, the prime (') denotes a
vector transpose and the matrices Oc and R¢ are adjusted to preferentially weight the priority
in minimizing the system state versus minimizing control effort. In addition to using the
optimized gain matrix just described, the control law expressed in Eq. (1) differs from a
classical, proportional gain control law in that the gain is applied to the observer's estimate X
rather than direct measurements of the system.

In this case, the DIII-D VALEN model is used for the controller design, and the methods
of casting the VALEN equations in state-space form and reducing the order of the system
using balanced realization are followed as in Ref. [10]. LQG controller matrices are then
calculated using the reduced system matrices. For the calculations presented here, the

controller is untuned, that is, the Oc and R¢ are left as identity matrices.

4. Feedback simulations

Closed-loop eigenvalue calculations with the full-order VALEN model matrices are used to
compare the effectiveness of various control algorithm designs in stabilizing the RWM. In
addition to the LQG controller described above, a proportional gain control law with an

adjustable toroidal phase-shift ¢ is evaluated. For the sake of comparison with the propor-
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maximum real growth rates from these calculations are depicted in Fig. 3(a), as a family of
curves that are functions of d¢. As the gain g, is increased, a local minimum in the growth
rate is observed near 6 =-90° and g, =30 coil Volts/sensor Gauss. The results for
-90°< ¢ <10° and 10=<g, <100 V/G are displayed as a function of proportional gain in
Fig. 4. A second local minimum growth rate can be seen near 6¢ = -70° and g, =85 V/G.
An extension of this calculation tog, =500 V/G did not reveal additional minima in the
growth rate at any phasing. No combination of proportional gain and phase-shift was found
that resulted in closed-loop stability.
An analogous scan of the feedback phase . . .

) o Feedback gain scan, proportional gain controller

of the LQG controller is shown in Fig. 3(b). 1000~
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5. Discussion

The eigenvalue calculation results shown in
Fig. 3 indicate that the LQG controller

formulation is a promising avenue for reliable ~ Fig 4. Real parts of the closed-loop growth rate
for scans of the feedback gain and phase angle

RWM control with external coils. Consistent  with a proportional gain controller, plotted as a

with the findings for ITER [10], using an LQG function of the gain. The horizontal turquoise line
marks the open-loop system growth rate.

controller enables stabilization of modes that
have growth rates that are beyond the reach of proportional gain control. In order to fully
assess the usefulness of this technique, the impacts of sensor signal-to-noise ratios, power
supply saturation limits, and feedback controller latency must also be characterized. These
nonlinear, but experimentally relevant, effects can be investigated using time-domain
simulations with the VALEN model. Calculations of this nature are in progress.

This work was supported by the US Department of Energy under DE-FG02-04ER54761,
DE-AC05-060R23100, DE-FG02-06ER84442, DE-AC02-09CH11466, and DE-FCO02-
04ER54698.

[1] T. Hender, et al., Nuclear Fusion 47, S128 (2007).

[2] C. Cates, et al., Phys. Plasmas 7, 3133 (2000).

[3] A. Garofalo, et al., Nucl. Fusion 40, 1491 (2000).

[4] S.A. Sabbagh, ef al., Phys. Rev. Lett. 97, 045004 (2006).

[5] E.J. Strait, et al., Phys. Plasmas 11, 2505 (2004).

[6] Y.In,efal, Phys. Plasmas 13, 062512 (2006).

[7] J.M. Hanson, et al., Phys. Plasmas 15, 080704 (2008).

[8] J.M. Hanson, et al., Phys. Plasmas 16, 056112 (2009).

[9] J. Bialek, A.H. Boozer, M.E. Mauel, and G.A. Navratil, Phys. Plasmas 8, 2170 (2001).
[10] O. Katsuro-Hopkins, J. Bialek, D. Maurer, and G. Navratil, Nucl. Fusion 47, 1157 (2007).
[11] M. Okabayashi, ef al., Nucl. Fusion 49, 125003 (2009).

[12] A.H. Glasser and M.S. Chance, Bull. Am. Phys. Soc. 42, 1848 (1997).



