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1. Introduction

The Grad-Shafranov (G-S) equation can be generalised to take poloidal and toroidal flows into

account, with closure provided by an energy equation [1]. Inmany analyses of this problem

an isentropic energy equation has been used, i.e. specific plasma entropyσ = p/ργ has been

assumed to be constant on a given magnetic flux surface. However tokamak plasmas are gen-

erally in a weakly collisional regime, with very rapid parallel heat transport and a high level

of entropy-creating turbulence, concentrated on the low field side of the plasma. Flux surface

variations of electron and ion temperatureTe, Ti are thus likely to be much smaller than those of

σ , and it is more appropriate to use an isothermal energy equation. Whereas the G-S equation

in the absence of flows is elliptic, “transonic” poloidal flows (of the order of the sound speed

cs times the poloidal magnetic fieldBθ divided by the total fieldB) can render the combined

system of G-S and Bernoulli equations hyperbolic in part of the solution domain. Spatial tran-

sitions from elliptic to hyperbolic behaviour imply the presence of radial discontinuities, e.g. in

density [3]. This possibility is of particular interest in tokamaks, in view of the observed corre-

lation between sheared flows and internal transport barriers (ITBs), which are characterised by

steep gradients in temperature and density [2].

2. Flow equilibria with isentropic flux surfaces

Lovelace et al. [1] derived Grad-Shafranov-Bernoulli equations describing axisymmetric MHD

flow equilibria, with closure provided by assuming either specific entropy conservation along

streamlines, i.e.v ·∇σ = 0, or thermal equilibrium within flux surfaces, i.e.B ·∇(p/ρ) = 0.

Using the Bernoulli relation to expressρ in terms of∇Ψ whereΨ is poloidal flux, the terms in

the G-S equation involving second order derivatives ofΨ can be written as [1]
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whereF = F(Ψ) is defined such that the poloidal momentum density is∇F ×∇ϕ, (R,ϕ,Z)

being right-handed cylindrical coordinates and, in the isentropic case,
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HerevR andvZ are the radial and vertical components of the poloidal flowvθ , cA = B/(µ0ρ)1/2

andcAθ = Bθ/(µ0ρ)1/2. The G-S equation is elliptic (hyperbolic) ifD ≡ A2
RZ − 4ARRAZZ is

negative (positive). It is straightforward to show that

D =−4
1−M2

sθ (1+β )
1−M2

sθ (1+β )+βM4
sθ(Bθ/B)2

, (4)

whereMsθ = (vθ/cs)(B/Bθ ) andβ = γµ0p/B2. It follows from Eq. (4) that the G-S equation

is hyperbolic forMsθ in the range [4]
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Forβ ≪ 1, Bθ ≪ B, as in Fig. 1(a), the G-S equation is hyperbolic for only a very narrow range

of values ofMsθ [5]. However the orderingβ (Bθ/B)2 ≪ 1 is not necessarily satisfied on the

low field side of spherical tokamak (ST) plasmas, whereBθ/B andβ can both be of order unity.

In this case the G-S equation is hyperbolic at lowerMsθ and for a greater range of values of

this parameter [Fig. 1(b)]. The presence of transonic poloidal flows in ST plasmas withβ ∼ 1,

Bθ ∼ B could pose serious numerical challenges for equilibrium reconstruction.
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Fig. 1 Discriminant of 2nd order derivatives in the G-S equation versusMsθ for (a) β = 0.1,
Bθ = 0.1B, and (b)β = 1, Bθ = B. The equation is hyperbolic whenD > 0.

3. Flow equilibria with isothermal flux surfaces

Results obtained using the isentropic energy equation carry over to the isothermal case, with

vi = (2T/mi)
1/2 replacingcs = (γ p/ρ)1/2. Eqs. (4-5) remain valid, withβ = µ0p/B2 andMsθ =

(vθ/vi)(B/Bθ ) [6]. Whenβ ≪ 1, Eq. (5) shows that the thresholdvθ for the G-S equation to

become hyperbolic is given byMsθ = 1; this is a factorγ1/2 ≃ 1.3 lower in the isothermal case

than in the isentropic case (a significant reduction, if the actual poloidal flows are close to the

threshold). When toroidal and poloidal flowsvϕ , vθ are present there exists a flux function [6]

Ω(Ψ) =
vϕ

R
− vθ

R

Bϕ

Bθ
. (6)
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When flux surfaces are isothermal the appropriate form of theBernoulli relation is
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Eliminatingvϕ from Eqs. (6) and (7) we obtain an expression for number density n ≃ ρ/mi:
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Ω, vi andMsθ can be measured on the low field side of the plasma using neutral beam diag-

nostics (charge exchange and motional Stark effect). Because of beam attenuation and injection

geometry, such measurements are generally not possible on the high field side. Thomson scat-

tering data can be used to infern andTe across the midplane; measurements of inboard/outboard

density asymmetry, combined with Eq. (8), can then yieldMsθ on the high field side. Moreover

Eq. (6) can be used to determinevϕ on the high field side, provided thatB2
θ ≪ B2. The above

expressions could thus provide a more complete picture of global tokamak dynamics.

ExpressingBϕ in terms ofΨ, R andn we find that Eq. (8) can be written as a transcendental

equation for normalised densityx = n/n0 (n0 being an arbitrary constant density):
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HereMs = F ′Bθ/(min0vi), MAθ = F ′(µ0/min0) andξ ∼ Bϕ/Bθ . Fig. 2(a) showsg1(x) andg2 ≡
x/x0 in the limit Ms ≪ 1,MAθ ≪ 1,ξ ≫ 1. There is a criticalx0 above which two solutions exist

for the density, i.e. two values ofx such thatg2 = g1. These correspond to subsonic (Msθ < 1)

and supersonic (Msθ > 1) poloidal flows: similar solutions have been found in the isentropic

case [5]. For any set of values ofMs, MAθ andξ there are values ofx0 such that four solutions

exist: two additional solutions, represented by the first two intersections of the dashed-dotted

line with the solid curve in Fig. 2(b), correspond tovθ ≃ cAθ (1+ξ 2/3), i.e. trans-Alfvénic flows.
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Fig. 2 (a) g1(x) for Ms = MAθ = 0.1, ξ = 10 (solid curve) andg2(x) for x0 = 1.0 (dashed), 1.65
(dotted), 2.5 (dashed-dotted). (b)g1(x) for Ms = MAθ = 1, ξ = 1 (solid curve) andg2(x) for
x0 = 40 (dashed-dotted). Density solutions correspond to points at whichg2 = g1.
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4. Comparison with experiment

The highestvθ yet measured in JET was 75± 20kms−1 (in the ion diamagnetic direction),

inside a transport barrier in shot 58094 [2]. Immediately outside the barrier,vθ was close to

zero. These measurements, combined with inferred values ofTi, n andq, suggest thatMsθ was

of order unity inside the barrier, falling with increasing minor radius to a value close to zero

outside the barrier. Abrupt falls inn andp were thus accompanied by a fall in Mach number. In

contrast, solutions of the G-S equation with isentropic fluxsurfaces show discontinuous drops

in n associated withrises in Msθ , from clearly subsonic to clearly supersonic values [5]. Eq. (8)

suggests that this type of relation would also be expected inthe isothermal case. We conclude

that there is no evidence in these data of radial discontinuities, although the fact thatMsθ was of

order unity suggests that density profiles were significantly affected by poloidal flows [cf. Eq.

(8)]. This conclusion appliesa fortiori to poloidal flow measurements in the MAST ST, which

are broadly consistent with low values expected from neoclassical theory [7].

5. Conclusions

The threshold poloidal flow for the G-S equation to be hyperbolic is lower when flux surfaces

are isothermal rather than isentropic, and the range of flowsfor which the equation is hyperbolic

is greater in high performance STs than in conventional tokamaks. An expression for the density

variation on a flux surface in the presence of poloidal and toroidal flows could be used to infer

experimental information about both types of flow on the highfield side of tokamak plasmas,

where direct measurements are generally not possible. The Bernoulli relation for isothermal

flux surfaces has four solutions for the density, corresponding to different flow regimes. There

is no clear evidence of any regime other than the subsonic onebeing realised in present-day

tokamaks, but it may be possible to access other regimes in future experiments.

This work was partly funded by EPSRC under grant EP/G003955 and the European Com-

munities under the contract of Association between EURATOMand CCFE. The views and

opinions expressed herein do not necessarily reflect those of the European Commission.

[1] Lovelace et al., Astrophys. J. Suppl. Series62, 1 (1986)

[2] Crombé et al., Phys. Rev. Lett.95, 155003 (2005)

[3] Betti & Freidberg, Phys. Plasmas7, 2439 (2000)

[4] Goedbloed, Phys. Plasmas11, L81 (2004)

[5] Guazzotto et al., Phys. Plasmas11, 604 (2004)

[6] McClements & Hole, Phys. Plasmas, submitted (2010)

[7] Field et al., Plasma Phys. Control. Fusion51, 105002 (2009)

37th EPS Conference on Plasma Physics P4.130


