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1. Introduction

The Grad-Shafranov (G-S) equation can be generalised égp@lbidal and toroidal flows into
account, with closure provided by an energy equation [1jnamy analyses of this problem
an isentropic energy equation has been used, i.e. spe@8mgl entropy = p/pY has been
assumed to be constant on a given magnetic flux surface. Howakamak plasmas are gen-
erally in a weakly collisional regime, with very rapid pdehlheat transport and a high level
of entropy-creating turbulence, concentrated on the lold Bale of the plasma. Flux surface
variations of electron and ion temperatdeT, are thus likely to be much smaller than those of
o, and it is more appropriate to use an isothermal energy iEquat/hereas the G-S equation
in the absence of flows is elliptic, “transonic” poloidal fle\of the order of the sound speed
Cs times the poloidal magnetic fieldg divided by the total field8) can render the combined
system of G-S and Bernoulli equations hyperbolic in parhefdolution domain. Spatial tran-
sitions from elliptic to hyperbolic behaviour imply the gence of radial discontinuities, e.g. in
density [3]. This possibility is of particular interest iokiamaks, in view of the observed corre-
lation between sheared flows and internal transport barfi€Bs), which are characterised by
steep gradients in temperature and density [2].

2. Flow equilibria with isentropic flux surfaces

Lovelace et al. [1] derived Grad-Shafranov-Bernoulli écpres describing axisymmetric MHD
flow equilibria, with closure provided by assuming eitheeafic entropy conservation along
streamlines, i.ev- 0o = 0, or thermal equilibrium within flux surfaces, i.B.- O(p/p) = 0.
Using the Bernoulli relation to expregsin terms of (1W whereW is poloidal flux, the terms in
the G-S equation involving second order derivative¥afan be written as [1]

F’? 92 92 92
(1— I10?> (ARRW +ARZ—5RdZ —f—AZZﬁ) ) (1)

whereF = F (W) is defined such that the poloidal momentum densitylisx ¢, (R, ¢,2)
being right-handed cylindrical coordinates and, in thats®ic case,
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Herevg andv; are the radial and vertical components of the poloidal flgnca = B/ (Lop)Y/2
andcag = Bg/(Lop)Y/2. The G-S equation is elliptic (hyperbolic) B = A%, — 4ArrAzz IS
negative (positive). It is straightforward to show that
1-M2(1+B)
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whereMgg = (vg/Cs)(B/Bg) andB = yuop/B2. It follows from Eq. (4) that the G-S equation
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is hyperbolic forMgg in the range [4]
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ForB < 1,Bg < B, as in Fig. 1(a), the G-S equation is hyperbolic for only a/vearrow range
of values ofMsgy [5]. However the ordering(Bg/B)? < 1 is not necessarily satisfied on the
low field side of spherical tokamak (ST) plasmas, whg§¢B and3 can both be of order unity.
In this case the G-S equation is hyperbolic at loWgp and for a greater range of values of
this parameter [Fig. 1(b)]. The presence of transonic plaldiows in ST plasmas witf ~ 1,

Bg ~ B could pose serious numerical challenges for equilibriucomstruction.
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Fig. 1 Discriminant of 2nd order derivatives in the G-S equatiorsusMg for (a) 8 = 0.1,
By = 0.1B, and (b)3 = 1, Bg = B. The equation is hyperbolic whdh > 0.

3. Flow equilibria with isothermal flux surfaces

Results obtained using the isentropic energy equatioly cer to the isothermal case, with
vi = (2T /my) Y2 replacinges = (yp/p)Y/2. Egs. (4-5) remain valid, witB = piop/B2 andMgg =
(ve/Vi)(B/Bg) [6]. When 3 <« 1, Eq. (5) shows that the thresholg for the G-S equation to
become hyperbolic is given bylgg = 1; this is a facton/2 ~ 1.3 lower in the isothermal case
than in the isentropic case (a significant reduction, if tttei@ poloidal flows are close to the

threshold). When toroidal and poloidal flowg, vg are present there exists a flux function [6]

Qw)=¢ Y= (6)
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When flux surfaces are isothermal the appropriate form oB#raoulli relation is

V3 + V2
H(W):%In(%)—k b= —aRy;. (7)

Eliminatingvy from Egs. (6) and (7) we obtain an expression for number tienst p/m:

2
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i
Q, vi andMgg can be measured on the low field side of the plasma using hégaa diag-
nostics (charge exchange and motional Stark effect). Becaibeam attenuation and injection
geometry, such measurements are generally not possibledrigh field side. Thomson scat-
tering data can be used to infeandTe across the midplane; measurements of inboard/outboard
density asymmetry, combined with Eqg. (8), can then yiMlg on the high field side. Moreover
Eq. (6) can be used to determing on the high field side, provided thB@ < B?. The above
expressions could thus provide a more complete pictureatifagitokamak dynamics.

Expressind3y in terms of¥, Randn we find that Eq. (8) can be written as a transcendental
equation for normalised densixy= n/ng (ng being an arbitrary constant density):

X=mexp[—y—)§{1+(€27x22}} = %001(X), X0 = nlr(:) exp{fv—izz (Rz—R%)} (9)

2

HereMs=F'Bg/(minoVi), Mag = F’(to/ming) andé ~ By /Bg. Fig. 2(a) shows (x) andg, =
X/Xg in the limitMs < 1, Mag < 1, & > 1. There is a criticakp above which two solutions exist
for the density, i.e. two values afsuch thag, = g1. These correspond to subsonidsf < 1)
and supersonidMsg > 1) poloidal flows: similar solutions have been found in thenisopic
case [5]. For any set of values Bk, Mag and€ there are values of such that four solutions
exist: two additional solutions, represented by the firsi tatersections of the dashed-dotted

line with the solid curve in Fig. 2(b), correspondp~ cag (14 £2%/3), i.e. trans-Alfvénic flows.
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Fig. 2 (a) g1(x) for Ms = Mag = 0.1, £ = 10 (solid curve) andj(x) for Xop = 1.0 (dashed), 1.65
(dotted), 2.5 (dashed-dotted). @p)(x) for Ms = Mag = 1, £ = 1 (solid curve) andjy(x) for
Xo = 40 (dashed-dotted). Density solutions correspond to paitivhichg, = g;.
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4. Comparison with experiment

The highestvg yet measured in JET was 2520kms™ (in the ion diamagnetic direction),
inside a transport barrier in shot 58094 [2]. Immediatelysmie the barrieryg was close to
zero. These measurements, combined with inferred valugs mandq, suggest thatlgg was

of order unity inside the barrier, falling with increasingnor radius to a value close to zero
outside the barrier. Abrupt falls mand p were thus accompanied by a fall in Mach number. In
contrast, solutions of the G-S equation with isentropic 8uxfaces show discontinuous drops
in nassociated withisesin Mg, from clearly subsonic to clearly supersonic values [5]. B9
suggests that this type of relation would also be expectéldensothermal case. We conclude
that there is no evidence in these data of radial disconigs)although the fact thédsg was of
order unity suggests that density profiles were signifigaaffiected by poloidal flows [cf. EQ.
(8)]. This conclusion appliea fortiori to poloidal flow measurements in the MAST ST, which

are broadly consistent with low values expected from nesatal theory [7].

5. Conclusions

The threshold poloidal flow for the G-S equation to be hypkehs lower when flux surfaces
are isothermal rather than isentropic, and the range of florshich the equation is hyperbolic
is greater in high performance STs than in conventionaltaes. An expression for the density
variation on a flux surface in the presence of poloidal andidad flows could be used to infer
experimental information about both types of flow on the Highd side of tokamak plasmas,
where direct measurements are generally not possible. EneoBlli relation for isothermal
flux surfaces has four solutions for the density, correspantb different flow regimes. There
is no clear evidence of any regime other than the subsonidemg realised in present-day
tokamaks, but it may be possible to access other regimesurefexperiments.
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