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Abstract 

The main objective of this work consists in the application of an appropriate set of Extended 

Magnetohydrodynamics (ExMHD) nonlinear equations for four continuum fields (poloidal 

magnetic flux ψ , electron pressure 
ep , ion flow velocity 

iv , and ion flow vorticity U ) to 

study the response of the reconnecting modes in low collisionality regimes to specific inputs 

of localized external current. New information is gained on the time dependent effects of the 

external action on the magnetic islands, that is very important to formulate applicable control 

strategies, and also to help with the interpretation of experimental observations. 

 

The design of means to counteract robustly the classical and neoclassical tearing modes 

in a tokamak by localized injection of an external control current to balance the destabilising 

field perturbations requires an ever growing understanding of the physical process, beyond 

the 0-dimensional models of the Rutherford type [1,2,3]. Here we consider a number of 

questions of principle that can be addressed operating in a simplified (slab) geometry, while 

retaining the essential physical ingredients. The formulation of reduced ExMHD equations by 

the scalar four-field model described in Ref. 4,5 is used to investigate the 2D effects in the 

response to specific inputs of the external current (generated by electron cyclotron waves) 

aligned with the magnetic island perturbation, and suitably modulated in time. A systematic 

inclusion of neoclassical effects comprises the bootstrap current density bsJ  and same order 

contributions of pressure anisotropy p p p∆ ⊥≡ −
�

 to the equations for parallel vorticity, 

parallel momentum and energy [6]. The model is given by the following equations [4,5]: 
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where { } ˆ,f g z f g≡ ⋅∇ ×∇
�� ��

 are the Poisson brackets, and the symbols φ , e , n , m , 0µ , Tτ , 

denote respectively the electrostatic potential, electron charge, particle number density, mass, 

free-space permeability and ion/electron temperature ratio. Furthermore, 
0B  is the toroidal 

magnetic field on the magnetic axis, NCη  is the neoclassical resistivity [7], eµ , µ⊥ , µ
�
 are 

small viscosity terms, 2

0J ψ µ= ∇
�

, 2

0U Bφ= ∇ , and 
ECJ  represents the Electron Cyclotron 

Current Drive (ECCD) that can be modelled by time dependent amplitude with a Gaussian 

profile of width dictated by the absorption depth ECδ  [4,5]: 
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Finally, the neoclassical closure used for this ExMHD model is the following [4,5]: 
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where the operator  denotes the flux-surface average, ν  the Coulomb collision frequency, 

ε  the tokamak inverse aspect ratio, 00

eµ  the (0,0) element of the neoclassical viscous matrix 

[7], and q  the safety factor in the large aspect ratio circular tokamak. 

The dimensionless form of equations (1)-(4) was solved in a two-dimensional periodic 

box x yL L× , using a Fourier pseudospectral method for the space variables and a second-order 

Adams-Bashforth method for the time variable. Production runs were carried out with a 

200 200×  points grid and time step 31 10t
−∆ = ⋅ . The calculations presented here have been 

performed in a regime of classical resistive modes with typical parameters: 20 310 # mn = , 

410 eVT = , 5TB = , 1Tτ = , 31 10β −= ⋅ , 31 10S = ⋅ ; and small viscous coefficients: 

51 10eµ −= ⋅ , 21 10µ −
⊥ = ⋅ , 

41 10µ −= ⋅
� . 

The final nonlinear phase evolution of the fields’ rms spectral amplitude for the free 

system (i.e. in the absence of ECCD) is displayed in Fig. 1(a). At 1100 At τ=  the isolines of 

ψ  show that reconnection process has generated a magnetic island in the middle of the slab 

domain [Fig. 1(b)]. At 1180 At τ=  the magnetic island appears considerably enlarged [Fig. 

1(c)]. The narrow ECCD pulses (from 1100 At τ=  and 30 Aτ  duration) exactly focused on the 
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Fig. 1. Time evolution of fields’ rms spectral amplitude in the final nonlinear phase for the free system  

evolution case (a), and  isolines of poloidal magnetic flux function ψ (b)-(c) 

 

 

Fig. 2. Time evolution of fields’ rms spectral amplitude for the case of narrow ECCD pulses 

 

island elliptic point affects significantly the time evolution of the fields’ rms spectral 

amplitude, as shown in Fig. 2. The contour plots in Figs. 3(a) and 3(b) show the cancellation 

and the subsequent reappearance of elliptic and hyperbolic points. The 2D description shows 

that nonlinear reconnection can be limited in evolution by ECCD but not restored reversibly 

to its initial condition. After a certain time there is not cancellation of the singular points, that 

are increased by  the appearance of a secondary island as displayed in  Fig. 3(c),  but there is a  
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Fig. 3. Isolines of poloidal magnetic flux function ψ showing the magnetic island evolution of the system with 

narrow ECCD pulses exactly centered on the island elliptic point 

 

reduction of the magnetic islands [Fig. 3(d)] and a stable time behavior are achieved. This 

process continues [Figs. 3(e) and 3(f)] stretching the life of the system. 

In conclusion, the irreversibility of the nonlinear 2D process makes the choice of the 

control strategy more difficult than suggested by 0-dimensional models [8,9]. In particular a 

narrow current deposition increases the topological complexity with appearance of multiple 

axis and current sheets, therefore the customary concept of phase matching becomes less 

robust for effective control of the instability in the nonlinear stage. Instead a more suitable 

strategy could be based on both an accurate radial focusing and on an intermittent pulsed 

application of rf power associated with assigned threshold of a relevant state variable. 
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