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The MHD_N0 axisymmetric stability code [1, 2] has been extended to kink mode stability

computations. The MHD_NX code computes the ideal MHD stability of plasma equilibrium

configurations with arbitrary topology of axisymmetric magnetic surfaces, including doublets,

reversed current tokamak configurations with axisymmetricmagnetic islands (current holes and

AC operation [3, 4]) and multi-connected plasmas like two separated plasma columns (droplet)

surrounded by a vacuum region and a conducting wall. The codeuses unstructured triangular

grids with a possibility of adaptation to the magnetic surfaces and sharp solution features.

The code verification for standard test cases is presented. The results of stability calculations

of unconventional tokamak equilibria against the ideal MHDmodes with toroidal wave numbers

n= 0 andn> 0 are discussed.

1 Ideal MHD stability: the problem formulation for n>0

For the stability analysis the potential and kinetic energyfunctionals can be expressed in

terms of the electric field perturbation~E = iω~e,~e= −~ξ ×~B (time dependenceeiωt is assumed

for the eigenvalue problem):

Wp =
1
2

∫ {
|∇×~e|2−

~j ·~B
B2 ~e·∇×~e+

~j ·~e
B2

[
2~B ·∇×~e−~t ·~e

]}
d3r, (1)

Kp =
1
2

∫
ρ |~e|2/B2d3r, ~t = ~j +B2∇(

1
B2)×~B, (2)

combined with the requirement(~e· ~B) = 0, where~B = ∇ψ ×∇φ + F∇φ is the equilibrium

magnetic field. The surrounding vacuum region (free boundary) can also be taken into account

(see [1]). For the force-free case the last term in the functional (1) vanishes because for the

equilibrium current density the following representationis valid:~j = ~j||+ p′(R2∇φ − f/B2~B),
~j|| = (~j · ~B)/B2~B, so that~j ·~e= p′R2~e·∇φ . An alternative representation for~t follows from

~t =−~j −2(~B∇~B)×~B/B2+2~j||.

The approach to approximate and solve the stability problemon triangular grids includes:

• different finite elements for the longitudinaleφ and poloidal~epol projections of the un-

known vector~e= eφ ∇φ +~epol: standard node-based "hat"-functionsWi for eφ , and edge-

based Whitney elements~Wmn, ~Wmn=Wm∇Wn−Wn∇Wm for~epol;
• Lagrange multipliers introduced to approximate the constraint (~e· ~B) = 0 at each grid

node in the plasma region;
• solution of the saddle point matrix eigenvalue problem.
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A crucial point is the approximation of the constraint(~e·~B) = 0. In particular, introducing a

small regularizing term into the Lagrange multiplier formulation helps to get robust LU decom-

position of the saddle point matrices with standard sparse matrix reordering.

For toroidal harmonics~eneinφ the∇× operator writes:

∇×~e= einφ (∇en,φ ×∇φ + in∇φ ×~en,pol +∇×~en,pol).

For n 6= 0 the harmonic amplitude~en becomes complex and a complex matrix solver is

needed. In the MHD_NX code the direct solver from the PETSc package is used, which is

available both in real and complex versions. Visualizationof the complex solution requires a

choice of phase in toroidal angle. It is convenient to preserve a symmetry/anti-symmetry of the

real and imaginary parts of the solution eigenvector in caseof up-down symmetric equilibrium.

An easy way to provide such a normalization of a complex solution is to impose orthogonality

between the real and imaginary parts of the solution vector in the scalar product associated with

the kinetic energy functional. It gives the following condition on the complex normalization

constantc for a given vector of solutionx with the use of the scalar product(·, ·):

(cx+c∗x∗,cx−c∗x∗) = c2(x,x)− (c∗)2(x,x)∗ = 0, (c∗/c)2 = (x,x)/(x,x)∗ = eiφx.

Thenc= eiφc with φc =−φx/4+πk/2 is the required normalization constant.

2 Kink mode stability on unstructured grids

Analytic Solovev equilibria were used to run the standard series of the ideal MHD code

benchmarks [5]. Two kinds of grids were compared: isotropicunstructured grids, and trian-

gulated structured grids aligned to magnetic surfaces as used in the KINX code [6]. For the

fixed boundary mode the results ofn = 2 stability calculations are shown in Table 1. Due to

the absence of displacement projection along the equilibrium magnetic field in the MHD_NX

code, the comparative KINX runs were performed for the specific heat ratioΓ = 0. Note that

the MHD_NX convergence is much faster on aligned grid for theinternal mode localized near

the rational surfaceq= 1 inside plasma. The mode structure is shown in Fig.1. Here the color

contours represent the toroidal projection of the electricfield~e·∇φ/|∇φ | = |∇φ |~ξ ·∇ψ pro-

portional to the plasma displacement normal to magnetic surfaces. The streamlines are for the

displacement vector~ξ .

N MHD_NX unstructured N MHD_NX aligned KINX

10185 0.135 4097 0.2103 0.2241

40433 0.187 16385 0.2212 0.2258

Table 1. Normalized eigenvalues−q2
1ω2/ω2

A for fixed boundaryn = 2 mode. Solovev equilibrium

ε = 1/3, E = 2, the values of safety factor at the magnetic axis and the plasma boundary:q0 = 0.7,

q1 = 1.22;N is the number of grid nodes.
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Figure 1. Internaln = 2 mode structure. MHD_NX code on unstructured grids and harmonics of the

normal plasma displacement.

The convergence is even faster on unstructured grids for theexternaln= 1 kink mode (Table

2). However, the results depend on grid uniformity across the plasma-vacuum interface. It is a

general fact that the approximation in the MHD_NX code is quite sensitive to the grid irregu-

larities. This is to be certainly overcome in order to get advantages from the grid adaptation.

N MHD_NX unstructured N MHD_NX aligned KINX

5929 0.7400 8193 0.7248 0.7883

23865 0.7710 32769 0.7803 0.7930

Table 2. Normalized eigenvalues−q2
1ω2/ω2

A for free boundaryn= 1 mode. Solovev equilibriumε =

1/3, E = 2, q0 = 1.2, q1 = 2.09. The conducting wall radiusb/a= 2.
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Figure 2. Externaln = 1 mode structure in plasma. The grid in plasma and vacuum regions is also

shown in(R,Z) plane.

3 MHD stability with axisymmetric islands

The kink mode structure for an equilibrium with current reversal is presented in Fig.3. The

streamlines are for the poloidal projection of the displacement vector~ξ . The large squareness of

the cross-section provides the axisymmetricn= 0 stability with conducting wall at the plasma

boundary (fixed boundary condition) [3]. For sufficiently large negative current fixed boundary

n = 1 kink mode becomes unstable. It happens before but close to the destabilization of the

n=1 external mode for the core plasma due to proximity to the Kruskal-Shafranov current limit.

Profiles in the core (within the black line in Fig.3) are shownin Fig.4. Due to lowq0 = 0.21
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and presence of the resonant surfacesq = 1/n, n = 2,3,4, corresponding internal modes are

also unstable there. As noted above, the MHD_NX needs the aligned grids for accurate internal

mode stability calculation (Fig.4).
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Figure 3. Level lines of the equilibrium poloidal flux for thereversed current equilibrium (n= 0 mode

is stable with fixed boundary) and the structure of unstablen= 1 fixed boundary mode for sufficiently

large negative current in the core.
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Figure 4. Plasma profiles within the negative current core (black curve in Fig.3, left) and the structure

of unstablen= 3 fixed boundary mode computed on the grid aligned to magneticsurfaces.

4 Discussion

MHD stability calculations on adaptive unstructured gridsprovide a powerful tool for high

resolution stability analysis. For example, it would be useful for high-n edge localized kink-

ballooning modes associated with Type-I ELM trigger in divertor geometry. Development of

nonlinear MHD code on unstructured grids including finite resistivity, reconnections and 3D is-

lands is an attractive perspective. However, more studies are needed to improve the approxima-

tion on irregular grids and increase the accuracy on the grids not aligned to magnetic surfaces.
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