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The MHD_NO axisymmetric stability code [1, 2] has been edtghto kink mode stability
computations. The MHD_NX code computes the ideal MHD sitgbdlf plasma equilibrium
configurations with arbitrary topology of axisymmetric magjc surfaces, including doublets,
reversed current tokamak configurations with axisymmetagnetic islands (current holes and
AC operation [3, 4]) and multi-connected plasmas like twossated plasma columns (droplet)
surrounded by a vacuum region and a conducting wall. The aeds unstructured triangular
grids with a possibility of adaptation to the magnetic scefand sharp solution features.

The code verification for standard test cases is presenkedreBults of stability calculations
of unconventional tokamak equilibria against the ideal MidBdes with toroidal wave numbers
n=0 andn > 0 are discussed.

11deal MHD stability: the problem formulation for n>0

For the stability analysis the potential and kinetic enefigyctionals can be expressed in
terms of the electric field perturbatidh= i we, € = —g? x B (time dependence® is assumed
for the eigenvalue problem):
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combined with the requiremettg- B) = 0, whereB = Oy x O+ FOg is the equilibrium
magnetic field. The surrounding vacuum region (free bouy)dzan also be taken into account
(see [1]). For the force-free case the last term in the foneti (1) vanishes because for the
equilibrium current density the following representatiswvalid: j = j] + p/(R30¢p— f/B?B),
jj = (j-B)/B?B, so thatj- &= p'R%- O¢. An alternative representation férfollows from
f=—]—2(BOB) x B/B?+2j,.

The approach to approximate and solve the stability prolaermiangular grids includes:

o different finite elements for the longitudine}, and poloidalé,, projections of the un-
known vectolg = e, 1+ €y . standard node-based "hat"-functiakisfor ey, and edge-
based Whitney elementsinn, Winn = WmnOWh — W W, for &qo1;

e Lagrange multipliers introduced to approximate the cast(&- B) = 0 at each grid
node in the plasma region;

¢ solution of the saddle point matrix eigenvalue problem.
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A crucial point is the approximation of the constrajgt B) = 0. In particular, introducing a

small regularizing term into the Lagrange multiplier foriation helps to get robust LU decom-
position of the saddle point matrices with standard spaiseixreordering.
For toroidal harmonicg,e"? the Ox operator writes:

0 x &= €"(0en e x 0@+ing x &, poi + 0 X & pol)-

For n = 0 the harmonic amplitudé, becomes complex and a complex matrix solver is
needed. In the MHD_NX code the direct solver from the PETStkage is used, which is
available both in real and complex versions. Visualizatbthe complex solution requires a
choice of phase in toroidal angle. It is convenient to pnesarsymmetry/anti-symmetry of the
real and imaginary parts of the solution eigenvector in cdsg-down symmetric equilibrium.
An easy way to provide such a normalization of a complex gmius to impose orthogonality
between the real and imaginary parts of the solution venttire scalar product associated with
the kinetic energy functional. It gives the following condn on the complex normalization
constant for a given vector of solutior with the use of the scalar produgt-):

(CX+C*X*, X — C*X*) = 2 (X, X) — (€*)2(x,X)* =0, (c*/c)? = (x,X)/(x,X)* = &%.

Thenc = €% with @ = —@/4+ 1ik/2 is the required normalization constant.

2 Kink mode stability on unstructured grids

Analytic Solovev equilibria were used to run the standandeseof the ideal MHD code
benchmarks [5]. Two kinds of grids were compared: isotramstructured grids, and trian-
gulated structured grids aligned to magnetic surfaces @d usthe KINX code [6]. For the
fixed boundary mode the results wf= 2 stability calculations are shown in Table 1. Due to
the absence of displacement projection along the equihtbragnetic field in the MHD_NX
code, the comparative KINX runs were performed for the djmebeat ratiol = 0. Note that
the MHD_NX convergence is much faster on aligned grid forithernal mode localized near
the rational surfacg = 1 inside plasma. The mode structure is shown in Fig.1. Hexredtor
contours represent the toroidal projection of the eledieid €- Og/|Dg| = |Dcp|§ -0y pro-
portional to the plasma displacement normal to magnetiases. The streamlines are for the
displacement vecto?.

N MHD_NX unstructured N MHD_NX aligned| KINX
10185 0.135 4097 0.2103 0.2241
40433 0.187 16385 0.2212 0.2258

Table 1. Normalized eigenvaluesq%wz/wﬁ for fixed boundaryn = 2 mode. Solovev equilibrium
€ =1/3, E = 2, the values of safety factor at the magnetic axis and thegsboundarygy = 0.7,
g1 = 1.22; N is the number of grid nodes.
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KINX2000: Normal displacement (SFL harmonics) of n=2 mode 128x128
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Figure 1. Internah = 2 mode structure. MHD_NX code on unstructured grids and baics of the
normal plasma displacement.

The convergence is even faster on unstructured grids faxtegnaln = 1 kink mode (Table
2). However, the results depend on grid uniformity acrosspilasma-vacuum interface. It is a
general fact that the approximation in the MHD_NX code igg8ensitive to the grid irregu-
larities. This is to be certainly overcome in order to getadages from the grid adaptation.

N MHD_NX unstructured N MHD_NX aligned| KINX
5929 0.7400 8193 0.7248 0.7883
23865 0.7710 32769 0.7803 0.7930

Table 2. Normalized eigenvaluea:ﬁwz/wﬁ for free boundaryn = 1 mode. Solovev equilibriura =
1/3,E=2,q0=1.2,q; = 2.09. The conducting wall radiuy/a = 2.
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Figure 2. Externah = 1 mode structure in plasma. The grid in plasma and vacuunomeds also
shown in(R,Z) plane.

3 MHD stability with axisymmetric islands

The kink mode structure for an equilibrium with current nezg is presented in Fig.3. The
streamlines are for the poloidal projection of the disphaest vecto@. The large squareness of
the cross-section provides the axisymmetrie O stability with conducting wall at the plasma
boundary (fixed boundary condition) [3]. For sufficientlyga negative current fixed boundary
n =1 kink mode becomes unstable. It happens before but clodeetddstabilization of the
n=1 external mode for the core plasma due to proximity to theskal-Shafranov current limit.
Profiles in the core (within the black line in Fig.3) are shawrFig.4. Due to lowgy = 0.21
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and presence of the resonant surfages 1/n, n = 2, 3,4, corresponding internal modes are
also unstable there. As noted above, the MHD _NX needs theeigrids for accurate internal
mode stability calculation (Fig.4).
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Figure 3. Level lines of the equilibrium poloidal flux for theversed current equilibriunm& 0 mode
is stable with fixed boundary) and the structure of unstabiel fixed boundary mode for sufficiently

large negative current in the core.
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Figure 4. Plasma profiles within the negative current cotacfbcurve in Fig.3, left) and the structure
of unstablen = 3 fixed boundary mode computed on the grid aligned to mageetfaces.

4 Discussion

MHD stability calculations on adaptive unstructured gnuievide a powerful tool for high

resolution stability analysis. For example, it would befukér high-n edge localized kink-
ballooning modes associated with Type-lI ELM trigger in digve geometry. Development of
nonlinear MHD code on unstructured grids including finiteisévity, reconnections and 3D is-
lands is an attractive perspective. However, more studeseeded to improve the approxima-
tion on irregular grids and increase the accuracy on thesgrd aligned to magnetic surfaces.
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