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Introduction. The Reversed Field Pinch (RFP) configuration is characterized by the presence 

of different tearing modes, mostly in the m=0 and m=1 part of MHD spectrum. In the RFX-

mod experiment, at relatively low values of plasma current, several modes with similar 

amplitudes are present: a high level of stochasticity appears in the plasma core, with the 

consequence of flat density and temperature profiles, in a condition named Multiple Helicity 

(MH) state. Increasing the plasma current the system achieves the so called Quasi Single 

Helicity (QSH) state, where only one mode dominates the spectrum, while the energy of the 

other secondary modes is smaller. In RFX-mod the dominant mode is found to be the 

m=1/n=7 one. SHAx (Single Helical AXis) states are a special flavour of the QSH condition, 

achieved in RFX-mod for plasma current beyond 1 MA [1]. These states are considered as 

improved confinement RFP states because of the appearance of an ordered and spontaneous 

structure in the plasma core, that dominates on the typical chaos of MH condition: when the 

dominant mode exceeds a threshold amplitude, the X-point of its magnetic island is expelled 

and the original axi-symmetric axis is replaced by a helical magnetic axis, that coincides with 

the O-point of the magnetic island. 

We can think of a quantity A inside the plasma as composed of an axi-symmetric part and of a 

perturbation to it, usually Fourier decomposed: � −+=
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amplitudes are considered to be small compared to the axi-symmetric equilibrium magnetic 

field B0, so we treat them as perturbations superposed to B0. A complete reconstruction of the 

tearing modes eigenfunctions within the plasma volume has been done in [2], solving the 

Newcomb-like equation that arises from the force-free force balance equation. Toroidal 

geometry is well described by the non-orthogonal and curvilinear coordinate system (r, �, �), 

built as a flux coordinate system for the non-concentric and circular-cross-section magnetic 

surfaces of B0. Newcomb equation provides the harmonics of the perturbations �P
m,n and �T

m,n 

to the poloidal (�P) and toroidal (�T) flux functions, and a complete reconstruction of the 

magnetic field over the whole plasma volume arises from the canonical representation of the 

magnetic field: 

ϕψθψ ∇×∇−∇×∇= PTB .               (1) 
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SHAx states are modelled as pure Single Helicity (SH) states, their magnetic field being 

composed of the superposition of B0 and of the perturbed magnetic field that arises from the 

dominant �P
1,7 and �T

1,7 eigenfunctions, neglecting the effect of the residual secondary 

modes.  

With representation (1), valid for every divergence-free field in a toroidal device, magnetic 

field line equations have the same mathematical form as the canonical equation of motion 

produced by hamiltonians of one-and-a-half degree of freedom. The functions �P, �T, �, � can 

be identified with the canonical variables in hamiltonian context: � plays the role of the 

canonical time, �T of the momentum conjugate to �, and �P of the field line hamiltonian. The 

existence of magnetic flux surfaces is assured if there is a function � for which 0=∇⋅ ρB . In 

this case � will label the flux surfaces, and we can look for action-angle coordinates (also 

called flux coordinates) with � as 'radial' coordinate. The symplectic form (1), with flux 

coordinates, assures that �P(�) and �T(�) are flux functions that measure the poloidal and 

toroidal flux across flux surfaces �=const, �T(�) being the action coordinate. Choosing �T as 

the radial coordinate, it is manifest that in action-angle variables the hamiltonian 

)( TPP ψψψ ≡  is a function of the action alone. 

In our case we start from flux coordinates for the axi-symmetric 

field B0 [2]. Adding a generic perturbation, the circular r=const 

flux surfaces are deformed and it is not clear a priori if other 

flux surfaces exist and which may be the function � labelling 

them. In the case of a SH equilibrium, where the perturbation 

has helical symmetry, �P and �T are functions only of r and of 

the helical angle ϕθ nu −= , so it can be shown that conserved 

flux surfaces exist. A good flux function to label them is the 

helical flux, defined as TP nur ψψχ −=),( . It can be shown 

that 0=∇⋅ χB , thus the helical flux contour gives the shape of flux surfaces )(χΣ in SHAx 

states. An example can be seen in fig.1. The canonical form of the magnetic field can be 

written, using the angle u instead of � and the helical flux � instead of the poloidal flux �P, as: 

ϕχψ ∇×∇−∇×∇= uB T .           (2) 

The helical flux is therefore the hamiltonian for SH states and the helical angle u must 

substitute the poloidal one. We start from (2) to build a new coordinate system describing the 

SH equilibrium. 
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SHEq code. A reconstruction of the equilibrium configuration has been implemented in a 

code named SHEq (Single Helical Axis), where SHAx states are modelled as pure SH states. 

The coordinate systems constructed on the circular-cross-section magnetic surfaces of the axi-

symmetric field B0 are not appropriate to describe helical flux surfaces, due to the fact that 

there are points not univocally identified by the poloidal angle �, as we can see when looking 

at the inner beam-shaped surfaces in fig.1. The problem of determining a new angle defined 

with respect to the helical axis was solved introducing a coordinate system based on the 

hamiltonian description of the magnetic field. Choosing �T as the radial coordinate, the 

hamiltonian � in equation (2) is function of ),( uTψ , so ),,( ϕψ uT  are not action-angle 

coordinates for SH states. Following the standard procedure of hamiltonian mechanics, we 

can derive action-angle coordinates ),( hh uψ , associated to ),( uTψ , by a canonical coordinate 

transformation. The function ),( uTψχ may be locally inverted to yield 0),( ψχψ ≡uT . The 

action )(χψ h  is nothing but the curvilinear integral of the flux �0, that it turns out to be the 

toroidal flux inside the flux surface )(χΣ : 
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ψ duuh . 

Inverting the relation )(χψψ hh ≡ , ),(0 uχψ can be written as a function of the action and of 

the angle u, namely ),( uha ψψ . The definition of the generating functions S(�h,u) for the 

canonical transformation from ( uT ,ψ ) to ( uh u,ψ ), provides us the angle uh conjugated to the 

action. We know that  �=
u

ha duuS
0

'),(ψψ  and '
0
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. In the action-angle 

variable coordinates, the hamiltonian is still the helical flux �=�0(�h), and we choose it as the 

'radial' coordinate in the (�, uh, �) coordinate system. In the cylindrical symmetry limit, where 

the helical deformation vanishes, �h= �T and uh=u. 

Results. Flux surface averages are computed In SHEq with the usual 

formula:
��
��=

gddu

Agddu
A

h

h

ϕ

ϕ
, where g  is the Jacobian of the coordinate system. 

As an example, the surface-averaged ohmic input power has been computed and plugged into 

the averaged power balance equation in steady state and for fluid at rest: 2JQ η=⋅∇ . The 

resistivity � is calculated from the Spitzer formula, assuming a flat Zeff profile with a value 

adjusted so as to match the total input power, and the current density J is calculated from the 
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temperature, measured by the Thomson scattering system, is 

a good flux function, so Te=Te(�) [1], and we write the heat 

flow vector Q as eTnQ ∇−= κ , with uniform density profile 

for n (consistent with measurements, at least up to r/a=0.8). 

This yields an evaluation of the thermal conductivity � 

'

'
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using the formula for the average of a divergence. In the 

final formula for the thermal conductivity �, V'=dV/d� is the 

specific volume, and χχ ∇⋅∇=11g is the first metric tensor 

element. A value around 10 m2/s (fig.2 bottom) is found for 

� in the region of the internal transport barrier that 

characterized SHAx states, clearly observable in the steep 

gradient of the temperature profile (fig.2 up). Figures are 

plotted against �h, the normalized helical flux square root. 

A large plasma current flows in RFP configurations, and we checked a posteriori if SH 

equilibria verify the ohmic constraint that arises from the parallel Ohm's law averaged on flux 

surfaces. The two sides of the ohmic constraint equation BJB
Vt ⋅= η
π

ϕ

2
 �� not coincide, 

suggesting that the Ohm's law should be includeed in the equilibrium calculation, whereas 

hitherto �-	0 model is assumed for the zeroth-order parallel current density profile. It is worth 

noting that, due to the presence of a still finite amplitude of the secondary modes in the RFX-

mod SHAx states, the discrepancy found in the Ohmic 

constraint could be explained by a residual dynamo term.  

We can also use the action-angle variable coordinate system to 

compute the safety factor q, following its simple definition in 

flux coordinates: 
χ

ψϕ ϕ

d
d

B
B

du
d

q h
u

h
h h

=== . Its relation with the 

q defined as the ratio between toroidal and poloidal flux is q=(
h+n)-1: the resulting q-profile 

is almost flat in the inner bean-shaped flux surfaces region, with a maximum in 

correspondence of the internal transport barrier (fig.3).                   _____________References 
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