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Introduction. The Reversed Field Pinch (RFP) configuration is characterized by the presence
of different tearing modes, mostly in the m=0 and m=1 part of MHD spectrum. In the RFX-
mod experiment, at relatively low values of plasma current, several modes with similar
amplitudes are present: a high level of stochasticity appears in the plasma core, with the
consequence of flat density and temperature profiles, in a condition named Multiple Helicity
(MH) state. Increasing the plasma current the system achieves the so called Quasi Single
Helicity (QSH) state, where only one mode dominates the spectrum, while the energy of the
other secondary modes is smaller. In RFX-mod the dominant mode is found to be the
m=1/n=7 one. SHAx (Single Helical AXis) states are a special flavour of the QSH condition,
achieved in RFX-mod for plasma current beyond 1 MA [1]. These states are considered as
improved confinement RFP states because of the appearance of an ordered and spontaneous
structure in the plasma core, that dominates on the typical chaos of MH condition: when the
dominant mode exceeds a threshold amplitude, the X-point of its magnetic island is expelled
and the original axi-symmetric axis is replaced by a helical magnetic axis, that coincides with
the O-point of the magnetic island.

We can think of a quantity A inside the plasma as composed of an axi-symmetric part and of a

perturbation to it, usually Fourier decomposed: A=A, + Y a™"(r)e’"*"? . Tearing mode

amplitudes are considered to be small compared to the axi-symmetric equilibrium magnetic
field By, so we treat them as perturbations superposed to By. A complete reconstruction of the
tearing modes eigenfunctions within the plasma volume has been done in [2], solving the
Newcomb-like equation that arises from the force-free force balance equation. Toroidal
geometry is well described by the non-orthogonal and curvilinear coordinate system (r, 6, ¢),
built as a flux coordinate system for the non-concentric and circular-cross-section magnetic
surfaces of By. Newcomb equation provides the harmonics of the perturbations yp™" and y7™"
to the poloidal (wp) and toroidal (w7) flux functions, and a complete reconstruction of the
magnetic field over the whole plasma volume arises from the canonical representation of the
magnetic field:

B=Vy,xV-Vy,xVe. (1)
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SHAX states are modelled as pure Single Helicity (SH) states, their magnetic field being
composed of the superposition of By and of the perturbed magnetic field that arises from the
dominant y/p” and 1//71’7 eigenfunctions, neglecting the effect of the residual secondary
modes.

With representation (1), valid for every divergence-free field in a toroidal device, magnetic
field line equations have the same mathematical form as the canonical equation of motion
produced by hamiltonians of one-and-a-half degree of freedom. The functions wp, wr, 6, ¢ can
be identified with the canonical variables in hamiltonian context: ¢ plays the role of the
canonical time, w7 of the momentum conjugate to 6, and yp of the field line hamiltonian. The
existence of magnetic flux surfaces is assured if there is a function p for whichB-Vp =0. In
this case p will label the flux surfaces, and we can look for action-angle coordinates (also
called flux coordinates) with p as 'radial' coordinate. The symplectic form (1), with flux
coordinates, assures that wp(p) and yr(p) are flux functions that measure the poloidal and
toroidal flux across flux surfaces p=const, wr(p) being the action coordinate. Choosing wr as
the radial coordinate, it is manifest that in action-angle variables the hamiltonian

¥, =V, (y,) is a function of the action alone.

SHEgQ - 24937 t =224 ms In our case we start from flux coordinates for the axi-symmetric

field By [2]. Adding a generic perturbation, the circular r=const
flux surfaces are deformed and it is not clear a priori if other
flux surfaces exist and which may be the function p labelling
them. In the case of a SH equilibrium, where the perturbation

has helical symmetry, yp and w7 are functions only of r and of

the helical angle u =6 —ng, so it can be shown that conserved
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Figure 1: Flux surfaces for SH flux surfaces exist. A good flux function to label them is the

states, X(}) .

helical flux, defined as y(r,u)=y, —ny,. It can be shown

that B-Vy =0, thus the helical flux contour gives the shape of flux surfacesX(y)in SHAx

states. An example can be seen in fig.l. The canonical form of the magnetic field can be

written, using the angle u instead of € and the helical flux y instead of the poloidal flux yp, as:
B=Vy, xVu-VyxVe. 2)

The helical flux is therefore the hamiltonian for SH states and the helical angle u must

substitute the poloidal one. We start from (2) to build a new coordinate system describing the

SH equilibrium.
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SHEq code. A reconstruction of the equilibrium configuration has been implemented in a
code named SHEq (Single Helical Axis), where SHAX states are modelled as pure SH states.
The coordinate systems constructed on the circular-cross-section magnetic surfaces of the axi-
symmetric field By are not appropriate to describe helical flux surfaces, due to the fact that
there are points not univocally identified by the poloidal angle &, as we can see when looking
at the inner beam-shaped surfaces in fig./. The problem of determining a new angle defined
with respect to the helical axis was solved introducing a coordinate system based on the
hamiltonian description of the magnetic field. Choosing w7 as the radial coordinate, the
hamiltonian y in equation (2) is function of (y,,u), so (¥,,u,p) are not action-angle
coordinates for SH states. Following the standard procedure of hamiltonian mechanics, we

can derive action-angle coordinates (¥, ,u, ), associated to(y,,u), by a canonical coordinate
transformation. The function y(y,,u)may be locally inverted to yieldy, (y,u)=y,. The
action ¥, () is nothing but the curvilinear integral of the flux vy, that it turns out to be the

toroidal flux inside the flux surface X(y):

1 |l
vi = P

(%)

Inverting the relationy, =y, (¥), ¥,(x.u)can be written as a function of the action and of
the angle u, namelyy (y,,u). The definition of the generating functions S(yp,u) for the

canonical transformation from (y,,u ) to (¥, ,u, ), provides us the angle u; conjugated to the

action. We know that S :I;//a (y,,u)du' and u, :a_S al//a
0 oy, oV,

—=du'. In the action-angle
variable coordinates, the hamiltonian is still the helical flux y=yo(yn), and we choose it as the
'radial' coordinate in the (Y, up, @) coordinate system. In the cylindrical symmetry limit, where
the helical deformation vanishes, y,= yrand u,=u.

Results. Flux surface averages are computed In SHEq with the usual

”du do[gA
”du doJg

As an example, the surface-averaged ohmic input power has been computed and plugged into

formula , where /g is the Jacobian of the coordinate system.

the averaged power balance equation in steady state and for fluid at rest: (V . Q> = <77J 2>. The

resistivity # is calculated from the Spitzer formula, assuming a flat Z. profile with a value

adjusted so as to match the total input power, and the current density J is calculated from the
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Stikq- 22182 t=49ms temperature, measured by the Thomson scattering system, is
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T a good flux function, so 7,=T,(y) [1], and we write the heat
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g specific volume, andg' =Vy-Vyis the first metric tensor
X element. A value around 10 m%/s (fig.2 bottom) is found for
00020 08080 G in the region of the internal transport barrier that
Figure 2. Up: electron ) )
temperature profile. Bottom: characterized SHAx states, clearly observable in the steep
thermal conductivity profile. gradient of the temperature profile (fig.2 up). Figures are

plotted against pj,, the normalized helical flux square root.
A large plasma current flows in RFP configurations, and we checked a posteriori if SH

equilibria verify the ohmic constraint that arises from the parallel Ohm's law averaged on flux
V

surfaces. The two sides of the ohmic constraint equation 2—’<B¢’> = 77<J . B> do not coincide,
T

suggesting that the Ohm's law should be includeed in the equilibrium calculation, whereas
hitherto a-®y model is assumed for the zeroth-order parallel current density profile. It is worth

noting that, due to the presence of a still finite amplitude of the secondary modes in the RFX-
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020 mod SHAXx states, the discrepancy found in the Ohmic
Figure 3: gq-profile

015) 1 constraint could be explained by a residual dynamo term.

010 We can also use the action-angle variable coordinate system to

005 compute the safety factor g, following its simple definition in
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q defined as the ratio between toroidal and poloidal flux is g=(1,+n )’ the resulting g-profile
is almost flat in the inner bean-shaped flux surfaces region, with a maximum in

correspondence of the internal transport barrier (fig.3). References
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