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One of the important issues in realizing self-sustained DT burning plasma is that how
well fast ions such as alpha particles will be confined. This issue is also important in a
reactor-relevant plasma such as ITER [1]. However, enhancement of transport of alpha
particles due to fast-ion-driven magnetohydrodynamic (MHD) instabilities such as Alfvén
eigenmodes (AEs) [2] and energetic-particle-continuum-modes (EPMs) [3] excited by
partially slow-downed alpha particle is predicted. Significant loss of fast ions should be
avoided because it might damage the plasma facing components. Hence, better understanding
of loss process of fast ion due to fast-ion-driven MHD instabilities is required to find a
method to control and/or reduce fast-ion losses. Anomalous transport of co-going beam ions
due to toroidal Alfvén eigenmodes (TAEs) has been so far recognized in the Large Helical
Device (LHD) by an E//B neutral particle analyzer with a tangential line of sight [4]. Recently,
TAE-induced beam ion loss were detected by means of a scintillator-based lost-fast ion probe
(SLIP) installed on LHD [5]. The paper is devoted to the study of characteristics of energetic
ion losses induced by TAE in the various magnetic configurations where neoclassical
transport of fast ions due to magnetic field ripple are different. In addition to losses due to
TAE, we pay attention the combined effects of TAE and low-frequency (/<20 kHz) MHD
modes on fast-ion losses.

LHD is equipped with three negative-ion-source based neutral beam (NB) injectors, of
which injection energies are up to 190 keV. In this experiment, one of three tangentially
injects NBs in the counter-direction, whereas the others tangentially inject NBs in the
co-direction. The SLIP works as a magnetic spectrometer, providing information on the
energy E and pitch angles y=arccos(v,/v) of escaping fast ions simultaneously as a function of

time, where v and v, indicate the velocity and the velocity parallel to the magnetic field,
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respectively. The SLIP installed at the outboard side of LHD is designed to detect co-going
passing or transitional fast ions, pitch angle and gyroradius of which are 20—70 degrees and
2-24 cm, respectively, at the detector location [6]. Luminous image produced on the
scintillator screen is monitored with a 4x4-photomultiplier tube (PMT) array and a CMOS
camera, simultaneously. Relative sensitivity of PMTs is calibrated with an
electro-luminescence sheet emitting a blue-green light uniformly within 10 % error. The
energetic ion loss study was carried out in three typical magnetic configurations, that is, the
“inward-shifted configuration” of R,x =3.6 m (R,x: magnetic axis position in the vacuum field),
“standard configuration” of R,x=3.75 m, and “outward-shifted configuration” of R,x=3.9 m. In
this study, the magnetic field strength was varied from -0.6 T to -1.0 T, where the minus sign
in B; corresponds to that the toroidal field is directed to be in the counter clockwise from the
top view of the torus. In the experimental conditions, the electron temperature at the centre
was in the range of ~ 0.8 keV to 1.0 keV, and line-averaged electron density was adjusted in
the range of (1.0~2.5)x10"" m™. In all shots of this experiment, TAEs were excited by beam
ions. The poloidal/toroidal mode numbers m/n of the observed TAEs were identified to be
m~1/n=1, mode numbers of which were derived from toroidal/poloidal magnetic probe (MP)
arrays. This TAE is a type of odd parity mode, and has the peak of the eigenfunction at the
normalized radial position #/a ~0.6.

In the inward shifted configuration (R,=3.6 m), the sharp increase in /g p correlated
with TAE burst was observed in E/y ~ 50~190 keV/~40° region. In Fig.1, the increment of
beam-ion loss flux A/gp normalized by the energetic ion content generated by NBI (Png 75 )
is plotted as a function of amplitude of TAE fluctuation brag normalized by B, where Pxg and
1 indicate absorbed power of co-injected NB and slowing down time of fast ion by electron,
respectively. In this plot, the amplitude of TAE magnetic fluctuation is evaluated at the MP

position. A/gryp is evaluated with
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B=-0.6T, but dramatically decreases at increased B;of -0.75T. Enhanced beam ion loss due to
TAEs at lower B; is thought that TAEs would easily push beam ions with larger orbit
deviation from the flux surfaces into loss cone orbits. The relation of AZ%p/PnaTs <(brar)
suggests the loss process is diffusive type, as pointed out in Ref.7. On the other hand,
TAE-induced beam ion losses in the outward-shifted configuration (R,x=3.9m) are also clearly
observed on E/y ~40~170 keV/~25°, but even at higher B; of -1.0 T, as shown in Fig.2. This
result will be related to the fact that the deviation of beam ion orbits from flux surfaces is
much more significant, compared with that in R,x=3.6 m configuration. Moreover, the loss
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In LHD, resistive interchange modes (RICs) are often destabilized, typically in the
inward shifted configuration (R,x=3.6m). Actually, energetic ion losses induced by RICs are
clearly observed in addition to the losses by TAEs [5]. However, no definitive experimental
evidence of combine effect of TAE and low-frequency mode such as RIC had yet been
observed. In the standard configuration (R,=3.75m), a peculiar phenomenon on energetic ion
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TAE-induced loss is clearly observed at E/y ~ 30~110 keV/ ~25° at B; =-0.6T and -0.75T. In
the shot, low frequency magnetic oscillations or perturbations around ~1 kHz are induced by
each TAE burst, as shown in Fig.4. The mode structure is m=1 and »=0. This is not the
geodesic acoustic mode (GAM), because the GAM frequency is about 13 kHz at the TAE
peak location (#/a~0.6). The m=1/n=0 magnetic perturbations maybe related to a sudden
horizontal shift caused by sudden drop of beam and bulk plasma pressures. The magnetic
perturbations may result in a
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subject for further study.
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