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1. Introduction. Recently [1] the effect of ferromagnetic structures on the Resistive Wall
Mode (RWM) growth rates have been studied analytically and verified numerically for the JET
tokamak using the CREATE L code [2]. It was found, consistent with previous results
analytically obtained for somewhat different arrangements [3], that with ferromagnetic
materials the growth rate y is always greater than that without them. In the case considered [1]
the growth rate increase Ay did not depend on the plasma configuration, but only on the
poloidal mode number and on the parameters of the ferromagnetic structures behind the first
wall. Independence of Ay on plasma pressure and current would substantially simplify the
feedback plasma stabilization in ITER where the presence of ferromagnetic steel is envisaged
in test blanket modules [4]. Acknowledging the importance of this result in both academic and
practical respects, we give here a derivation of the dispersion relation, alternative to that in [1].
2. Model. Analytical model is based on cylindrical approximation, which allows the mode
separation. We consider the plasma surrounded by two walls, with the wall facing the plasma as
simply resistive and thin both geometrically and magnetically, while the second nonconductive
wall of larger radius is treated as thick, ferromagnetic, but nonconductive. The key element of

our approach is incorporation of the magnetic permeability x into the boundary conditions

<n-b>=0 and <n><b/,u>=0, (1)
which must be satisfied (with different x ) at four wall-vacuum interfaces. Here b is the
magnetic perturbation, the brackets <> mean the jump across the surface. In the vacuum and
in the first wall u =, =47 %107 H m™’.

Outside the plasma, except for the first wall, the perturbation b satisfies the equations
V-b=0, Vx(b/u)=0 (2)
and decreases to zero at infinity. Equations (2) are complemented by the equation for b in the

first wall, which is, for constant conductivity o and &= u/ 1, =1,

1,090/t = V2D 3)
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We solve it in the thin-shell approximation. Finally, we have to match the outer solution for b
to the inner one (in the plasma) at the plasma boundary. This gives the dispersion relation.

3. Solution. First, we solve (2) and (3) in the space behind the first wall. With b=Vy xe, and

v =2 wn(r)exp(img—ing), 4)
where (r,0,z) are the cylindrical coordinates and ¢ =27z/L mimics the toroidal angle, we
have from (2) (assuming nr/(mR) <<1 with positive mand n):

wo=0r"+hrm, (%)

The time-dependent constants (amplitudes) g and h are different pairs in different regions.

For each mode they have to be found by matching the solutions under the boundary conditions

_ Ldyy ) _
<l//m>—0 and <,u or >—O (6)

at the wall surfaces, as implied by (1). Let us proceed starting from the outmost surface.

The vacuum region outside the second wall (r >t,, +d,,). With g =0 there we have

W) _ . Rl
Vo

up to the outer surface of this wall.

The region inside the second wall (r, <r<r,, +d,,). Here (5) is valid because we

assume this wall nonconducting and z = const. We can put it in the form

Wn=Ay"+Cy™" ®)
with y=r/(r,, +d,,). Then
i ’ m _ -m 2m
rya() _yva(y) _ o Aym Cy_m —m® L ©)
W W Ay" +Cy ay™+1

where a= A/C. According to (6) and (7), at the outer side of the wall (y =1) this must be

W) @=L g (10)
1748 a+l
This gives us
g=—t1 (11)
H+1

At the inner side of the second wall, where y =r,, /(r,, +d,,), equation (9) yields

rl//r’n(r):magw—l (12)
Vo ag, +1’
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where

2m
I"2
& = —w2 | 13
" [rwz—i_dwz] ( )

With « given by (11) the relation (12) can be rewritten as
Vol - _pmery). (14)

where

a1 1-g,

anz—m — — — .
a p+l-g,(a-1)

(15)

This is Ty introduced by Eq. (53) in [3]. Note that in order to incorporate the permeability

effects we have to consider the second wall with proper account of its finite thickness [3].

The vacuum region between the two walls (1, <T <T,, ). First, according to (6) and (14),

we have the next boundary condition for the vacuum solution at r =¥, :

W _(marey. (16)
Vi

Calculations for this region are similar to those for the second wall, but /=1 now. Here,

for convenience of derivations, we present (5) in the form

w,=Eu"+Du™", (17)
where U=r/r,,. Then, similar to (9),
' ' 2m
AT s
Vi Vi KU +1

with k= E/D. Equating this to (16) at u=1 (at the inner side of the second wall), we obtain

210N S Y (19)
Vo Kk+1
which gives us, with [, defined by (15),
FC
K=- . 20
2m+T; 20)

At the position of the first wall (u =r,,/r,,) we have from (18):

2m
ryn(r) :mK_Xz
Vo K+%"

€2y

where X, =t,,/T,,. This is equivalent to
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ol _ iy A (22)
W
at u=r,,/r,,, where
Ar! = 2MK (23)
K+ X,
or, with account of (20),
AT =-2m Ly (24)

o OC™ —1)+ 2m¢"

Equation for the first wall. According to [5], where a geometrically similar (but different

in terms of 4 and o) configuration with two walls has been analysed, at the outer side of the

first wall we have, assuming v/, oc exp(s#t),

ryn(n) _ M+ + 7z, 25)

m

where 7, is the magnetic field diffusion time calculated in the thin-wall approximation [3, 5].

This is a result of the matching the outer solution for b to the inner one at the plasma boundary,
and I is a quantity determined by ry/ (r)/y,, inthe plasma, as explained in [3]. This T} is
a parameter representing the plasma in the problem.

By definition, the quantity (25) must the same as given by (22) obtained by solving the

problem “from the other side”. Equating them we come to the dispersion relation

yr, =Tyt + AL, (26)
which is an independent and complete proof of the main analytical result in [1]. This shows that
at f1#1 the growth rate increases by AT;' which does not depend on the plasma configuration,

but only on the poloidal mode number and on properties of the ferromagnetic shell. A realistic
example is presented in [1].
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