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1. Introduction. Recently [1] the effect of ferromagnetic structures on the Resistive Wall 

Mode (RWM) growth rates have been studied analytically and verified numerically for the JET 

tokamak using the CREATE_L code [2]. It was found, consistent with previous results 

analytically obtained for somewhat different arrangements [3], that with ferromagnetic 

materials the growth rate   is always greater than that without them. In the case considered [1] 

the growth rate increase   did not depend on the plasma configuration, but only on the 

poloidal mode number and on the parameters of the ferromagnetic structures behind the first 

wall. Independence of   on plasma pressure and current would substantially simplify the 

feedback plasma stabilization in ITER where the presence of ferromagnetic steel is envisaged 

in test blanket modules [4]. Acknowledging the importance of this result in both academic and 

practical respects, we give here a derivation of the dispersion relation, alternative to that in [1]. 

2. Model. Analytical model is based on cylindrical approximation, which allows the mode 

separation. We consider the plasma surrounded by two walls, with the wall facing the plasma as 

simply resistive and thin both geometrically and magnetically, while the second nonconductive 

wall of larger radius is treated as thick, ferromagnetic, but nonconductive. The key element of 

our approach is incorporation of the magnetic permeability   into the boundary conditions 

0bn  and 0/  bn ,    (1) 

which must be satisfied (with different  ) at four wall-vacuum interfaces. Here b  is the 

magnetic perturbation, the brackets ...  mean the jump across the surface. In the vacuum and 

in the first wall 
7

0 104    H m
-1

. 

 Outside the plasma, except for the first wall, the perturbation b  satisfies the equations  

0 b ,       0)/(  b      (2) 

and decreases to zero at infinity. Equations (2) are complemented by the equation for b  in the 

first wall, which is, for constant conductivity   and 1/ˆ
0   , 

bb 2

0 /  t .     (3) 
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We solve it in the thin-shell approximation. Finally, we have to match the outer solution for b  

to the inner one (in the plasma) at the plasma boundary. This gives the dispersion relation. 

3. Solution. First, we solve (2) and (3) in the space behind the first wall. With 
zeb    and 

  )exp(),(  inimtrm ,    (4) 

where ),,( zr   are the cylindrical coordinates and Lz /2   mimics the toroidal angle, we 

have from (2) (assuming 1)/( mRnr  with positive m and n ): 

mm

m hrgr  .      (5) 

The time-dependent constants (amplitudes) g  and h  are different pairs in different regions. 

For each mode they have to be found by matching the solutions under the boundary conditions  

0m    and   0
1


dr

d m


    (6) 

at the wall surfaces, as implied by (1). Let us proceed starting from the outmost surface. 

 The vacuum region outside the second wall ( 22 ww drr  ). With 0g  there we have 

m
rr

m

m 




 )(
,     (7) 

up to the outer surface of this wall. 

 The region inside the second wall ( 222 www drrr  ). Here (5) is valid because we 

assume this wall nonconducting and const̂ . We can put it in the form 

mm

m CyAy        (8) 

with )/( 22 ww drry  . Then 
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
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






,   (9) 

where CA/ . According to (6) and (7), at the outer side of the wall ( 1y ) this must be 









ˆ

1

1)(
mm

rr

m

m 






.     (10) 

This gives us 

1ˆ

1ˆ








 .      (11) 

 At the inner side of the second wall, where )/( 222 www drry  , equation (9) yields 

1

1)(








w

w

m

m m
rr








,     (12) 
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where 

m

ww

w
w

dr

r
2

22

2











 .     (13) 

With   given by (11) the relation (12) can be rewritten as 

)(ˆ
)( c

m

m

m m
rr








,    (14) 

where 

)1ˆ(1ˆ

1

ˆ

1ˆ 2














w

wc

m m .    (15) 

This is c

m  introduced by Eq. (53) in [3]. Note that in order to incorporate the permeability 

effects we have to consider the second wall with proper account of its finite thickness [3]. 

 The vacuum region between the two walls ( 21 ww rrr  ). First, according to (6) and (14), 

we have the next boundary condition for the vacuum solution at 2wrr  : 

)(
)( c

m

m

m m
rr







.     (16) 

 Calculations for this region are similar to those for the second wall, but 1ˆ   now. Here, 

for convenience of derivations, we present (5) in the form 

mm

m DuEu  ,     (17) 

where 2/ wrru  . Then, similar to (9), 
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
    (18) 

with DE / . Equating this to (16) at 1u  (at the inner side of the second wall), we obtain  

)(
1

1)( c

m

m

m mm
rr
















,    (19) 

which gives us, with 
c

m  defined by (15), 

c

m

c

m

m 




2
 .     (20) 

 At the position of the first wall ( 21 / ww rru  ) we have from (18): 

m

m

m

m
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where 122 / ww rrx  . This is equivalent to 
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m
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     (22) 

at 21 / ww rru  , where 

m
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     (23) 

or, with account of (20), 

mmc

m
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2




 .    (24) 

 Equation for the first wall. According to [5], where a geometrically similar (but different 

in terms of ̂  and  ) configuration with two walls has been analysed, at the outer side of the 

first wall we have, assuming )exp( tm   , 

w

w

m

m

m m
rr








)(

)( 1
,     (25) 

where w  is the magnetic field diffusion time calculated in the thin-wall approximation [3, 5]. 

This is a result of the matching the outer solution for b  to the inner one at the plasma boundary, 

and 1w

m  is a quantity determined by mm rr  /)(  in the plasma, as explained in [3]. This 1w

m  is 

a parameter representing the plasma in the problem. 

 By definition, the quantity (25) must the same as given by (22) obtained by solving the 

problem “from the other side”. Equating them we come to the dispersion relation 

f

m

w

mw  1 ,     (26) 

which is an independent and complete proof of the main analytical result in [1]. This shows that 

at 1ˆ   the growth rate increases by 
f

m  which does not depend on the plasma configuration, 

but only on the poloidal mode number and on properties of the ferromagnetic shell. A realistic 

example is presented in [1]. 
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