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Introduction. It is well established experimentally that the strong toroidal rotation that can be
achieved in modern, NBI heated tokamaks (especially in spherical tokamaks) has a favourable
effect on the global stability of the plasma, including also modified sawtooth behaviour and
internal kink stabilisation [1]. In order to improve the understanding of possible stabilising
mechanisms, the present work investigates toroidal flow effects on the ideal m = n =1 internal
kink mode in rotating tokamak plasmas both analytically and numerically. The work builds on
and extends previous analytical [2] and numerical [3] MHD studies of this instability in
rotating plasmas, and by the combination of numerical computation and analytical theory we
can identify the properties of toroidal flows that are mainly influencing this instability [4]. In
the analytical part, we use a plasma model parametrised such that the centrifugal terms in the
plasma equilibrium can be traced through the stability analysis and identified in the final
growth rate. The numerical part is based partly on the stability code MISHKA-F [3], and
partly on the code CASTOR-FLOW [5] which, in contrast to MISHKA-F, includes the
centrifugal effects from the rotation in the plasma equilibrium.

Analytical equilibrium and growth rate. We express the equilibrium profiles of the pressure
p, density p and the poloidal beta value f, of the plasma in the form

p(r.0) _ p(r,0) _ exp{alpﬂz(Rz R )} (1)
Po(r)  py(r) 2p ’

2,UoRozq2 (2 d 2 |
e L R (1b)

respectively. Here, R and By denote the major radius and the toroidal magnetic field of the
plasma (Ro denotes the major radius of the plasma centre), Q the rotation frequency and
M= (pQZRj /2p)”2 the sonic Mach number. With the parameters o1 = 0, = 1 we get a self-
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consistent equilibrium, whereas for o1 = 0 the centrifugally induced variation of the density
and pressure on the flux surfaces r = const is neglected. Similarly, the part of the Shafranov
shift that is caused by the centrifugal force is neglected when o, = 0.

From the large aspect ratio analysis in [4], the growth rate of the m = n = 1 internal kink
mode in flowing plasmas is given by y = (7/5 — wéAMz)llz where
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Fp = po(r,)/ p,(0), T = 5/3 is the adiabatic index, w} = B? /(,uopo ) the Alfvén frequency,

=r,q'(r,) the magnetic shear at the radius r; where g = 1, and wZ,,,, is the frequency of the
geode3|c acoustic mode (GAM) induced by the rotation [6]. Furthermore, oW = é\/VBussac
+6WRotl +éWR0t2 where é\NBumc Is the usual, normalised Bussac potential energy [7] of the
internal kink mode in a static plasma, whereas éV\A/Rotl and é\/\A/R0t2 depend on both the rotation
profile and the density profile inside r = r;. For the profiles Q( )= Q(O)( r? /(géRz)) and
po(r) = po(0)L—r? /(£2R?)), the expressions for Wi, and dW,,, are given by [2, 4]
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where Q = Q(0)/ w,(0) (denoted by V,/V, in the figures below).
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Figure 1. Growth rate vs rotation velocity at the axis calculated for a non-selfconsistent equilibrium in (a) (o1 =
o, = 0) and for a selfconsistent equilibrium in (b) (61 = o, = 1). The dashed curves show the analytical
predictions and the symbols the numerical results obtained with the two MHD codes indicated. The plasma
parameters in both figures are & = 0.1, go = 0.938, ri/a = 0.3, 4, = 0.3 and 4, = 0.66 %.

Analytical and numerical results. Figure 1 shows the growth rate of the n = 1 mode in a
flowing plasma as a function of the rotation velocity at the axis (normalised with the Alfvén
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velocity), calculated both analytically and numerically for different combinations of rotation
and density profiles, using an inconsistent equilibrium in Fig. 1a, and a consistent equilibrium
in Fig. 1b. The parabolic profiles in the figures correspond to o = &, = &2 = a/Rg = 0.1 (a is the
plasma minor radius) whereas &, = &, = o for the flat profiles. Other parameters in the figures
are parabolic profiles of q and po, with o = 0.938, ri/a = 0.3, 4, = 0.3 and £ = 0.66 %. It is
seen that the profiles of density and flow velocity play a crucial role for the rotation-
dependence of the growth rate in the inconsistent case. This profile-dependence comes from
é\/\A/Rotl + é\/\A/R0t2 together with the fact that the (stabilising) GAM frequency in Eq. (2b)
vanishes when o1 = 0. With also o, = 0 in Eq. (3) it is seen that, with S, < 0.5, peaking of the
rotation profile is stabilising whereas peaking of the density profile is destabilising (for all /)
in the inconsistent model. In the consistent case o1 = o> = 1, on the other hand, the profile
dependence (in this case from é\/\?Rm only) becomes much weaker due to a strong effect of the
finite frequency @, in Eg. (2b), leading to stabilisation already for V, /V, ~ 0.004-0.005
and, since Z,,, depends on the rotation at g = 1 only, with relatively little difference
between the different profiles.

With decreasing aspect ratio, the relative importance of g, , in comparison with éV\A/ROtl
decreases [4], which leads, for realistic aspect ratios (& ~ 0.2-0.3 and larger), to a significant
profile dependence also in the consistent case. This is illustrated schematically in Fig. 2a,
which shows the critical rotation required for stabilisation vs &, calculated from the analytical
theory for a consistent equilibrium with the same parameters as in Fig. 1b.
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Figure 2. a) Critical rotation velocity required for stabilisation of the kink mode vs the inverse aspect ratio &,
shown for four combinations of the profiles of density and rotation for a consistent equilibrium with the
parameters indicated. b) Growth rate vs rotation velocity at the axis for four different combinations of profiles
in a plasma with a large value of Ag. The flow is treated consistently. The dashed curves show the analytical
predictions and the symbols the numerical results obtained with CASTOR-FLOW.

Note that, in contrast to the situation in Fig. 1a, the mode is, for a sufficiently large rotation
velocity, stabilised for all profile combinations in Fig. 2a due to the effect of the finite GAM
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frequency in the consistent case. Additional examples of profile effects and flow stabilisation,
including also realistic MAST equilibria, are given in [4].

With a decreasing qo, the Bussac part of SW in Eq. (2a) increases since 5V\75ussac ~Aq [7].
Therefore the relative importance of é\/\A/Rotl and the profile dependence included in this term
diminishes with a decreasing qo. Instead, the rotation dependence of 4, in Eq. (1b) becomes
more important through the dependence of 5V\75ussac on f, [7]. For parabolic profiles one gets
[4] B, = By +02§22(1/g§2 +O.5/e§). Hence, if the rotation and density both decrease with
the minor radius (&5 and gj > 0) this enhances the “effective” beta value of the plasma,
which is destabilising. The equilibrium that is easiest to stabilise in this case has flat profiles
of both rotation and density, whereas the combination of parabolic flow and parabolic density
is most difficult to stabilise. This is shown in Fig. 2b for a plasma with go = 0.75, with quali-
tative agreement between the analytical theory and the numerical computation. Quantitatively,
however, the agreement is not as good as in Fig. 1b due to the larger value of & in Fig. 2b.

Summary. Different mechanisms affecting the stability of the internal kink mode in rotating
plasmas have been identified in this work. In the absence of centrifugal effects, the major flow
effects on the internal kink instability come from the radial profiles of the plasma density and
rotation velocity inside g = 1 through éV\A/Rotl and é\/\A/Rotz in Eq. (3). With the centrifugal
effects included, the profile dependence in éV\?le is still present, but another stabilising effect
arises from the coupling of the internal kink mode to the GAM induced by the plasma rota-
tion, an effect that depends on the rotation at g = 1 only. Furthermore, the rotation dependence
of S in Eq. (1b) leads to a destabilising effect when the flow velocity and plasma density
decrease with the plasma radius, and this effect overshadows the profile dependence in éV\A/ROtl
for sufficiently small go. While the stabilising GAM coupling dominates when &, is small, the
importance of both of the profile effects above increases with decreasing aspect ratio.
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