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The resistive wall mode (RWM) instability and its active feedback control
[1]

 are important issues 

for different kinds of advanced fusion devices. In RFPs, RWMs as current driven modes, having 

their rational surfaces outside the plasma, exist as so called externally non-resonant modes 

(ENRMs),which have their rational surfaces located at q < q(a) <0 (q(a) is the safety factor at the 

plasma edge); and internally non-resonant modes (INRMs) with rational surfaces corresponding 

to q > q(0) > 0. In order to better understand the Resistive Wall Modes (RWMs) behavior and 

RWM feedback in RFP plasmas, it is essential to investigate the driving mechanisms of RWM 

instability and how a feedback system affects the RWMs growth rate.  

In this work, we introduce a MHD cylindrical model with feedback system for studying RWM 

behavior and feedback control in RFP plasmas, in which the effects of the plasma pressure, 

compressibility, plasma inertia, longitudinal rotation and parallel viscosity (tensor) have been 

taken into account. The resistive wall is modeled with a finite thickness b>>1 (is the mode 

frequency andb is the wall penetration time scale length). Furthermore, the existing studies in 

toroidal geometry of RFPs have shown a weak influence of the toroidal coupling effects on the 

growth rate of the RWM modes 
[2]

. Thus a periodic cylindrical model is reasonably adopted.  

I. The eigen equation and dispersion relation of RFP model including feedback control.  

We introduce a cylindrical plasma with minor radius r=a, which is surrounded by a resistive wall 

at r=b with thickness h and has conductivity . The corresponding eigenmode equation can be 

derived from the linearized MHD equations by assuming the perturbed displacement as 

1ξ=ξ (r)exp[-iω+i(mθ+kz)] , which can be briefly written as
[3,4]

  

                                                        
d dψ

(A(ω) )-C(ω)ψ=0
dr dr

                                                     (1)  

where, rψ=rξ , oω=ω-k v , the specific definition of  A ω  and  C ω can be found in Ref.[3,4]. 

With respect to the RFP equilibrium parameterization, the usual “-p model
”
 is adopted, and 

given as 2

o o o o oB =μB +(μ B p)/B  , where α

oμ=2Θ 1-(r/a) /a   , and o=(a/R)/q(0). The plasma 

pressure profile is given by 2 2

o o θ zp =-χ(r)(r/2μ )[μB /(2B )-B /r]  which gives Suydam’s necessary 

condition for stability when (r)<1. For studying the effect of feedback control on RWMs in RFP 

plasmas, the feedback coil and the radial magnetic sensor are located at rf (rf>b) and rs (a<rs≤b) 

respectively. Specifically, we concentrate on controlling each Fourier mode separately. Thus, for 

each mode, the feedback circuit is f f s fiωL I-G ψ =R I , where s s sψ =-ir b  is perturbed radial magnetic 

flux, Lf and Rf are the effective inductance and resistivity of feedback coil. The PID controller for 

single mode has the form i
f p d

iG
G =G + -iωG

ω
, where Gp, Gi and Gd are proportional, integral and 
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derivative gains respectively, and defined as complex number. The boundary condition of 

eigenmode equation is obtained by integrating Eq.(1) over a thin layer across the plasma 

boundary and then taking the limit for the layer width to zero. In this way, a new boundary 

condition including the feedback control system is derived,  
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K
; bbh; f=Lf/Rf. Kr=Km(|k|r) and Ir=Im((|k|r) are the modified Bessel functions. 

By taking aω ω and ignoring the viscosity, the new dispersion relation including a movable 

magnetic sensor and feedback system can be expressed as: 

                                                      
'

d s
d '

b b

τ̂ K
ˆ-iωτ 1+ME =M+sign(k) G 1+ME

τ̂ K
                                   (3) 

where P v

P vb

δW +δW
M=

δW +δW

 ,  ' ' ' '

b a a bE=E/ 1-K I / K I ,  
' ' 2

' ' ' 'b b
d b a a b b2

b

K I ktanhς
τ̂ = 1-K I / K I τ <0

ς k
,  b b fτ̂ =τ 1-iωτ  , Wp is 

the plasma potential energy, Wvb is the potential energy in vacuum region when the perfect 

conducting wall is located at r=b, and Wv∞ is also the vacuum contribution when the ideal wall 

is at infinity [4,5]. Note that, all the energy potential components referred in this work are 

normalized by 2 2

0 a 02π R ξ /μ  The definitions of other coefficients have been given in Ref.[3-5]. 

When Gf=0, the boundary condition and dispersion relation could recover the result in Ref.[3,4].  
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Fig.1 (a) The -F curve fits to the experimental data from the database. The circle points are the selections for 

theoretical calculation. (b) The growth rates of m=1, n=-5 are plotted against F, it shows the growth rates from theory 

are in a good agreement with experimental measurements. 

With this model, we make a comparison with experiments by assuming p=0 and selecting the 

reversal parameter F and pinch parameter from the fitting curve as Fig.1(a). Figure.1(b) reports 

the growth rates given by the theory for m=1 n=-5 mode, which match the experimental growth 

rate well. The result implies that the  profile adopted in RFP is reasonable and the current driven 

mechanism is dominant in RWM instability. Due to the sensitivity of RWM to  profile
[4]

, using 

the measured current profile is amendatory to make a good comparison with theory. 
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II. Physical understanding of the role of equilibrium parameters F,,p on RWMs’ 

instability 

When changing the value of the edge toroidal field Bz(a) (which is directly related to the reversal 

parameter F), and keeping the current profile almost unvaried by fixing 0, the vacuum potential 

energy Wvb is the dominant effect in the RWM instability (|Wvb|>>|Wp|).  Due to the opposite 

helical winding between INRM and ENRM in RFP, the variations of Wvb versus F go to 

opposite directions between two types of the modes; this leads to the different direction of 

changes of the growth rates. When the pinch parameter  increases and parameter F remains the 

same, the current gradient increases; therefore, the plasma potential energy Wp increases and the 

mode growth rates increase for both INRMs and ENRMs. Consequently, we clarify that the 

reversal parameter F mainly affects the perturbed vacuum magnetic energy, and  affects the 

plasma potential energy by changing the current profile.   
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Fig.2 (a) When fixing F=-0.05 and=1.45, J|| and J⊥ are plotted as the function of radial position for differentp 

value, where the value of J⊥ is amplified 10 times. (b) The corresponding energy potential components are plotted as 

the function of p, where Wmag is stabilizing term from the magnetic bending and compressibility, Wcur and Wpre 

are the current driven and pressure driven terms.Wvb is the potential energy in vacuum region when the ideal wall 

is at r=b. 

As for the impact of p, first we can further write plasma potential energy into three potential 

energy components Wp= Wmag+Wcur+Wpre, where Wmag is stabilizing term from the 

magnetic bending and compressibility, Wcur and Wpre are the destabilizing terms from the 

current driven and pressure driven mechanisms.  The change of p value may influence the shape 

of the current profile. Hence, the pressure and current driven mechanisms cannot vary with p 

independently. For instance, for (1,-6) mode and fixed F=-0.05 and =1.45; while raising p 

from 0 to 0.05, the mode growth rate is even decreased from 31.28 S
-1

 to 29.01S
-1

 (about 7%). In 

Fig.2 (a) and (b), it show clearly, when increasing p value, the diamagnetic current J⊥ increases 

on the edge of plasma, and the parallel current J|| decreases in the plasma center and becomes less 

peaked simultaneously, it leads to the reduction of the current driven mechanism Wcur. When p 

continuously increase up to 0.1, due to the further increasing of the pressure driven effect Wpre 

in Fig.2 (b), the growth rate increases again, becomes 31.11 s
-1

. Furthermore, during increasing 

p, Wvb is constant. This result indicates that the variation of mode growth rate with p comes 

from the balance of Wcur and Wpre.  

III RWM feedback control study In previous section, we introduce the feedback system into 

our boundary condition. The upgraded code was validated with the experimental measurements 

by using complex Gp phase scan
[6]

. In this work, we just give an example on how the feedback 
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control impacts on the INRM m=1 n=-6 by using the real part of proportional gain Gp, and fixing 

Gi,Gd=0, more complete study of feedback control will be published in future. For this purpose, 

the equilibrium parameter are taken as F=-0.05, =1.42 and p=0.02. The magnetic sensor and 

feedback coil are located at rs/a=1.12 (which is also the wall postion), rf/a=1.268, according to the 

RFX-mod feedback coil configuration. Without plasma rotation, when increasing the real part of 

Gp, the evolution of the perturbed radial magnetic field is plotted in the Fig.3(a). It indicates the 

feedback control just affects the perturbed vacuum magnetic field, and the perturbed magnetic 

field in plasma is not changed. In this case, the dispersion relation Eq. (3) can be reduced to 

d
pd

b

τ̂
ˆ-iωτ =M- G

τ̂
, it implies, for stabilizing the RWM, feedback actually modifies the eddy 

current in the wall, which relates to the jump of perturbed magnetic field on the wall, and plasma 

potential energyWp is not affected by feedback control, the idea kink mode is still potential 

unstable. For the same equilibrium, when moving the magnetic sensor close to plasma, Fig.3(b) 

shows less Gp is required for stabilizing the m=1, n=-6 mode. Moreover, when the plasma 

rotation exists, a larger Gp should be used. For example, when F= -0.05, =1.36, p=0.0, for 

stabilizing m=1, n=-5 mode, without considering plasma rotation, the minimum Gp should be 

0.436. When plasma velocity is 10% of poloidal Alfven velocity on the edge of plasma (where 

the velocity is not in the stability windows of RFP plasmas), the minimum Gp raises up to 0.469 

(increasing about 7%), whereas the perturbed br in plasma and plasma potential energy Wp 

remain the same as those without feedback control.
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Fig 3.For m=1 n=-6 mode, (a) plots |br| as the function of r for different proportional control. (b) The growth rate as 

the function of Gp is plotted when the sensor is located at different radial position.  

Finally, due to the discrete structure of the feedback coils in reality, the magnetic sideband 

production from coils
[7]

 can lead to the modes coupling; this effect will be studied in our future 

work.  
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