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Abstract

The original derivation of the well-known Bennett relation is presented. Willard H.

Bennett developed a theory, considering both electric and magnetic fields within a pinched

column, which is completely different from that found in the textbooks. The latter theory is

based on simple magnetohydrodynamics which ignores the electric field.
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Figure 1: The pinch effect

The configuration of the pinch effect is illustrated in Fig. 1.

A current flowing in the axial direction interacts with a self-

produced magnetic field to produce an inwardly directed j×B

force. If we adopt a magnetohydrodynamic model for the equi-

librium case we can write

∇p = j×B (1)

and ∮
B ·dl = µ0

∫
j.dS (2)

The first equation describes the force balance, and the second

equation is Ampères Law, the integral form of the Maxwell

equation

∇×B = µ0 j.

In the present case equations 1 and 2 take the form

d p
dr

=− jB (1a)

and

2πrB = µ0I (r) (2a)

where I (r) is the current flowing within a radius r. It can readily be shown that these two

equations lead to the following result , whatever the current distribution I (r).

2Nk (Te +Ti) = (µ0/4π) I2 (3)
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This result is known as the Bennett relation. N is the number of electrons or ions per unit length

of the plasma column, I is the total current, k is Boltzmann‘s constant and µ0 is the permeability

of free space, µ0 = 4πx10−7 H/m.

2. The theory developed by Bennett (1934)

The theory developed by Bennett (1934): 
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Figure 2: The Bennett pinch.

The model studied by Bennett [1], illustrated in Fig. 2, was

entirely different from the MHD model described in the pre-

vious paragraph. Bennett assumed that the electrons have a

Maxwellian distribution with a drift u in the z direction, the drift

being independent of the radius r. The positive ions have a ve-

locity v in the −z direction.

In a co-ordinate system moving with the electrons they do not

experience a j×B force, since there is no electron current in this

system. Their radial distribution will be given by the Boltzmann

relation,

n11 = n110 exp
[

eV1

kT11

]
. (4)

The notation used here is that subscript (1) refers to electrons

and (2) refers to ions. A second subscript refers to the co-

ordinate system in which the density is measured. In a co-

ordinate system moving with the ions the ion density is given by

n22 = n220 exp
[
− eV2

kT22

]
. (5)

In the first system of co-ordinates, that moving with the electron drift velocity, Poisson‘s equa-

tion takes the form

∇2V1 =− e
ε0

[n21 −n11] ,

where n21 is the ion density in that system. Using eqn. 4 we can write

∇2 logn11 =
e2

ε0kT11
[n11 −n21] . (6)

Analogously

∇2V2 =− e
ε0

[n22 −n12] ,

so that

∇2 logn22 =
e2

ε0kT22
[n22 −n12] . (7)
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Let α1 = e2/ε0kT11 and α2 = e2/ε0kT22. The equations can be transformed into equations re-

lating to quantities measured in the rest system of co-ordinates, using well-known results from

the special theory of relativity.

n11 =
n1

γ1
; n12 = γ2

[
1+

uv
c2

]
n1; n21 = γ1

[
1+

uv
c2

]
n2; n22 =

n2

γ2

where γ1 =
(
1−u2/c2)−1/2 and γ2 =

(
1− v2/c2)−1/2. Equations 6 and 7 then become

∇2 logn1 = α1γ1

[
1− u2

c2

]
n1 −α1γ1

[
1+

uv
c2

]
n2 (8)

and

∇2 logn2 = α2γ2

[
1− v2

c2

]
n2 −α2γ2

[
1+

uv
c2

]
n1. (9)

We can note that the temperatures are also relativistically transformed, T1 = γ1T11 and T2 =

γ2T22. Strictly speaking the temperatures employed by Bennett are “two-dimensional” tempera-

tures, the relevant velocities are those transverse to the drift velocities of the electrons and ions.

The following simple solution to the pair of equations 8 and 9 was found by Bennett

n1 =
n0

[1+bn0r2]
2 (10a)

and

n2 =
α1γ1

[
1− u2

c2

]
+α2γ2

[
1+ uv

c2

]

α2γ2

[
1− v2

c2

]
+α1γ1

[
1+ uv

c2

]n1, (10b)

where

b =
α1α2γ1γ2

8c2
(u+ v)2

α1γ1

[
1+ uv

c2

]
+α2γ2

[
1− v2

c2

] . (10c)

We can note that the quantity b has the dimensions of length. When the electron drift velocity

becomes comparable with the velocity of light we no longer have a plasma in that the electron

and ion densities are no longer closely equal. One consequence of this is that we can no longer

employ a single fluid model as in magnetohydrodynamics.

The solution found is relativistically invariant. It is of interest, however, to find a very good

approximate solution for the case where the velocities u and v are small compared with the

velocity of light c. The solution then becomes

n1 = n2 =
n0

[1+bn0r2]
2 , (11)

where

b =
µ0e2 (u+ v)2

8k (T1 +T2)
,
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We can note that n1 and n2 are very nearly equal, but there must be a small difference to produce

the electric field given by Poisson’s equation. The Lorentz factors γ1 and γ2 introduced in order

to obtain equations 8 and 9 are not identically equal to unity. The total number of electrons, or

ions, per unit length is readily found by integration to be N = π/b so that

N =
8πk (T1 +T2)

µ0e2 (u+ v)2

and
µ0I2

4π
= 2Nk (T1 +T2) , (12)

which is the well-known Bennett relation.

In practice the current will be mainly carried by electrons, i.e. v is very small. We can note that

the combination of perpendicular electric and magnetic fields does not lead to an E ×B drift of

the ions of magnitude E/B as stated in some textbooks.

If v is negligible, then in the rest system of coordinates we can write

n2 = n20 exp
[
− eV

kT2

]
. (13)

The conclusion is that the positive ions are confined by the electrostatic field, and they are

not confined by orbiting around magnetic field lines. This conclusion will no doubt apply to

all “magnetic confinement” systems. This leads to the interesting question as to whether the

possibility of purely electrostatic confinement should be seriously reconsidered. It is known that

such a system can exist in thermal equilibrium, a natural state of matter, whereas magnetically

confined plasmas are inherently unstable.
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