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Abstract

The original derivation of the well-known Bennett relation is presented. Willard H.
Bennett developed a theory, considering both electric and magnetic fields within a pinched
column, which is completely different from that found in the textbooks. The latter theory is

based on simple magnetohydrodynamics which ignores the electric field.

1. An elementary theory of the pinch effect

The configuration of the pinch effect is illustrated in Fig. 1.
A current flowing in the axial direction interacts with a self-
produced magnetic field to produce an inwardly directed j X B
force. If we adopt a magnetohydrodynamic model for the equi-

librium case we can write
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The first equation describes the force balance, and the second

and

~

equation is Amperes Law, the integral form of the Maxwell
equation

VX B= U
In the present case equations 1 and 2 take the form
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Figure 1: The pinch effect
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where I (r) is the current flowing within a radius r. It can readily be shown that these two

equations lead to the following result , whatever the current distribution 7 (r).

ONK(T,+T;) = (uo/4m) I?
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This result is known as the Bennett relation. N is the number of electrons or ions per unit length
of the plasma column, / is the total current, k is Boltzmann ‘s constant and p is the permeability

of free space, ty = 4mx10~7 H/m.

2. The theory developed by Bennett (1934)
The model studied by Bennett [1], illustrated in Fig. 2, was
entirely different from the MHD model described in the pre-

electrons

vious paragraph. Bennett assumed that the electrons have a A u
Maxwellian distribution with a drift u in the z direction, the drift C:
being independent of the radius r. The positive ions have a ve-
locity v in the —z direction.
In a co-ordinate system moving with the electrons they do not
experience a l X B force, since there is no electron current in this < >
system. Their radial distribution will be given by the Boltzmann T~
relation, 8

ny1 = ny10€xXp {%} - 4)
The notation used here is that subscript (1) refers to electrons
and (2) refers to ions. A second subscript refers to the co- Vions

ordinate system in which the density is measured. In a co-
ordinate system moving with the ions the ion density is given by Fjgyre 2: The Bennett pinch.
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np2 = n20€Xp {—

In the first system of co-ordinates, that moving with the electron drift velocity, Poisson‘s equa-
tion takes the form

e
V2V, = e [n21 —ni1],

where n;; is the ion density in that system. Using eqn. 4 we can write

2
e
V21 = —ny1]. 6
ogm = e [n11 —noi] (6)
Analogously
e
V2Vy = —— [y — 12},
&
so that
2 e?
\Y% lOgnzz = [n22 — nlz] . (7)
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Let o = €2 /€okTy; and o = 2 /€kTs. The equations can be transformed into equations re-
lating to quantities measured in the rest system of co-ordinates, using well-known results from

the special theory of relativity.

ni y [1+u\/} . [1+uv] no
np=—;np="% — |1 21 =N 5| M2 N2 = —
! c2 c? 2

where 7, = (1 — uz/cz)fl/2 and o = (1— vz/cz)fl/z. Equations 6 and 7 then become

2
u uy
VZlogn; = aum {1—(3—2] ng— oy [H-c—z} ny ®)
and )
v uv
Vzlognz =00y [1 — ;} ny— oYy [1 + Z} ni. 9

We can note that the temperatures are also relativistically transformed, 71 = ¥ 711 and T, =
Y215, Strictly speaking the temperatures employed by Bennett are “two-dimensional” tempera-
tures, the relevant velocities are those transverse to the drift velocities of the electrons and ions.

The following simple solution to the pair of equations 8 and 9 was found by Bennett

no
n—=——-— (10a)
[1+ bngr2]?
and ,
oun [1 — l;—z} + o)y [1 + %}
n = : m, (10b)
0y [1 - z_z} + o [1 + Z—Z}
where )
b ooLny (u+v) (100)
8¢2

oan [1 + %} + 0y [1 - E—;} |
We can note that the quantity b has the dimensions of length. When the electron drift velocity
becomes comparable with the velocity of light we no longer have a plasma in that the electron
and ion densities are no longer closely equal. One consequence of this is that we can no longer
employ a single fluid model as in magnetohydrodynamics.

The solution found is relativistically invariant. It is of interest, however, to find a very good
approximate solution for the case where the velocities u and v are small compared with the

velocity of light c. The solution then becomes

m=m= (11)
[1+ bngr?]

where )
B Uoe? (u+v)
8k (Tl + Tz) ’
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We can note that n| and n, are very nearly equal, but there must be a small difference to produce
the electric field given by Poisson’s equation. The Lorentz factors ¥; and 7, introduced in order
to obtain equations 8 and 9 are not identically equal to unity. The total number of electrons, or
ions, per unit length is readily found by integration to be N = /b so that

N o 87k (T1 + T7)

Hoe? (u+v)?
and
tol?

—— =2Nk(T\+ T 12
47 (1+ 2)7 ( )

which is the well-known Bennett relation.

In practice the current will be mainly carried by electrons, i.e. v is very small. We can note that
the combination of perpendicular electric and magnetic fields does not lead to an E x B drift of
the ions of magnitude E /B as stated in some textbooks.

If v is negligible, then in the rest system of coordinates we can write

eV
npy = npo€Xp |:_k_T2:| . (13)

The conclusion is that the positive ions are confined by the electrostatic field, and they are
not confined by orbiting around magnetic field lines. This conclusion will no doubt apply to
all “magnetic confinement” systems. This leads to the interesting question as to whether the
possibility of purely electrostatic confinement should be seriously reconsidered. It is known that
such a system can exist in thermal equilibrium, a natural state of matter, whereas magnetically

confined plasmas are inherently unstable.
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