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Based on a relativistic fluid-Maxwell model laser-induced plasma dynamics is investigated

for relativistic periodic waves. Within a one-dimensional(1D) description the Akhiezer-Polovin

model is applied to the existence and stability of periodic,nonlinearly coupled electromagnetic

and electrostatic waves and the corresponding particle motion. Known existence criteria for

periodic solutions are generalized. The corresponding stability behaviors are investigated by

linear 1D integrators of the relativistic fluid-Maxwell model.

We use a one-dimensional fluid-Maxwell model to describe theplasma, i.e. variations of all

quantities are only considered along the direction of propagationx. The ions form a fixed homo-

geneous background. Dimensionless quantities are used. Lengthx, time t, velocity v, momen-

tum p, vectorA and scalar potentialφ , densityn are normalized byc/ωpe, ω−1
pe , c, mec, mec/e,

mec2/e, andn0 respectively. Here,ωpe= (n0e2/ε0me)
1/2 is the electron plasma frequency,me

the electron rest mass,e the electron charge, andn0 the unperturbed electron density. Maxwell’s

equations will be expressed in the Coulomb gauge, which leadsto A ≡ A⊥ as a result of the 1D

model. A further consequence of the 1D geometry is thatp⊥ = A⊥. The hydrodynamic equa-

tions for the densityn, the (parallel) momentump of electrons, and the Maxwell equations for

the vector and scalar potentialsA⊥ andφ can be written in dimensionless form as

∂ 2A⊥
∂x2 − ∂ 2A⊥

∂ t2 =
nA⊥

γ
,

∂ 2φ
∂x2 = n−1, (1)

∂n
∂ t

+
∂
∂x

(
np
γ

)
= 0,

∂ p
∂ t

=
∂
∂x

(φ − γ) ,

whereγ =
√

1+ |A⊥|2+ p2 is the relativistic factor.

We transform the system (1) to a frame of reference moving with the phase-velocityβ of an

electromagnetic wave. In this frame we are looking for solutions that do not depend explicitly

on t, only onξ = x−β t. For such stationary solutions it is possible to reduce the system (1)

in the co-moving frame to equations for the potentialsφ andA⊥. All other quantities can be

expressed as functions of the potentials. Considering a linearly polarized waveA⊥ = aêz (with

|A⊥|= a0 andp= 0 whereφ = 0) the expression for the densityn, parallel momentump, and
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the relativisticγ factor are

p=
βψ −R
1−β 2 , n= β

ψ −βR
R(1−β 2)

, γ =
ψ −βR
1−β 2 , (2)

whereψ = φ +
√

1+a2
0, R=

√
ψ2− (1−β 2)(1+a2). The coupled equations for the potentials

will be rewritten in terms ofX = a(β 2−1)1/2, Z = −φ − (1+a2
0)

1/2, andζ = ξ (β 2−1)−1/2

yields the nonlinear coupled oscillatorsX andZ of the form

Ẍ+
βX√

β 2−1+X2+Z2
= 0, Z̈+

βZ√
β 2−1+X2+Z2

+1= 0. (3)

The dots denote derivatives with respect toζ . These oscillators can be derived from the Hamil-

tonianH = 1
2

(
Ẋ2+ Ż2

)
+β (β 2−1+X2+Z2)1/2+Z. Equations (3) are equivalent to the equa-

tions derived by Akhiezer and Polovin [1] (Eqs. (16) therein).

The plasma motion (inx,y,z direction) associated with the coupled transverse-longitudinal

oscillators can be calculated from solutionsX andZ as

dx(ζ )
dζ

=−βZ+
√

Z2+X2β 2−1√
β 2−1

,
dz(ζ )

dζ
=− X√

Z2+X2β 2−1
. (4)

Interpretingζ as the parameter for the curvesx = x(ζ ) and z= z(ζ ) we can draw the path

x= x(z).

Akhiezer and Polovin [1], Kaw and Dawson [2], and Chian and Clemmow [3] were amongst

the first to discuss exact periodic solutions. Linearly polarized solutions with small longitudinal

momenta with frequency 2ω and transversal momenta of frequencyω were found. The resulting

motion is an average drift of the plasma in propagation direction of the wave and an superposed

motion in the average drift frame. The motion within the average drift frame resembles an eight-

like trajectory in the plane spanned by propagation and polarization direction.

Another class of possible solutions are circular motions, when transversal and longitudinal

momenta are of the same order. This was noted by Akhiezer and Polovin [1], and worked out in

more detail, for example, by Pesch and Kull [4].

Overview over the complete class of stationary wave solutions

In order to investigate whether additional periodic solutions exist, we use the oscillator formula-

tion (3) [7]. We calculate trajectories for theX andZ oscillators in four-dimensional phase space

and render Poincaré section plots. Periodic solutions are identified by fix-points or island-chains

within the plots. The projections are done by using one of theoscillators as a clock, while plot-

ting the coordinates of the other one. From the trajectoriesof X andZ we calculate the plasma
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motion in the average drift frame for periodic solutions. Figure 1 shows Poincaré section plots

for β = 2.5 andH = 53.4. Plotted isX versusẊ every time that theZ oscillator has a minimum.

We marked five sets of points which correspond to periodic trajectories. The point labelede

represents a purely longitudinal wave. The fix pointsa andc represent the figure-eight and cir-

cular motion, respectively. The hyperbolic fix-pointb represents a deformed figure-eight like

solution, where one loop of the eight is smaller than the other one. The island-chain labeledd

represents a higher-order amplitude modulated solution. Figure 2 shows the according plasma

motion in the average drift frame for the labeled points fromFig. 1.

The structure of the Poincaré section plots varies with the valuesH andβ . Let us focus on the

influence ofβ here, keepingH = 53 fixed. The only solution that exists for everyβ , i.e. every

plasma density below the critical density, is the figure-eight solution. Beginning withβ = 1 we

observe that atβ ≈ 2.3 a new fix-point appears. This is the fix-point of the circularmotion.

Betweenβ ≈ 2.3 andβ ≈ 2.6 a hyperbolic fix-point exists that is related to the deformed

figure-eight motion. Amplitude modulated solutions exist only up to a certain velocity (about

β ≈ 2.6), too. The simultaneous existence of circular, figure-eight and deformed figure-eight

like trajectories at givenH and fixedβ has not been clearly stated in literature so far.
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Figure 1:Left: Poincaré surface plot ofX vs Ẋ (for Z = Zmin) for β = 2.5 andH = 53.4. Labeleda to e are

fix-points and island-chains that correspond to periodic solutions. The plasma motion for the labeled trajectories is

shown in Fig. 2. Right: Growth rateΓ versus the maximum amplitude ˆa0 of the unperturbed figure-eight solution

(labeleda on the right side) forβ = 6 (red line),β = 2 (blue line),β = 1.2 (green line) andβ = 1.02 (magenta

line), respectively.

Results on linear stability

The periodic solutions to Eqs. (3) are time-independent in the frame of reference moving

with the phase-velocityβ . Within this frame we carry out a stability analysis, investigating

the influence of time-dependent perturbations. We study theeffects that localized perturbations
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Figure 2:OscillatorsX (red line) andZ (blue line) and corresponding plasma motion in the average drift frame

(lower row, green line) for periodic solutions withβ = 2.5 andH = 53.4. From left to right: (a) figure eight, (b)

deformed figure eight, (c) circluar, and (d) higher order amplitude modulated solution.

have on the dynamics of the periodic solutions. The introduced initial perturbations are time-

dependent, localized and have a non-zero energy. Perturbations of all quantities of the state (i.e.

a, p, φ ) are considered. Our numerical method allows us to calculate the most unstable mode

and its growth rateΓ, for details see [5]. The results from our simulations of thelinearized

1D Maxwell-fluid model show that all considered periodic wave solutions are unstable. We

exemplify this for the figure-eight motion in Fig. 1. The growth rateΓ depends on the phase-

velocity and the maximum amplitude of the solution. Typicalgrowth rates are of the order of

Γ = 0.1 to Γ = 0.8. The typical time scale for a 1% perturbation with the fastest growing mode

is of the order of a few tens of 1/ωpe. Besides waves the model (1) also has pulsed solutions in

the form of relativistic solitons. Our stability analysis for relativistic solitons shows that not all

solitons, different from the nonlinear waves, are unstablein 1D geometry [5]. A comparison of

growth rates for unstable solitons and nonlinear waves indicates that the growth rates for waves

are about one order of magnitude larger [5, 6, 7]. Localization plays an important role for the

scattering mechanism involved.

This work has been done under the auspices of the Sonderforschungsbereich TR-18.
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