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Based on a relativistic fluid-Maxwell model laser-inducedspha dynamics is investigated
for relativistic periodic waves. Within a one-dimensio(HD) description the Akhiezer-Polovin
model is applied to the existence and stability of periodanlinearly coupled electromagnetic
and electrostatic waves and the corresponding particleomoKnown existence criteria for
periodic solutions are generalized. The correspondingiléjabehaviors are investigated by
linear 1D integrators of the relativistic fluid-Maxwell meid

We use a one-dimensional fluid-Maxwell model to describepthema, i.e. variations of all
guantities are only considered along the direction of pgagianx. The ions form a fixed homo-
geneous background. Dimensionless quantities are usaedthoe timet, velocity v, momen-
tump, vectorA and scalar potentia, densityn are normalized bg/ wpe, wlgel, C, MeC, MeC/ €,
meC?/e, andng respectively. Heregpe = (Ng€?/gome)*/? is the electron plasma frequencye
the electron rest massthe electron charge, amg the unperturbed electron density. Maxwell's
equations will be expressed in the Coulomb gauge, which les#ls= A | as a result of the 1D
model. A further consequence of the 1D geometry is that A | . The hydrodynamic equa-
tions for the density, the (parallel) momenturp of electrons, and the Maxwell equations for
the vector and scalar potentigdls and¢ can be written in dimensionless form as
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wherey = \/1+ |A | |2+ p? is the relativistic factor.
We transform the system (1) to a frame of reference moving thié phase-velocity of an

electromagnetic wave. In this frame we are looking for sohg that do not depend explicitly
ont, only oné = x— Bt. For such stationary solutions it is possible to reduce ystesn (1)
in the co-moving frame to equations for the potentiglandA | . All other quantities can be
expressed as functions of the potentials. Considering afdiyneolarized wavé\ | = ag, (with
|A|| =apandp = 0 wherep = 0) the expression for the densityparallel momentunp, and
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the relativisticy factor are
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wherey = ¢+ ,/1+ a% R= /(2 — (1 B2)(1+a2). The coupled equations for the potentials
will be rewritten in terms oiX = a(82 —1)¥2,Z = —¢— (1 +a3)'/?, and{ = &(B% - 1)~/2
yields the nonlinear coupled oscillatoXsandZ of the form
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The dots denote derivatives with respecftarhese oscillators can be derived from the Hamil-
tonianH = 3 (X2 +22) + B(B? — 1+ X2+272)¥/2 4 Z. Equations (3) are equivalent to the equa-
tions derived by Akhiezer and Polovin [1] (Egs. (16) the)ein

The plasma motion (ix,y, z direction) associated with the coupled transverse-loadgial

oscillators can be calculated from solutiofsindZ as

dx({)  BZ+/Z2+X2p2-1 dzl) X @
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Interpreting{ as the parameter for the curvies= x({) andz = z({) we can draw the path

X=X(2).

Akhiezer and Polovin [1], Kaw and Dawson [2], and Chian and Qhexw [3] were amongst
the first to discuss exact periodic solutions. Linearly pe&d solutions with small longitudinal
momenta with frequencya and transversal momenta of frequengyere found. The resulting
motion is an average drift of the plasma in propagation timacf the wave and an superposed
motion in the average drift frame. The motion within the aggr drift frame resembles an eight-
like trajectory in the plane spanned by propagation andrizaition direction.

Another class of possible solutions are circular motionsenvtransversal and longitudinal
momenta are of the same order. This was noted by AkhiezeralogiR [1], and worked out in

more detail, for example, by Pesch and Kull [4].

Overview over the complete class of stationary wave solutions

In order to investigate whether additional periodic salns exist, we use the oscillator formula-
tion (3) [7]. We calculate trajectories for tileandZ oscillators in four-dimensional phase space
and render Poincaré section plots. Periodic solutiongiargified by fix-points or island-chains
within the plots. The projections are done by using one obwllators as a clock, while plot-

ting the coordinates of the other one. From the trajectaieé andZ we calculate the plasma
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motion in the average drift frame for periodic solutiongyutie 1 shows Poincaré section plots
for B = 2.5 andH = 53.4. Plotted isX versusX every time that th& oscillator has a minimum.
We marked five sets of points which correspond to periodiedtaries. The point labelee
represents a purely longitudinal wave. The fix pom#ndc represent the figure-eight and cir-
cular motion, respectively. The hyperbolic fix-pointepresents a deformed figure-eight like
solution, where one loop of the eight is smaller than therotime. The island-chain labeled
represents a higher-order amplitude modulated solutigur& 2 shows the according plasma
motion in the average drift frame for the labeled points friéig. 1.

The structure of the Poincaré section plots varies with gheesH andf. Let us focus on the
influence off3 here, keepingd = 53 fixed. The only solution that exists for eveByi.e. every
plasma density below the critical density, is the figureaegplution. Beginning with = 1 we
observe that a8 ~ 2.3 a new fix-point appears. This is the fix-point of the circutastion.
Betweenf} ~ 2.3 and 3 ~ 2.6 a hyperbolic fix-point exists that is related to the defadme
figure-eight motion. Amplitude modulated solutions existyoup to a certain velocity (about
B ~ 2.6), too. The simultaneous existence of circular, figurdyeand deformed figure-eight

like trajectories at giveRl and fixedB has not been clearly stated in literature so far.
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Figure 1:Left: Poincaré surface plot of vs X (for Z = Zmin) for B = 2.5 andH = 53.4. Labeleda to e are

fix-points and island-chains that correspond to periodigtems. The plasma motion for the labeled trajectories is

shown in Fig. 2. Right: Growth rate versus the maximum amplitudg 6f the unperturbed figure-eight solution
(labeleda on the right side) fo3 = 6 (red line),3 = 2 (blue line),B = 1.2 (green line) ang = 1.02 (magenta

line), respectively.

Resultson linear stability

The periodic solutions to Egs. (3) are time-independenhénftame of reference moving

with the phase-velocity3. Within this frame we carry out a stability analysis, invgating

the influence of time-dependent perturbations. We studeffieets that localized perturbations
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Figure 2:0scillatorsX (red line) andZ (blue line) and corresponding plasma motion in the averaijefiime
(lower row, green line) for periodic solutions wifh= 2.5 andH = 53.4. From left to right: (a) figure eight, (b)
deformed figure eight, (c) circluar, and (d) higher order btioghe modulated solution.

have on the dynamics of the periodic solutions. The intreduaitial perturbations are time-
dependent, localized and have a non-zero energy. Peiiturbalf all quantities of the state (i.e.
a, p, @) are considered. Our numerical method allows us to calkeuls most unstable mode
and its growth ratd", for details see [5]. The results from our simulations of lihearized
1D Maxwell-fluid model show that all considered periodic wasolutions are unstable. We
exemplify this for the figure-eight motion in Fig. 1. The grbwatel” depends on the phase-
velocity and the maximum amplitude of the solution. Typigedwth rates are of the order of
F=0.1tol =0.8. The typical time scale for a 1% perturbation with the fasggowing mode
is of the order of a few tens of/Ivye. Besides waves the model (1) also has pulsed solutions in
the form of relativistic solitons. Our stability analysi frelativistic solitons shows that not all
solitons, different from the nonlinear waves, are unstablED geometry [5]. A comparison of
growth rates for unstable solitons and nonlinear wavesatds that the growth rates for waves
are about one order of magnitude larger [5, 6, 7]. Localiraplays an important role for the
scattering mechanism involved.

This work has been done under the auspices of the Sonddrtorgsbereich TR-18.
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