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An accurate description of the transport of high currents of relativistic electrons in dense

matter is an important issue for many applications including the fast ignition of thermonuclear

fusion targets. A very large difference in energies and densities between the electron beam and

the plasma electrons suggests to consider them as two different populations that exchange the

energy and particles due to collisions. We developed a new reduced model of two coupled elec-

tron sub-systems by using an operator decomposition technique, where the collision operators

are interpreted in a systematic manner [1]. The process of energy exchange is described in the

Landau-Fokker-Planck (LFP) approximation, where the pitch angle electron-ion and electron-

electron collisions dominate. The process of particle exchange between populations, leading

to the production of secondary energetic electrons, is described with a Boltzmann term. We

demonstrate that electron-electron collisions with small impact parameters make an important

contribution in the overall dynamics of the beam electrons.

We consider a relativistic electron beam propagating through a plasma made of electrons

and immobile ions of a charge Ze and a density ni. The electrons of a beam and a plasma are

described by a relativistic kinetic equation [2]

∂t fe +v ·∇ fe − e∂p · (E+v×B) fe =Cee +Cei (1)

where the electron velocity v= p/meγ and momentum p are related by the relativistic factor γ =
√

1+ p2/m2
ec2. We consider here the collisional effects in the right hand side of this equation

leaving apart the convective terms and fields in the left hand side. The general form of the

relativistic collision operator is:

Cab( fa, fb) = 2c2
∫

dq
∫

dΩ̃
[

fa(p′) fa(q′)− fa(p) fb(q)
]

p̃Qabε̃/εpεq (2)

where Qab(p̃, µ̃) is the relativistic Rutherford cross section [3], the momenta p, q and energies

εp, εq correspond to the outgoing particles, after a collision event, whereas the subscripts prime

refer to the ingoing particles, before the same collision event. The conservation of the momen-

tum and energy in collisions is assumed. The quantities marked with tilde refer to the center of

mass frame for a collision event, in particular, µ̃ is the cosine of the scattering angle.

The standard approach in the physics of Coulomb collisions consists in developing the col-

lision integrals in series assuming a small momentum transfer in each collision assuming that
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Table 1: List of collisional processes considered for the beam and plasma electrons.
Entering Collisional process Target Exiting Collision model

particle (sa)/(la) scattering particle particle

Self-thermalization: ST(sa) thermal small angle scattering (sa) thermal thermal Fokker-Planck-Landau

Self-thermalization: ST(la) thermal large angle scattering (la) thermal thermal neglected

Heating: H thermal small angle scattering (sa) beam thermal Fokker-Planck

Ionization gain: IO+ thermal large angle scattering (la) beam beam Boltzmann gain term

Ionization loss: IO− thermal large angle scattering (la) beam thermal Boltzmann loss term

Slowing down: SD(sa) beam small angle scattering (sa) thermal beam Fokker-Planck

Slowing down: SD(la) beam large angle scattering (la) thermal beam Fokker-Planck

Self-thermalization beam any scattering angle beam beam neglected

the Coulomb logarithm, lnΛ À 1. Here, Λ = ∆pmax/∆pmin is the ratio between the largest and

smallest momentum transfer in a collision. That reduces the general Boltzmann-like collision

integral into the Landau-Fokker-Planck (LFP) differential form containing the friction and dif-

fusion terms in the phase space [2]. The hard collisions with a small impact parameter are

neglected in this approach. However, there are conditions where the hard collisions could pro-

duce qualitatively new effects that are not accounted for in the LFP approximation. Well-known

examples are ionization of atoms or molecules by free electrons in partially ionized plasmas

and plasma heating due to electron-ion collisions in a strong laser field [4].

We separate the kinetic equation (1) into the fast, fb, and slow, fth, components and account

for the coupling between them. The characteristic beam electron energy, εb, is supposed to be

much larger than the mean energy, Te, of the bulk electron population and the beam density is

small, nb ¿ ne. The separation energy between two populations, εcut is supposed to satisfy the

following condition: Te ¿ εcut ¿ εb. Its particular choice depends on the problem.

The processes associated with each of two energy scales are listed in Table 1. Concerning

the thermal population, only pitch angle scattering between the thermal particles is taken into

account (process ST(sa)). The large angle scattering of the thermal particle (ST(la)) is neglected

assuming 1/ lnΛ as a small parameter. The collisions of the thermal particles with the beam

particles give raise to three processes. The small angle scattering (H) increases the energy of

the thermal particle, while leaving it in its own population. The large angle scattering (IO)

promotes the thermal particle into the beam population (IO+) and, at the same time, the thermal

population loses this particle (IO−).

Concerning the beam population, the process SD(sa) is identified as the small angle scattering
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on the thermal particles. The process SD(la) can be interpreted as large angle scattering of

beam particles on the thermal particles, where the colliding particles are maintained, in the

outgoing channel in their original populations. This appears paradoxal, since the large angle

scattering event should promote the thermal particle into the beam population. We solve this by

choosing a LFP approach for the process SD(la), that maintains the collision invariants of the

bilinear Boltzmann form. Doing so, we forbid the large energy exchanges for thermal particles.

This LFP treatment is valid for the beam particles as well, since the large energy exchanges

can still be considered small with respect to the variation of the beam distribution function.

Collisions between the beam particles are neglected because of a low beam density. Then our

model reduces to the following two equations

dt fb =CIO+[ fth, fb]+CSD[ fb, fth], dt fth =CIO−[ fth, fb]+CH [ fth, fb]+CST (sa)[ fth, fth] where

CIO+ = 2c2
∫

dq
∫

dΩ̃ fth(p′) fb(q′)
p̃ε̃

εpεq
Q(la)

f , CIO− =−2c2 fth(p)
∫

dq
∫

dΩ̃ fb(q)
p̃ε̃

εpεq
Q(la)

f .

The last three terms have a LFP form: CA = ∂p · (FA fb(p)+DA ·∂p fb(p)), where the subscript

A stands for SD, H or ST(sa), respectively, for the friction force, F, and the diffusion coefficient,

D. These two equations are respecting the collision invariants – conservation of the number of

particles, momentum, and energy – for the complete distribution function fth + fb.

In particular, for the collisional operator of fast electrons, CSD, one has: FSD = FSDp/p,

where FSD = 2ν0mec lnΛ/β 2, β = v/c, ν0 = Ze4ni/8πε2
0 m2

ec3, and DSD = DSD(I−p⊗p/p2)

with DSD = FSD(Z+1)/2γ . In addition, the large angle collisions are responsible for production

of secondary high energy electrons:

CIO+ = (ν0mec2/2πγ)(γ2 −1)−1/2
∫ ∞

εcut

∫ [
γ ′2/(γ −1)2 +1

]
f ′bδEdε ′dΩp′ (3)

where the function accounting for the energy conservation is defined as δE = δ (p ·p′/pp′−µ0)

and µ0 =
√

(γ −1)(γ ′+1)/(γ ′−1)(γ +1). The integral (3) does not contain the Coulomb log-

arithm, contrary to the friction and diffusion terms. However, it contains a logarithmic depen-

dence on the low energy limit, and that makes it of the same order as the diffusion and friction

terms. This is illustrated below for the case of a mono-energetic electron beam, fb(γ,µ , t = 0) ∝

nbδ (γ − γb)δ (µ −1).

The beam energy is defined as Wb =
∫

ε fbdp. The beam energy loss due to pitch-angle colli-

sions with plasma electrons is described by the friction term, dtW sa
b =−nbvbF(γb). It is propor-

tional to the Coulomb logarithm. The energy loss due to hard collisions with plasma electrons

is obtained from the ionization integral (3)

dtW la
b =−ν0nbγb(γ2

b −1)−1/2
∫ εb

εcut

[
(γ −1)−1 +(γ −1)/γ2

b
]

dε. (4)
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The integral over the energy has a logarithmic divergence at the lower limit εcut ¿ mec2, corre-

sponding to small angle collisions. Its contribution could be comparable to the LFP term.
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Figure 1: a) Production rate 2(ν0nb)
−1dtnb of secondary electrons for a beam propagating in a 5 keV

plasma as a function of the beam energy (vertical axis in MeV) and the energy cut-off parameter (hori-

zontal axis in keV). Isolines 1, 100, 500, 1000, 5000 mark the corresponding production rates. b) Relative

contribution (large over small angle scattering) to the momentum transfer rate. Same beam and plasma

parameters. Isolines present the levels of -1, -10, -100, -200, -300, -400 for this ratio.

As an example, we show in Fig. 1-a the ionization rate, that is, the evolution of the number of

beam electrons with time for the case of a 5 keV plasma. It decreases if the cut-off energy and

it increases with the energy of fast electrons. Both these effects can be easily understood if one

accounts for the fact that, even in the pitch angle scattering event, the secondary electron may

gain a significant energy. For this reason the choice of the cut-off energy is problem dependent.

It must be chosen in such a domain where the dependence of the secondary electron production

with respect to the cut-off energy is relatively weak.

We also analyzed the relative contribution of the ionization and slowing down mechanisms to

the total momentum gain, dtPb, where Pb =
∫

pz fbdp. The ratio of the momentum evolution due

to the small and large angle collisions, that is,
∫

C+
IO pzdp/

∫
CSD pzdp, is shown Fig. 1-b. The

dependence with respect to the energy cut-off parameter is strong, even if the integral over the

energies in Pb is less divergent than the ionization rate. Moreover, this ratio exhibits a negative

sign, which implies a positive contribution of secondary electrons into the beam momentum.

Large values of this ratio is the signature of the importance of the secondary electron production.

This work was supported by the Aquitaine Regional Council, and by the HiPER project.

References

[1] R. Duclous et al., Laser & Part. Beams 28, 165 (2010)

[2] E. Lifshitz and L. Pitayevski, Physical Kinetics, Pergamon, New York, 1981

[3] L. D. Landau and E. M. Lifshitz, Relativistic Quantum Mechanics, Pergamon, New York, 1973

[4] A. V. Gurevich, K. P. Zybin and R. Roussel-Dupré, Phys. Lett. A 237, 240 (1998)

37th EPS Conference on Plasma Physics P4.211


