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I ntroduction

Ignition target design in inertial confinement fusion (IG€)ies on accurate control of the
asymmetry growth due to hydrodynamic instabilities suctihesRayleigh-Taylor instability
(RTI) and the Richtmyer-Meshkov instability (RMI) [1, 2]a this contribution we focus on the
RMI developing at the ablation front (af-RMI) [3, 4] of lasieradiated targets, with the goal
of studying the evolution of perturbations as a functionaser intensity and perturbation
wavelength .

In the classical RMI (i.e. the instability occurring whentesosk crosses a corrugated inter-
face separating two different materials) asymptoticadlytprbations grow linearly in time [5].
When the instability occurs at an ablation front, insteastfyrbations with sufficiently short
wavelength oscillate and are rapidly damped [3, 4]. Theyilekh Besseld like behaviour.
Longer perturbations still grow.

Damping is essentially due to thermal conduction and isg¥fe on perturbations with mode
numberk = 271/A such thakD; > 1, whereD. is the distance spanning between critical density
for laser propagation and the ablation front, i.e. the theds of the layer where the laser-
deposited energy is transported to the ablation front bymiheconduction [3, 4]. This distance
depends on target material, laser wavelengtk,and intensityl. Here we consideb, or DT

targets and uv laser light, withager= 0.35 um.

Numerical aspects

We have conducted a numerical study via high resolution 2ftategian simulations, using
the DUED code [6], with a two-temperature model (radiatisindeed found to play a minor
role in the considered targets). An appropriate equatfestade is used. Thermal conduction
is described by a standard flux-limited model, with flux-limg coeffiicientf = 0.06 (sharp
cut-off). Laser light irradiates normally the target, asdbsorbed by inverse Bremsstrahlung.
We initialise single wavelength perturbations via surfemeéghness, or density inhomogeneity
in a specific target layer.

We used simulation meshes adequate to resolve the detdhie ablation layer, where the
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density scalelength can be extremely small, especialiatively modest laser irradiances. For
instance, in simulations with= 4 x 10'2 W /cn?, wherelLy, < 0.1 um, we used an initial mesh
spacing as small asx310~3 um (in the direction of the laser) in the region of the targeirig
the laser.

Care was also taken to filter numerical hour-glass meshlaiseiis without affecting the

behaviour of physical instabilities.

Thick targets: af-RT]

We have first considered thick targets, where such effedesedsthrough and feed-out, shock
reflection and target acceleration do not occur, and the RMabiour is easily evidenced. The
perturbation seed is surface corrugation. Simulatioreyneiy to aD, target and intensity =
4 x 10% clearly show (see Fig. 1) that ablation front perturbatioits wavelengthA < 40 um
oscillate with short period<{ 1 ns) and are rapidly damped. Perturbations wita 50-100um
decay slowly, while those with longar oscillate with amplitudes clearly exceeding the initial

value (see the curve far = 200 um in Fig. 1).
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Figure 1: Evolution of ablation front perturbations wittifdrent wavelengthd, for thick D2
targets, irradiated by flat pulse with intensity: 4 x 104 W/cn?. the initial surface roughness
perturbation has an amplitude&§ = 10 cm. Left frame: wavelengths = 10,20,40,80 um

; right frame: wavelengthd = 100,200 400um .

When the laser intensity is decreased (and then the cooduagjer shrinks), the wavelength
threshold for damping decreases as well. Figure 2, refgtarthe previous set-up, but intensity
| =4 x 1012 W/cm?, indeed shows that in this case perturbations Wit 10 um and 20um

oscillate with amplitude much larger than the initial one.
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Figure 2: Evolution of af-RTI. Same as Figure 3: Same as Fig. 1, but for perturba-
Fig. 1, but for laser intensity= 4 x 10'? tions with A = 20 um, seeded as density
Wien. inhomogeneity in a 5um thick layer at

depthsd from the target surface, from the

laser side.

It is to be noticed that when we consider a target with pelsfdlzit surfaces, but with a thin

inhomogeneous layer, we still observe damped oscillafi@n shock transit, as shown in Fig. 3.

Thin targets: af-RMI and af-RT]

Typical ICF direct-drive targets are thin shells, and arigeair by time-shaped laser pulses,
usually consisting of a relatively long foot, followed byanmp and a high-intenity plateau. The
foot drives a first shock, which causes af-RMI. When the wistlell is set to motion and is
accelerated by the main pulse, RTI occurs.

To get insight into this sequence of processes we have @mesic planaDT target with
parameters analogous to those of the (spherical) basafyet tonsidered in the HIPER project.
For the target see Ref. [7], for an updated pulse shape segBRand [9]. The foil we simulate
has thickness of 21um, initial density of 0.25 g/cthand temperature of 20 K. The foil is
first crossed by shocks and start accelerating after abostfibm the beginning of the laser

(foot)-pulse.
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Figure 4 shows the evolution of ablation

N
|

front perturbations withA = 10 ym and
40 um. Af-RMI oscillations are observed at

p—

t <7 ns, and RTI exponential growth for-
37 TW/em2 7 ns. The af-RMI thus contributes to seeding

laser intensity (1014W/cm?)

af-RTI. In this context, it should be observed

)

<
time (ns) 10 that shorter wavelengths (roughly< 20 um

. | | | | in the present case, corresponding to spher-

ical modes with mode numbér> 300) are
smoothed by RMI. This is an encouraging re-
sult for direct-drive ICF. We also notice that
adiabat-shaping techniques [10] can also be
used to reduce af-RMI and af-RTI growth as
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Figure 4: DT targets driven by a time-shapé’éﬂhiCh funds AM position. SA and AS grate-

pulse. Upper frame: laser intensity vs timé',JIIy acknowledge the support of the HIPER

lower frame: ablation front perturbations Witl’?rOjeCt and Preparatory Phase Funding Agen-
A = 10,40 um. Solid curves: thick target;CieS (EC, MSMT and STFC) in undertaking
this work. AS positions at CNISM is funded
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dashed curves: thin target.
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