37" EPS Conference on Plasma Physics P4.224

Linear stability analysis of an electron-radiative ablation front
2 C. Yaiiez, ?J. Sanz, ' M. Olazabal-Loumé
! CELIA, CEA-CNRS-Université de Bordeaux 1 , 33405 Talence cedex, FRANCE
2ETSI Aeronauticos, Universidad Politécnica de Madrid, Madrid 28040, SPAIN

Hydrodynamic instabilities remain one of the limiting factors in fusion performance
and efficiency. The ablation front of an inertial confinement fusion (ICF) imploding target is
subject to these instabilities. In particular, during the acceleration phase of implosion,
conditions for the development of the ablative Rayleigh-Taylor instability (RTI) occur.
Recent work has indicated that the use of moderate-Z ablators (CHBr) significantly improve
the hydrodynamic stability properties by reducing the growth of the abative RTI ). Besides,
glass ablators (SiO2) reduce target preheat %!, improving, therefore, target compression. The
structure of the ablation front (where hydrodynamic instabilities occur) is modified with the
use of moderate Z-ablators, where the absorption of radiation energy and electron heat fluxes
occur at two different locations. Thus, a structure of two ablation fronts separated by a region
of constant density (plateau) develops B This is called double ablation (DA) front. In the
second front (the outer one) both, radiation flux and electron heat flux, play a fundamental
role. Therefore, it is called electron-radiative ablation (ERA) front. In this work, we describe
the linear stability analysis of the ERA front.

In order to build up the model of study, some hypothesis are assumed
1) The ERA front shall be isolated to study its stability. Thus, a constraint on the
perturbation wavelength A is set. Only perturbations with a wavelength much shorter that
the plateau length are considered. That ensures the separation and the no-influence
between both ablation fronts.
i1) The flow is subsonic (M<<1). Therefore, the isobaric approximation (P=constant) is

used.

iii) Radiation temperature is constant and equal to matter termperature in the plateau =

The equations governing the problem are those of mass, momentum and energy conservation
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where an energy flux due to radiation is taken into account besides the electronic heat flux

with the Spitzer conductivity (k ~TY 2). The model chosen for the radiation transport is an

optically thin approximation with one spectral-average absorption coefficient, the Planck
mean opacity, Kp. In this way there can be distinguished three terms in the energy equation:
those corresponding to convection and electronic heat fluxes (LHS) and the radiative term
(RHS). This last one can be seen as a term of radiative losses since the temperature of
radiation is assumed constant. The set of equation is completed with the equation of state for

ideal gases. The acceleration g =ge, that appears in the momentum equation is the

acceleration of the imploding target.

Introducing the steady base flow V( y) =V, ( y)?

 in the system (1.1) and considering
that the density and temperature only depend on the spatial coordinate y, we arrive to the
equation of the order zero that reads
i[ﬁ—ﬁmd—gj:—ﬁ,(ﬁ“—l), (1.2)
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where O is the dimensionless temperature. A characteristic length comes naturally from the

equation, L, = (kﬂ;)/ ((5 / 2) Pvt) , that is used to form the dimensionless y-direction, . The

parameter that governs the equation is [3, which is a mesure of the relative importance of the

radiation energy flux in the problem
ﬁ[ =_" t Pt tt ) (13)

The condition for the development of a steep ERA is 3>1. This condition is fulfilled by the
use of moderate-Z ablators, for example for CHBr =6 and for SiO, =20. " The bigger

is B, the steeper becomes the ERA front. In this way, the use of moderate-Z ablators makes
the ERA front appear, and this structure is better defined when higher Z ablators are used.
Hydrodynamic instabilities are studied by perturbating the equations of the model to
determine whether small-amplitude perturbations have a tendency to either grow (be unstable)
or decay (be stable) in time. For a steady base flow, the decomposition
v(X,y, D)=V (y)tev,(x,y,t) can be adopted where v, (y) 1s the steady base flow, v, (x,y,t) the
perturbation and €<<l an amplitude parameter, considered small for linearisation. An
analogous expression is also adopted for the temperature T(x,y,t). Perturbation is expressed as

v, (x,y,t) =0,(y) exp(kx+yt), where k is the wavenumber of the perturbation and y the growth
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rate on time. Thus the condition for stability is Re(y)<0. The wavenumber for which Re(y)=0
is called the “cut-off”’. Wavenumbers bigger than the cut-off are stable. By linearising we

obtain a five-order linear differential equations system.

A. Numerical solution
The adopted approach for the stability is to solve an eigenvalue problem (EVP) for the
linearised perturbation equations. Modal analysis indicates that, in this problem, there are the
same bounded modes (2) in the limit /7 — —oo (left side) than unbounded modes in /7 — o
(right side). The boundary condition at the left is a linear combination of the bounded modes
at that side. The integration of the 5-order differential equations system leads to a solution that
explodes, since the unbounded modes at the right develop. Thus, the dispersion relation (the

relation between the growth rate y of a perturbation with wavenumber k) comes from the
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The effect of the parameter 3 is clearly stabilizing.

From B=5 (CHBr) to B=20 (SiO,), the cut-off

FIG. 1 Dispersion relation for G=1, q,=11/2

number 1S r factor of 4 and th
and different [ (B =5,10,20,50) wavenumber is reduced by a factor of 4 and the

maximum growth rate is divided by 2.

B. Analytical solution. Limit 3>>1

W

Intermediate Region

The bigger is [, the smaller are the unstable
wavenumbers. That allows us to separate the problem

into three regions: cold, intermediate and hot regions.

Cold Region Hot Region ] ) ]

(65~1) (05>>1) Each of them has different scaling laws that give us

1 - eyt information about the physics inside. The characteristic
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length of the problem is (k* )_] = ,87/ 2(4077) 5 1 where

FIG. 2 Dimensionless density profile with
the schematic representation of the three 5 = (Zq2 —1) / 4.
regions in which the problem is divided.

Thus, the normalization is ¥ =k'k and y= (k*)l/2 y. The analysis of the cold region leads to

the form of the analytic dispersion relation, but still with the unknowns of the mass flux and
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the total momentum in the matching region (C, and C,, respectively) that shall be
determined with the analysis of the hot region. The analysis of the intermediate region let us
make the matching between the cold and hot region. The analysis of the hot region gives us

the information to close the problem. In this region, the vector of state V can be decomposed:

v=vy(e)+eahi(a)+e(on, () +ar, (&), (14)
R ) 6 5-2n 8 9=4n V
where, &, E(k*)”k » y=0(1), & E(k*)”k » o<1, E, E(k*)mk » <1 and azfzo(l).

When all the coefficients corresponding to the mass flux and the total momentum (functions
with only €,-dependency) are computed, they are introduced into the expression coming from

the cold region to obtain the dispersion relation, that reads

1 _Anss 1 _ = 6 _dnts 8 _6n=s
V +y(k*)14k 2n C10+(k*)2 k(1+CH) _IEGI_'ug +k 2n C20 +(k*)14k 2n C21 _(k*)14k 2n . o (1 5)

1+ u, 1+u, 1+ u, o
where ,Ug = (k*)8/14 lgl/nézzg and e (k*)8/14 ]ngézza.

Notice that the factor (1—,ug) / (1+,ua) can be interpreted as the Atwood number of this

problem and that the coefficient C,, gives the dominant order for the cut-off wavenumber.
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FIG. 3 Comparison between the analytical and FIG. 4 Comparison between the analytical and the
numerical solutions of the cut-off wavenumber Vs B numerical solution of the dispersion relation for
for q,=11/2 and different values of G. G=5, =20 and q,=11/2.

Linear stability theory for an electron-radiative ablation front is presented. Radiation
losses, modelized by the parameter 3, stabilize the ERA front. The bigger is 3, the more stable
behaviour of the ERA front is found. An expression for the dispersion relation is obtained, in

good agreement with the numerical results.
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