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Hydrodynamic instabilities remain one of the limiting factors in fusion performance 

and efficiency. The ablation front of an inertial confinement fusion (ICF) imploding target is 

subject to these instabilities. In particular, during the acceleration phase of implosion, 

conditions for the development of the ablative Rayleigh-Taylor instability (RTI) occur. 

Recent work has indicated that the use of moderate-Z ablators (CHBr) significantly improve 

the hydrodynamic stability properties by reducing the growth of the abative RTI 
[1]

. Besides, 

glass ablators (SiO2) reduce target preheat 
[2]

, improving, therefore, target compression. The 

structure of the ablation front (where hydrodynamic instabilities occur) is modified with the 

use of moderate Z-ablators, where the absorption of radiation energy and electron heat fluxes 

occur at two different locations. Thus, a structure of two ablation fronts separated by a region 

of constant density (plateau) develops 
[3]

.  This is called double ablation (DA) front. In the 

second front (the outer one) both, radiation flux and electron heat flux, play a fundamental 

role. Therefore, it is called electron-radiative ablation (ERA) front.  In this work, we describe 

the linear stability analysis of  the ERA front.  

In order to build up the model of study, some hypothesis are assumed 

i) The ERA front shall be isolated to study its stability. Thus, a constraint on the 

perturbation wavelength λ is set. Only perturbations with a wavelength much shorter that 

the plateau length are considered. That ensures the separation and the no-influence 

between both ablation fronts. 

ii) The flow is subsonic (M<<1). Therefore, the isobaric approximation (P=constant) is 

used. 

iii) Radiation temperature is constant and equal to matter termperature in the plateau 
[3]

 .  

The equations governing the problem are those of mass, momentum and energy conservation 
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where an energy flux due to radiation is taken into account besides the electronic heat flux 

with the Spitzer conductivity ( )5/2k T∼ . The model chosen for the radiation transport is an 

optically thin approximation with one spectral-average absorption coefficient, the Planck 

mean opacity, KP. In this way there can be distinguished three terms in the energy equation: 

those corresponding to convection and electronic heat fluxes (LHS) and the radiative term 

(RHS). This last one can be seen as a term of radiative losses since the temperature of 

radiation is assumed constant. The set of equation is completed with the equation of state for 

ideal gases. The acceleration yg g e=  that appears in the momentum equation is the 

acceleration of the imploding target. 

Introducing the steady base flow ( ) ( )0 yv y v y e=  in the system (1.1) and considering 

that the density and temperature only depend on the spatial coordinate y, we arrive to the 

equation of  the order zero that reads 

 ( )5/2 4
1

t

d d

d d

θθ θ β θ
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, (1.2) 

where θ is the dimensionless temperature. A characteristic length comes naturally from the 

equation, ( ) ( )( )/ 5 / 2sp t t tL k T Pv=  , that is used to form the dimensionless y-direction, η. The 

parameter that governs the equation is β, which is a mesure of the relative importance of the 

radiation energy flux in the  problem 
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The condition for the development of a steep ERA is β>1. This condition is fulfilled by the 

use of moderate-Z ablators, for example for CHBr 6β ≃  and for SiO2 20β ≃ . 
[3] 

The bigger 

is β, the steeper becomes the ERA front. In this way, the use of moderate-Z ablators makes 

the ERA front appear, and this structure is better defined when higher Z ablators are used. 

Hydrodynamic instabilities are studied by perturbating the equations of the model to 

determine whether small-amplitude perturbations have a tendency to either grow (be unstable) 

or decay (be stable) in time. For a steady base flow, the decomposition 

v(x,y,t)=v0(y)+εv1(x,y,t) can be adopted where v0 (y) is the steady base flow, v1 (x,y,t) the 

perturbation and ε<<1 an amplitude parameter, considered small for linearisation. An 

analogous expression is also adopted for the temperature T(x,y,t). Perturbation is expressed as 

v1 (x,y,t) =û1(y) exp(kx+γt), where k is the wavenumber of the perturbation and γ the growth 
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rate on time. Thus the condition for stability is Re(γ)<0. The wavenumber for which Re(γ)=0 

is called the “cut-off”. Wavenumbers bigger than the cut-off are stable. By linearising we 

obtain a five-order linear differential equations system. 

 

A. Numerical solution 

The adopted approach for the stability is to solve an eigenvalue problem (EVP) for the 

linearised perturbation equations. Modal analysis indicates that, in this problem, there are the 

same bounded modes (2) in the limit η → −∞  (left side) than unbounded modes in η → ∞  

(right side). The boundary condition at the left is a linear combination of the bounded modes 

at that side. The integration of the 5-order differential equations system leads to a solution that 

explodes, since the unbounded modes at the right develop. Thus, the dispersion relation (the  

relation  between  the  growth  rate  γ  of  a  perturbation with  wavenumber k) comes from the   
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FIG. 1 Dispersion relation for G=1, q2=11/2 

and different ββββ (ββββ =5,10,20,50) 

the compatibility equation
[4]-[5]

, which imposes the 

solution to be bounded at the right side as well. The 

solution depends on 3 parameters: β, q2 and the 

inverse of the Froude number ( ) 2

sp tG gL v= .  

The effect of the parameter β is clearly stabilizing. 

From β=5 (CHBr) to β=20 (SiO2), the cut-off 

wavenumber is reduced by a factor of 4 and the 

maximum growth rate is divided by 2. 

 

 B. Analytical solution. Limit β>>1 
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FIG. 2 Dimensionless density profile with 

the schematic representation of the three 

regions in which the problem is divided. 

The bigger is β, the smaller are the unstable 

wavenumbers. That allows us to separate the problem 

into three regions: cold, intermediate and hot regions. 

Each of them has different scaling laws that give us 

information about the physics inside. The characteristic 

length of the problem is ( ) ( )n
k

-1 7 2 4 -7* ª b à1where 

( )22 1 4n q= − .  

Thus, the normalization is *k̂ k k= ɶ  and ( )1/2
*ˆ kγ γ= ɶ . The analysis of the cold region leads to 

the form of the analytic dispersion relation, but still with the unknowns of the mass flux and 
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the total momentum in the matching  region (C1   and   C2,   respectively)   that   shall   be 

determined with the analysis of the hot region. The analysis of the  intermediate region let us 

make the matching between the cold and hot region. The analysis of the hot region gives us 

the information to close the problem. In this region, the vector of state V can be decomposed: 

 ( ) ( ) ( ) ( )( )0 0 1 1 0 2 2 0 2 0gV V V GV V αε ε ε ε ε α ε= + + + , (1.4) 

where, ( )
( )
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When all the coefficients corresponding to the mass flux and the total momentum (functions 

with only ε0-dependency) are computed, they are introduced into the expression coming from 

the cold region to obtain the dispersion relation, that reads  

( ) ( ) ( ) ( ) ( )
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where ( )8/14
* 1/

22

n

g gk k Cµ ≡ ɶ ɶ  and ( )8/14
* 1/

22

nk k Cα αµ ≡ ɶ ɶ . 

Notice that the factor ( ) ( )1 1g αµ µ− +  can be interpreted as the Atwood number of this 

problem  and that the coefficient 
20
Cɶ  gives the dominant order for the cut-off wavenumber. 

 

 

FIG. 3 Comparison between the analytical and 

numerical solutions of the cut-off wavenumber Vs ββββ 
for q2=11/2 and different values of G. 

 

FIG. 4 Comparison between the analytical and the 

numerical solution of the dispersion relation for 

G=5, ββββ=20 and q2=11/2. 

 

Linear stability theory for an electron-radiative ablation front is presented. Radiation 

losses, modelized by the parameter β, stabilize the ERA front. The bigger is β, the more stable 

behaviour of the ERA front is found. An expression for the dispersion relation is obtained, in 

good agreement with the numerical results. 
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