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1. Plasma process control simulation

Figure 1. is a schematic of closed loop control of a plasma process simulation. The Ar/O5/C4Fg global
model is adapted from the chemistry sets contained in [1], [4] and [7]. Each mass flow controller (MFC)
is modelled as a first order linear transfer function, which has been determined from the step response
of a commercial MFC. The relationship between the forward power P, and the power P deposited
in the plasma is modelled using an impedance model and a matching circuit. Transport delays, which
have a destabilising effect on control loops, should be included in any simulation. Given (simulated)
measurements from the plasma, the controller is required to adjust the flow rate set points 7, and
F¢,pg 1n order to maintain no and np at the set points ny, and n}., respectively, despite the effects of
process disturbances.
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Figure 1. Plasma process control simulation
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2. The transfer function for atomic oxygen density

The relationship between Fp, and np may be approximated by the linear transfer function

no(s) Ko 0
Foo(s)  $Tpes + 17

where T, is the residence time and K is the process gain. The relationship between Fe and F5,, may

be expressed in the form
Foa(s) g~ 50m

Fho(s)  stm+1’
where 7, is the characteristic rise time of the MFC and 6,, is a transport delay. Equations (1) and (2)
yield the process model
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3. Closed loop control of atomic oxygen

Go(s)

G defines a second order plus dead time process, which may controlled very effectively with a
Proportional-Integral-Derivative (PID) controller, the transfer function of which may be expressed in the
form

GJ@:;K(1+¥L+wa, )

TIS
where K. is the controller gain, and 7; and 7 are the integration and differentiation time constants,
respectively. The Direct Synthesis PID settings are [5]
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TI = Tm T Tress TD = T+ Tres,

where 7, is the rise time of the desired closed loop transfer function. With 7; and 7 given by (6), it may
be shown using the Nyquist stability criterion that the closed loop transfer function is stable if and only
if 0 < K. < K, where

1 7 (Tres + i)
Ko 20,

The gain margin, GM = K, /K. is a measure of closed loop stability robustness, and with K. given by
),

K, (7)

GM:gﬂ+nwm. 8)

For a given 6,,, the closed loop time constant 7. must be sufficiently large to guarantee robustness.
Te = O, yields GM = 7 in (8), which is within range GM = 1.7 - 4 recommended in [5].

4. Estimation of atomic oxygen density from spectroscopic measurements using a Kalman filter
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Actinometry offers a non-intrusive method for estimating the atomic oxygen density in oxygen-
containing plasmas [3]. The emission intensity of the 777nm and 844nm lines may be expressed in
the form

IO X kean + kdemn027 (9)

where k., and kg, are the direct and dissociative excitation rate constants, respectively. Where the
dissociation fraction is small, it is clear from (9) that a significant portion of /o may be due to dissociative
excitation. An analagous situation exists in chlorine plasmas and a possible solution to this problem was
proposed in [2], where an extended Kalman filter was used to estimate atomic chlorine density. Using
the same approach as [2], a Kalman filter may be designed based on the state space process model

dn n
2 _ koaFoa — -2 + wo2
dt TTGS
dn n
—2 = koFos — =2 +wo
dt Tres
dkoy w
7t kO2
dko W
dt kO,
Ivir = kegrino + Kdex, 77702 + V777

Isss = kepgaano + Kdez 844M02 + Usa,

where (nop2 no2 ko2 ko), (Wos wos Wros wro)' and (vr77 vsyy) are the state, process noise and mea-
surement noise vectors, respectively. The Kalman gain may be derived from the process model and noise
statistics [6]. The process gain estimate may be used to adjust the PID controller gain according to (5),
in order to maintain a sufficient gain margin.

5. Estimation and control of fluorine density

The relationship between F, ¢ and nr may be approximated by the transfer function

B np(s) B Kpe=50m
Cr) = o™~ Grnt Doma t 1) 10

where K is a gain term. The transfer functions (3) and (10) differ only in the process gain. Hence, a
PID controller with the time constants given by (6) and a gain term given by

1 Tm + Tres
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(11)
may be used to control np.

6. Results and conclusions

The closed loop responses of atomic oxygen and atomic chlorine to set point changes (shown dashed)
and a wall disturbance, represented by a doubling of the atomic oxygen wall recombination coefficient
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at 25s, are shown below. The model parameters used were 7,.; =50ms, 7,, =120ms 6, = 80ms,
T. = Tm. The closed loop response is seen to be stable with a slight overshoot. In practice, 6,, may
be significantly larger than 80ms and systems with large time delays are difficult to control with a PID
controller alone. For such systems, an approach such as dead time compensation may be appropriate
[5]. In addition, it clear that significant interaction exists between the loops. This interaction may be
reduced using decoupling control [5].
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