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Abstract

We describe the effects of the electron trapping due to the background ions in a Rydberg

plasma. In the early stages, the ions are not thermalized andobey a Gaussian spatial profile,

trapping the coldest electrons. In the present work, we provide expressions for both the

electrostatic potential and the electron spatial profiles in two different regimes. We show

that in the strong confinement regimeΦ � T/e, a Rydberg plasma can be described by a

Thomas-Fermi potential, similar to that obtained for heavyatomic species.

It is a well known fact that plasmas can exist in an extraordinary variety of environments and

span a great range of densities and temperatures, but the discipline of plasma physics has mainly

focused on the high temperature regimes. Indeed, because the collision energies necessary to

ionize atoms and molecules are usually high, plasmas tend tobe hot. However, a new plasma

regime has emerged in the laboratory in the recent years - theultracold plasma - where the

electrons temperature range from 1-100 K [1, 2, 3]. Such plasmas are obtained through either

spontaneous [4] or photoionization mechanism [1]. In the first, high quantum number electronic

states (Rydberg states) become populated and because of itshuge polarizability, the atoms ion-

izes giving place to a Rydberg plasma. On the other hand, and more usually, ultracold plasmas

are formed through the ionization of atoms or molecules thathave been previously cooled well

below the 1 K (typically, the temperature is of the order of few hundreds ofµK for alkali atoms

in magneto-optical traps [5, 6]). Such a cold initial sampleis then exposed to a 10-ns laser pulse

tuned near the ionization threshold, producing a ultracoldplasma with a number density ranging

from 1010 to 1014 cm−3. In the recent years, much effort has been put forward to understand the

features of such ultracold plasmas [7, 8, 9, 10].

In the present paper, we derive expressions for the total electrostatic potential in a Rydberg

plasma. The main aim here is to show that the effects of the electron trapping lead to a model

which is very similar to the well-known Thomas-Fermi model for heavy atomic systems [11].

When the trapped electron population dominates over the ”free” electrons, the Rydberg plasma

qualitatively looks like a giant atom, where the ions play the role of a nucleus and the electrons
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compose the electronic cloud. In the present work, however,we remain in the qualitative picture,

but the question of how the electronic energy states are distributed certainly deserves attention

in the future.

We start with the Poisson equation describing the potentialin a Rydberg plasma

∇2Φ =
e
n0

(ne−ni) , (1)

wherene(i) represents the electron (ion) number density, which is related with the probability

distribution fα(r,v) (α = e, i) as

nα =
∫

fα(r,v)dv. (2)

In the early stages of the plasma, right after the photoionization takes place, the ions are ap-

proximately described by a Gaussian profile, associated with the neutral atoms confined in the

magneto-optical trap (MOT)

ni = n0e−(r/σ)2. (3)

Those ions will create an electrostatic potentialΦ > 0, in such way that the classical energy of

the electrons will be given by

Ee(r,v) =
1
2

mev
2−eΦ(r). (4)

We immediately observe that the energy can be negative, which is due to the trapping effect

of the electrons. Such a trapping occurs for electron velocities satisfying the conditionv< vt ,

where the trapping velocity is given by

vt =

√
2

me
e|Φ|. (5)

Putting Eqs. (1-3) together, and definingφ = e|Φ|/Te, we can write

∇2φ =
1

λ 2
D

(
ne

n0
−e−(r/σ)2

)
, (6)

whereλD = vth/ωp, whereωp = (e2n0/ε0me)
1/2 is the electron plasma frequency andvth =

√
T/me is the electron thermal velocity. While the ”free” (or, moreprecisely, the untrapped

electrons withve > vt) electrons follow the Boltzmann distribution associated with the energy

Eq. (4), the trapped ones approximately follow an uniform distribution, since we assume that

the latter cannot leave the trapping radiusR∼ σ (at least at the early stages of the plasma, for
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which the present calculations are valid). Therefore, the electron density can be determined as

follows

ne

n0
=

4√
π

[∫ ut

0
u2du+

∫ ∞

ut

e−(u2−φ)u2du

]
, (7)

where we have used the dimensionless velocityu= v/vth. Using Eqs. (6) and (7), we can obtain

a general expression for the electrostatic potential that casts the effects of the electron trapping

∇2φ =
1

λ 2
D

(
4

3
√

π
φ3/2− f (φ)−e−(r/σ)2

)
, (8)

where thef (φ) is given by

f (φ) = eφ
(

1− 4√
π

∫ √
φ

0
e−u2

u2du

)
. (9)

The result in Eq. (8) is very hard to solve for general case. Fortunately, approximated expression

can be provided in some limiting cases. Therefore, for weak trapping potentialφ � 1, f (φ) ≈
1− 4

3
√

π φ3/2+φ − 8
15
√

π φ5/2 and the potential can be approximately by

∇2φ =
1

λ 2
D

[
1+φ − 8

15
√

π
φ5/2−e−(r/σ)2

]
. (10)

On the strong confinement case,φ � 1, f (φ)≈ 0 and the potential yields

∇2φ =
1

λ 2
D

[
4

3
√

π
φ3/2−e−(r/σ)2

]
. (11)

This is the main result of the paper. In the strong confinementregime, we obtain an expression

which is very similar to the Thomas-Fermi potential obtained for heavy atomic species. The

only difference is rooted in the fact that here the ions are not homogeneously distributed, and

therefore we have included the ion inhomogeneity, which makes the model more suitable to

describe the physical situation in a Rydberg plasma. In order to solve the latter equation nu-

merically, we define the dimensionless variableρ = r/λD and the reduced potentialψ = ρφ .

Notice that theψ represents the potential relative to the Coulomb potentialφCoul ∼ 1/ρ , such

thatψ = 1 for an unscreened plasma. In the present, we restrict the discussion to the case of a

spherically symmetric plasma, such that the laplacian contains only the radial derivatives. Due

to the trapping effects, the resulting potential significantly differs from the Coulomb case, as it

can be observed in Fig. (1). The corresponding electron profile is not a gaussian one. Indeed,

the numerical simulations reveal thatne decays very quickly as a function ofr and turns out

that the majority of the electrons are trapped inside the radius R∼ σ defined by the width of
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the ion profileni . Such results suggest that the ions can efficiently trap a fraction of the electron

population inside their cloud.

In conclusion, we have established the electrostatic potential in an electron-ion Rydberg

plasma. Because a fraction of the electron population is sufficiently cold to remain inside the

ion cloud, the Boltzmann statistics does not hold generally. Casting the effects of the electron

trapping, we derived a nonlinear equation to describe the potential which reduces to the case of

a Thomas-Fermi potential obtained in a different context todescribe heavy atomic systems in

the semi-classical regime.
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Figure 1: a) Thomas-Fermi potential ob-

tained in the strong trap regimeφ � 1

for two different ion Gaussian profiles:

σ = λD, (dashed line) andσ = 0.5λD (full

line. b) Ion (dashed lines) and electron

(full lines) profiles in the early stages of

a Rydberg plasma:σ = λD (black lines)

andσ = 0.5λD (red lines).
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