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Abstract

We discuss the combined effects of both electrons and neutral atoms of a partially ion-

ized Rydberg gas on the dispersion of electromagnetic waves. Within the two-level approx-

imation, we derive the expression for the resulting light-plasmon-atom polariton dispersion

relation and discuss the possibility of occurrence of slow-light phenomena in such media.

In recent years, there has been a growing interest in the physics of of ultracold plasmas, where

the electron temperature ranges from 1-100 K [1, 2, 3]. Such plasmas are obtained either via

spontaneous [4, 5] of photoionization mechanisms [6]. In the first case, the atoms are excited

up to high quantum number electronic states (the so-called Rydber states) and spontaneously

ionized, giving origin to ultracold neutral plasmas, or Rydberg plasmas [8, 9]. Under the typical

experimental conditions, such a plasma consists of a partially ionized gas, where both electrons,

ions and neutral atoms coexist. Much effort has been put forward in order to understand the for-

mation and dynamics of these ultracold plasmas [5, 7], but the study of their optical properties

still remains an open issue. Motivated by this fact and taking advantage of such a rich environ-

ment, we extend the results of our previous work [8] and discuss the quantum effects introduced

by the atomic saturation (atomic Rabi oscillation) on the dispersion relation of electromagnetic

(EM) waves. We show that a polariton-like dispersion relation arises in Rydberg plasmas due to

the combined effect of electrons and atoms.

The starting point is the EM wave equation in a partially ionized Rydberg gas, which reads

(
∇2 − 1

c2
∂ 2

∂ t2

)
E = µ0

∂ 2P
∂ t2 − µ0

∂J
∂ t

, (1)

where J = −en0ve is the electronic current and P is the total polarization vector. Because the

Rydberg atoms also respond to the EM wave, the total polarization is given by

P = ε0 (χe + χa)E, (2)

with χe and χa standing for the medium electronic and atomic susceptibilities, respectively.

Here, we have considered that the gas is homogeneous and isotropic, which is a good approx-

imation for the bulk of the system, for which this theory is meant to be valid. The electron
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susceptibility can be split into its real and imaginary parts which, after solving the associated

equation of motion, yields

χ ′
e(ω) = −

ω2
p

ω2 +ν2
e
, χ ′′

e =
νe

ωp
χ ′

e, (3)

where ωp =
√

e2n0/ε0m is the plasma frequency and νe represents the collision frequency

between the electrons and the atoms. In order to properly compute the atomic susceptibility,

one should go beyond the classical Lorentz-Lorenz model for the atomic susceptibility and take

into account the internal electronic structure of the atom. Therefore, we consider the two-level

model, where the atom state |ψ〉 is spanned in the basis of |g〉 and |e〉, which respectively

represent the ground and the excited states. Here, we consider that the two-level structure of

a Rydberg atom can be described by two successive quantum states |g〉=|n〉 and |e〉=|n + 1〉,
where n is the principal quantum number. Since n � 1 in such gases, the energy associated with

each quantum number can be approximately given by

En = −Ry
n2 , n > 1, (4)

where Ry = 13.6 eV is the Rydberg constant. The dominant contribution for the atomic sus-

ceptibility will, therefore, come from the radiative transition of energy h̄ωa = En+1 −En which,

from Eq. (4), immediately reads ωa ≈ 2Ry/h̄n3.

In the semi-classical theory of light-matter interaction [10], the dipole moment of each atom

is defined as µµµa = −e〈n|r|n + 1〉, where r is the electron displacement vector inside the atom.

The overall atomic polarization Pa = na〈µµµa〉, where na is the atomic number density and the

average operation is defined as 〈µµµa〉 = 〈ψ |µµµa|ψ〉. Solving the Schrödinger equation for the state

|ψ〉, and using the relation between P and E expressed in Eq. (2), one obtains

χ ′
a =

naµ2
a

h̄ε0

δ − iΓ
δ 2 +Γ2 +Ω2 , χ ′′

a =
Γ
ω

χ ′
a, (5)

where δ = ω −ωa is the EM wave detuning, Γ is the natural linewidth of the atomic transition

and Ω = µµµa · E0/h̄ represents the Rabi frequency, which accounts for the quantum effects of

the atomic saturation due to the EM field. Defining the dimensionless oscillator strength fa =

meωa|〈n|r|n+1〉|2/h̄ and expressing the difference between the two atomic populations as D =

N(n+1)
a −N(n)

a , we can finally write

χ ′
a = −τa

ω2
pδ

δ 2 +Γ2 +Ω2 , (6)
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where τa = faDna/n0ωa has the dimensions of a time and can be positive or negative depending

on the relative population of the states |n〉 and |n + 1〉. Therefore, if the excited state is more

populated, one obtains τa > 0.

After Fourier transform the EM wave equation (1)

k2c2

ω2 = ε(ω) = 1+ χe(ω)+ χa(ω) (7)

and putting Eqs. (3), (6) and (7) together, we obtain the resulting polariton dispersion relation

ω2 = k2c2 +ω2
p

[
ω2

ω2 +ν2
e

+ τa
ω2(ω −ωa)

Γ2 +Ω2 +(ω −ωa)2

]
. (8)

Under typical experimental conditions [11], it is estimated an electron-atom collision frequency

of νe/2π ∼ 100 MHz. The typical plasma frequency ωp/2π ∼ 1 GHz (for an electron density

of n0 ∼ 109 cm−3) and the atomic frequency ω/2π ∼ 10 GHz (for n ranging from 40-50) both

belong to the microwave range, which allow us to neglect ve in the dispersion relation. We also

consider that Γ is small compared to both ωa and ωp, finally writing the lossless light-electron-

atom polariton dispersion relation, accounting for the quantum saturation

ω2 ≈ k2c2 +ω2
p

[
1+ τa

ω2(ω −ωa)

Ω2 +(ω −ωa)2

]
. (9)

This is the main result of the paper. The main features of the polaritonic dispersion Eq. (9) are

summarized in Fig. (1). First, it is shown that in the presence o Rydberg atoms significantly

changes the character of the wave, giving origin to new branches in the dispersion relation

of the EM waves in the microwave range. Sencond, by allowing the atoms to be sensitive to

the field intensity (i.e., by setting Ω > 0), we observe the emergence of a third pice in the

dispersion, with frequencies ranging between the values of the two principal branches. The

interesting aspect of this (let us say) ”new” curve is that of describing waves with very low

group velocities compared to the speed of light (∂ω/∂k � c), as uncommonly expected to be

observed in typical laboratory or space plasmas (at least for small wavelengths). This suggests

that Rydberg plasmas may be a good candidate to observe slow-light phenomena, which is

known to be a feature of major importance in photonic crystals. Moreover, we observe that the

increasing of Ω tends to suppress the polaritonic (or hybrid) nature of the wave, in particular

the slow-light effect. Indeed, for higher values of Ω, the dispersion relation Eq. (9) approaches

to ω2 ≈ k2c2 + ω2
p(1 + τaω2(ω − ωa)), which explains the suppression of the slow-light band

around ω ∼ ωa.

In conclusion, we have derived the dispersion relation for the electromagnetic waves in a

37th EPS Conference on Plasma Physics P4.328



partially ionized ultracold Rydberg plasma. Taking into account the presence of the atoms and

using a two-level description to cast the quantum mechanical effects of both the radiative tran-

sition and saturation, we show that a coupling between the light and the atoms exists, differing

from the usual electromagnetic wave dispersion relation. The resulting polaritonic dispersion

exhibits new branches and, in particular, suggests that Rydberg plasmas can provide a stage to

observe slow-light phenomena.
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Figure 1: Polariton dispersion relation in

a Rydberg plasma, obtained for ωa = 6ωp

and a inverted-population parameter τa =

0.5ω−1
p . a) Ω = 0, b) Ω = 0.1ωp and c)

Ω = 0.5ωp. In the above plots, the thin

dashed line represents the usual EM wave

dispersion relation ω2 = ω2
p + k2c2.
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