
Particle-in-cell simulation of collisional plasmas using multi-processor

architectures

Miles M. Turnerand Huw Leggate

School of Physical Sciences and National Centre for Plasma Science and Technology,

Dublin City University, Dublin 9, Republic of Ireland

Abstract

The low-temperature plasma physics community often employs particle-in-cell simulation in

conjunction with Monte Carlo collisions, typically to model the interaction between the plasma

and a background neutral gas, although more general collisional interactions can be handled

as well. The use of this attractive procedure is limited by the computational cost. This paper

describes various methods for accelerating particle-in-cell simulations using commodity com-

puter hardware.

Introduction

Particle-in-cell simulation is widely used for modelling low-temperature plasma phenomena

[1]. The attraction of the method is that it entails no assumptions about the form of particle dis-

tribution functions, or the nature of their interactions with the electromagnetic fields. This is use-

ful, because plasma discharges often feature exotically non-Maxwellian distribution functions,

and violently non-equilibrium interactions between the charged particles and the fields. The

purpose of the present paper is to explore the use of modern desktop computers for particle-in-

cell simulation. Such computers typically feature multiple processors, and multiple cores within

processors, combined with a hierarchical memory structure. This usually means that a relatively

capacious main memory is shared by all the processors, whileeach processor or core has one or

more local memories, with less capacity but greater speed. Moreover, most modern processors

have some capability for so-called single instruction multiple data (SIMD) operations, a kind

of vectorisation. The approach discussed in this paper has three elements: (1) A reorganistion

of the simulation data structure, with the twin aims of reducing memory bandwidth usage and

facilitating vectorisation (2) introducing SIMD instructions to speed processing of particles and

(3) using OpenMP constructions to enable multiple cores to be used. The combination of these

measures can accelerate the simulation by as much as a factorof thirteen, and by a factor of ten

over a wide range of conditions, on a common hardware configuration with two processors and

eight cores.

37th EPS Conference on Plasma Physics P4.329

Data structure and vectorization

The natural data structure for a particle-in-cell simulation is a set of arrays, each storing one

of the particle coordinates, with no correlation between the logical position of a particle in the

array and the physical location of the same particle in the simulated spatial region. The compu-

tational cycle of a particle-in-cell simulation consists of data transfers from particle positions to

spatial mesh points and back again. If the particles are processed in sequential order, this leads

to a random pattern of access to the mesh point data. Not only will this produce much movement

of mesh data through the memory hierarchy, but vectorisation is impeded by simultaneous ac-

cesses to the same mesh location. These issues are addressedby introducing a data structure that

associates particles with cells. We can then process all theparticles belonging to a given cell in

a group, and the mesh data can be stored in registers, economising on both memory bandwidth

and pointer arithmetic when loading mesh data. This approach also facilitates vectorisation.

Although there are other possibilities [2, 3], the data structure we have adopted is an unrolled

linked list, a hybrid approach in which an array of data is stored at each node of a linked list. Of

course, particles move between cells, and work is required to maintain the data structure. This is

equivalent to sorting the particles, but this is a tolerablecomputational burden. Fig. 1 compares

an orthodox particle-in-cell implementation with the present approach, for a simple case with

one real space and one velocity space dimension. For a reasonably large number of particles per

cell (NC & 100), the improvement achieved is about 20 % for the new data structure only, and

about 50 % when vectorisation is also used. The orthodox implementation cannot be vectorised,

for reasons already remarked. Maintaining the sorted data structure consumes 30-40 % of the

computation time, with the implication that better resultscan be expected for more elaborate

models, such as those involving three velocity components and magnetic fields.

Parallelisation

OpenMP [4] offers a lightweight framework for introducing parallelism into programs de-

signed for shared memory architectures. The approach discussed above lends itself readily to

parallisation using OpenMP, which can be combined with MPI to exploit systems that combine

shared and distributed memory. Results obtained in this wayare shown in Figs. 2 and 3. Fig. 3

shows that there is a regime where a superlinear speedup is obtained. This occurs because the

available cache memory is increased by using more cores.

Conclusions

The methods employed here combine to produce a speedup that is in excess of thirteen at

best, and above ten over a useful range of problem sizes. Moremodern hardware, with better

37th EPS Conference on Plasma Physics P4.329

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10 100

P
ro

ce
ss

in
g

R
at

e
(

10
6 s

-1
)

Data size / Cache size

Conventional implementation
Sorted particles

Sorted particles and SSE

Figure 1: An orthodox particle-in-cell implementation with particle data stored in unsorted ar-

rays compared with the present approach both with and without hardware vectorisation using

SSE[5].

main memory bandwidth, would probably extend this range. Greater speedups are also likely to

be obtained in conjunction with computationally more complex algorithms, because the book

keeping will be a smaller proportion of the computational burden.

Acknowledgment

This work was supported by Science Foundation Ireland undergrant 07/IN.1/I907 and by

Association EURATOM-DCU.

References

[1] C. K. Birdsall. Particle-in-cell charged-particle simulations, plus Monte Carlo collisions

with neutral atoms, PIC-MCC.IEEE Trans. Plasma Sci., 19(2):65–85, April 1991.

[2] K. J. Bowers. Accelerating a particle-in-cell simulation using a hybrid counting sort.J.

Comp. Phys., 173(2):393–411, November 2001.

[3] D. Tskhakaya and R. Schneider. Optimisation of PIC codesby improved memory manage-

ment.J. Comp. Phys., 225(1):829–839, July 2007.

[4] The OpenMP API specification for parallel programming, 2008. URLhttp://www.openmp.org.

[5] Intel 64 and IA-32 architectures opimization referencemanual, November 2009.

37th EPS Conference on Plasma Physics P4.329

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0.01 0.1 1 10 100

P
ro

ce
ss

in
g

R
at

e
(

10
6 s

-1
)

Data size / Cache size

1 core
2 cores
4 cores
8 cores

Figure 2: The present approach with parallelism using OpenMP, showing performance on a

varying number of processor cores.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.01 0.1 1 10 100

P
ar

al
le

l E
ffi

ci
en

cy

Data Size / L2 Cache Size

2 cores
4 cores
8 cores

Figure 3: The same data as in Fig. 2, represented as parallel efficiency with respect to execution

on a single core.

37th EPS Conference on Plasma Physics P4.329

