37'" EPS Conference on Plasma Physics o] » P4.329
Particle-in-cell ssimulation or collisional plasmas using multi-processor

architectures

Miles M. Turnerand Huw Leggate

School of Physical Sciences and National Centre for Plasma Science and Technol ogy,

Dublin City University, Dublin 9, Republic of Ireland

Abstract

The low-temperature plasma physics community often engpfm@yticle-in-cell simulation in
conjunction with Monte Carlo collisions, typically to mddke interaction between the plasma
and a background neutral gas, although more general ooléisinteractions can be handled
as well. The use of this attractive procedure is limited by ¢bmputational cost. This paper
describes various methods for accelerating particleelhstmulations using commodity com-
puter hardware.

I ntroduction

Particle-in-cell simulation is widely used for modellingn-temperature plasma phenomena
[1]. The attraction of the method is that it entails no asstimmg about the form of particle dis-
tribution functions, or the nature of their interactionsiwthe electromagnetic fields. This is use-
ful, because plasma discharges often feature exoticaftyiaxwellian distribution functions,
and violently non-equilibrium interactions between tharged particles and the fields. The
purpose of the present paper is to explore the use of modsktaecomputers for particle-in-
cell simulation. Such computers typically feature mutiprocessors, and multiple cores within
processors, combined with a hierarchical memory struciirs usually means that a relatively
capacious main memory is shared by all the processors, edutlle processor or core has one or
more local memories, with less capacity but greater speede®der, most modern processors
have some capability for so-called single instruction iplédtdata (SIMD) operations, a kind
of vectorisation. The approach discussed in this papertras elements: (1) A reorganistion
of the simulation data structure, with the twin aims of radganemory bandwidth usage and
facilitating vectorisation (2) introducing SIMD instruehs to speed processing of particles and
(3) using OpenMP constructions to enable multiple corestaded. The combination of these
measures can accelerate the simulation by as much as adathateen, and by a factor of ten
over a wide range of conditions, on a common hardware coraigur with two processors and

eight cores.

37" EPS Conference on Plasma Physics P4.329
Data structure and vectorization

The natural data structure for a particle-in-cell simalatis a set of arrays, each storing one
of the particle coordinates, with no correlation betweanltgical position of a particle in the
array and the physical location of the same particle in threikited spatial region. The compu-
tational cycle of a particle-in-cell simulation consistglata transfers from particle positions to
spatial mesh points and back again. If the particles areggsmrl in sequential order, this leads
to arandom pattern of access to the mesh point data. Not daththis produce much movement
of mesh data through the memory hierarchy, but vectorisasiampeded by simultaneous ac-
cesses to the same mesh location. These issues are addingesdeaducing a data structure that
associates particles with cells. We can then process glidheles belonging to a given cell in
a group, and the mesh data can be stored in registers, ecgingran both memory bandwidth
and pointer arithmetic when loading mesh data. This apjpredso facilitates vectorisation.
Although there are other possibilities [2, 3], the datadtite we have adopted is an unrolled
linked list, a hybrid approach in which an array of data isesticat each node of a linked list. Of
course, particles move between cells, and work is requiretkintain the data structure. This is
equivalent to sorting the particles, but this is a toleraoieputational burden. Fig. 1 compares
an orthodox particle-in-cell implementation with the mesapproach, for a simple case with
one real space and one velocity space dimension. For a iedagdarge number of particles per
cell (Nc = 100), the improvement achieved is about 20 % for the new daiatare only, and
about 50 % when vectorisation is also used. The orthodoxamehtation cannot be vectorised,
for reasons already remarked. Maintaining the sorted datatare consumes 30-40 % of the
computation time, with the implication that better reswiés be expected for more elaborate

models, such as those involving three velocity componerds@agnetic fields.

Parallelisation

OpenMP [4] offers a lightweight framework for introducingrallelism into programs de-
signed for shared memory architectures. The approachstisduabove lends itself readily to
parallisation using OpenMP, which can be combined with MRbtploit systems that combine
shared and distributed memory. Results obtained in thisasaghown in Figs. 2 and 3. Fig. 3
shows that there is a regime where a superlinear speedupeiset. This occurs because the

available cache memory is increased by using more cores.

Conclusions

The methods employed here combine to produce a speedurs timéxcess of thirteen at
best, and above ten over a useful range of problem sizes. Modern hardware, with better

37" EPS Conference on Plasma Physics P4.329

Con{/entional implemelntation
100) Sorted particles E
.-~ "Sorted particles and SSE --------

80 | -

60 | e 4

Processing Rate (108 st)

20 -

0 1 1 1
0.01 0.1 1 10 100

Data size / Cache size

Figure 1: An orthodox particle-in-cell implementation jparticle data stored in unsorted ar-
rays compared with the present approach both with and withaxdware vectorisation using
SSEJ5].

main memory bandwidth, would probably extend this rangeatar speedups are also likely to
be obtained in conjunction with computationally more coexphlgorithms, because the book
keeping will be a smaller proportion of the computationaidaun.

Acknowledgment

This work was supported by Science Foundation Ireland ugdant 07/IN.1/1907 and by
Association EURATOM-DCU.

References

[1] C. K. Birdsall. Particle-in-cell charged-particle gimations, plus Monte Carlo collisions
with neutral atoms, PIC-MCQEEE Trans. Plasma Sci., 19(2):65-85, April 1991.

[2] K. J. Bowers. Accelerating a particle-in-cell simutatiusing a hybrid counting sortJ.
Comp. Phys., 173(2):393-411, November 2001.

[3] D. Tskhakaya and R. Schneider. Optimisation of PIC cdnjesnproved memory manage-
ment. J. Comp. Phys., 225(1):829-839, July 2007.

[4] The OpenMP APl specification for parallel programming,008. URL
http://www.openmp.org.

[5] Intel 64 and IA-32 architectures opimization referemeanual, November 2009.

37" EPS Conference on Plasma Physics P4.329

900 T T

"1 core
2 cores

800 | 4 cores oo

8 cores

700 -

600 - .
500 - .
400 | -

300 .

Processing Rate (108 st)

200 |- .

100 —— 1

0.01 0.1 1 10 100
Data size / Cache size

Figure 2: The present approach with parallelism using OF&ndhiowing performance on a

varying number of processor cores.

14 T T T T T T T
2 cores
4 cores
12 F \ 8 cores - i
> — B
) B
g
s 08]
£
Lu . .
K} |
? 0.6 -
g .
04 | B
0.2 | B
O n PR | n P | n P | n PR
0.01 0.1 1 10 100

Data Size / L2 Cache Size

Figure 3: The same data as in Fig. 2, represented as paféiiedrecy with respect to execution

on a single core.

