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Wave-particle interaction is one of the most well studied subjects in plasma physics. Particle
dynamics in the presence of electrostatic or electromagnetic waves has been one of the main
paradigms on which the modern theory of nonlinear Hamiltonian dynamics and chaos has
been applied [1]. However, almost all previous studies of wave-particle interactions from the
point of view of Hamiltonian dynamics have been focused on waves having discrete spectra,
namely, periodic waves. In a previous work [2] we have studied particle interactions with
localized wavepackets propagating in the absence of a magnetic field or along a uniform
magnetic field. In this work we study such interactions in the general case where the
wavepackets propagate at an angle to a magnetic field.

The Hamiltonian describing particle motion in a uniform constant magnetic field B=Byz is
Ho=|p-(e/c)APPI(2M), where A=-Bgyx is the vector potential corresponding to the magnetic
field and p=Mv+(e/c)A is the canonical momentum. Utilizing the generating function

F1=MQ[(y-Y)*cotp/2-xY] (Q=eBo/Mc, is the gyration frequency) we transform to “guiding

center” variables with the new Hamiltonian being H, :P22/2M+P¢Q. The new variables

are the guiding center position (X, Y), the z coordinate and momentum (z,P,) and the gyration

angle and angular momentum (¢, P,). Under the presence of a localized electrostatic wave

field @o(r-Vyr) sin(k-r-wr), with wavenumber k =kz+k,y and group velocity Vg, the

Hamiltonian is
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where p(P,) = (2P(,,/MQ)”2 is the Larmor radious and Jm(k.p) are Bessel functions. The wave
fields range from ordinary wavepackets to ultra short few-cycle and subcycle transient pulses.
Note that for the latter, the assumption of adiabaticity for amplitude modulation, commonly
adopted in previous works, does not hold. We consider the presence of the localized wave as a
perturbation to the particle motion in the constant uniform magnetic field. The unperturbed
frequencies of particle motion are w, = Q and . = P./M (= v.). The perturbation results in

resonances between the degrees of freedom given by the condition
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In order to analyze particle dynamics we utilize the canonical perturbation method [1].
According to this method we construct a near-identity canonical transformation resulting to a
new Hamiltonian where the dependence on canonical positions is "pushed” to higher order.
According to a standard procedure [1], the first order generating function is calculated by
integrating the perturbative part of the Hamiltonian along unperturbed particle orbits.
Although our approach is general, in the following we focus on a localized wave of Gaussian
form

xZ 2 ZZ
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In order to consider finite Larmor effects, i.e. take into account the fact that the Larmor

radious can be comparable to the spatial with of the wave, we use a first order, with respect to

(pla.), Taylor expansion of @,. Therefore we obtain the first order generating function as
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The nonperiodic time dependence of the generating function is given through the functions

¥ =k [z—(PIM)t]+kY-m(p—-Qt), Q,=k(PIM)-mQ-w, B,

K(f)= j e dx = %[u erf()],  lim K(1) = Jr

t

A@)= [ e dv=-Z¢", lim A() =0

The magnitude of w; depends exponentially on the momentum parallel to the magnetic field

P., the gyration frequency @ and the wave frequency w, through the exponential term
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exp(—Q,i /4A2). The generating function has a significant magnitude in the phase space area

localized around the locations where the resonance conditions 2,, = 0 are fulfilled, with the
width of these areas being inversely proportional to the transit time of the localized field
through the particle (4 ~ V/a). The effect of the “cross-section” of the wave-particle scattering

Is taken into account through the exponential term

oo B =44°C7 ) [ IRxV]
Y B IV

First-order finite Larmor radius effects are taken into account through terms proportional to
(p/al).

Having calculated w1, we can construct first-order approximate invariants (FZ ,12,)? )of the

particle motion as follows:

where (P, Q) = (P., z), (P,, ¢), (MQX,Y) are the respective pairs of canonically conjugate
variables. By setting two variable pairs equal to constants the contour plots of each one of
these approximate invariants provides analytically the Poincare surface of section in the plane
defined by the third pair. Moreover, we can study the maximum canonical momentum
variation after an interaction of the particle with the localized wave through the equation

P=P- max[awl ]
z,0,Y aQ

where w” = lim w; .

t—>+0

The above results refer to the study of single particle dynamics under interaction with the
localized wave field. Based on the generalized Madey’s theorem [3], [4], we can utilize the
results of first-order perturbation theory in order to calculate position averaged quantities,
depending on the canonical momenta, with up to second-order accuracy. Therefore the
averaged canonical momentum variation of an ensemble of particles having different initial

gyration angles, z and Y positions, after a single interaction with the localized wave, is

2
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where we have substitute the initial values of the canonical variables in the r.h.s. This

equation provides the canonical momentum variation depending on the initial values of P., P,
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and X. Additional averaging over the initial guiding center coordinate X results in space-
averaged parallel and angular momentum variations that are of interest to calculations on
energy transfer through wave-particle interactions with applications to heating and current
drive in magnetized plasmas.

In addition we can study the transient diffusion of particle momentum and X position for an
ensemble of particles interacting with the localized wave field by utilizing the following
evolution equation for the particle distribution function averaged over (zo, ¢o, Yo)

aF_<P>:i(D(p t)aF_<P>)
or 0P oP

where P = (P,, P,, X) and Q = (z, ¢, ¥) and

D(p;)=1§ Om || ow
20\ 0Q, )\ 6Q, o

is the time-dependent diffusion tensor [5].

In conclusion, we have studied particle interaction with spatially localized electrostatic waves
in a constant uniform magnetic field. The localized fields may range from ordinary
wavepackets to ultra short few-cycle and subcycle transient pulses, since no adiabaticity
assumption is considered. The utilization of the canonical perturbation theory allowed for the
construction of approximate invariants of the motion containing all the essential information
for the strongly inhomogeneous phase space of the system, corresponding to the chaotic
scattering and transient momentum variation of the particles. Moreover, the collective particle
behaviour has been studied by calculating position-averaged momentum variations and

transient momentum and position diffusion.
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